Universal properties of neutron-rich nuclei near the neutron drip line

Dam Thanh Son (University of Chicago)
XVth Quark Confinment and the Hadron Spectrum
Stavanger, 4 August 2022

Universal properties of

 some neutron-rich nuclei near the neutron drip lineDam Thanh Son (University of Chicago)
XVth Quark Confinment and the Hadron Spectrum
Stavanger, 4 August 2022

References

Masaru Hongo and DTS, PRL 128, 212501 (2022) [arXiv:2201.09912]

Plan

- Neutron-rich nuclei
- Two-neutron Borromean halo nuclei
- Neutrons as near-unitarity fermions: scaling dimensions of operators
- Coupling of neutron sector to the core nucleus: a renormalizable field theory

Tsunoda et al. Nature 587, 66 (2020)

Two-neutron halo nuclei

(n)
(n)

- Near the neutron drip line, sometimes one has "Borromean" nuclei
(Z, A) is bound (core)
$(Z, A+1)$ is unbound
$(Z, A+2)$ is bound
- Some examples: ${ }^{6} \mathrm{He},{ }^{8} \mathrm{He},{ }^{11} \mathrm{Li},{ }^{22} \mathrm{C}$

Two small energies

- Interaction between neutrons fine-tuned (almost bound state):

$$
a \approx-19 \mathrm{fm} \quad \epsilon_{n}=\frac{\hbar^{2}}{m_{n} a^{2}} \approx 0.12 \mathrm{MeV}
$$

- small 3-body binding energy (2 n separation energy)

$$
\begin{aligned}
& B\left({ }^{6} \mathrm{He}\right)=0.975 \mathrm{MeV} \\
& B\left({ }^{11} \mathrm{Li}\right)=0.369 \mathrm{MeV} \\
& B\left({ }^{22} \mathrm{C}\right)<0.18 \mathrm{MeV} \text { ? Hammer ji Phillips } 2017
\end{aligned}
$$

- Compare to the more typical energy scale

$$
r_{0} \approx 2.75 \mathrm{fm} \quad \frac{\hbar^{2}}{m_{n} r_{0}^{2}} \approx 5.5 \mathrm{MeV}
$$

Questions

- Is the 3-body system universal?

Can any physical quantity can be written as

$$
O=B^{\Delta_{O}} F_{O}\left(\frac{B}{\epsilon_{n}}\right), \quad O(\omega)=B^{\Delta_{o}} F_{O}\left(\frac{\omega}{B}, \frac{B}{\epsilon_{n}}\right)
$$

- Answer:almost

Fine tuning in neutrons sector

$$
\text { - } L=i \psi^{\dagger}\left(\partial_{t}+\frac{\nabla^{2}}{2 m}\right) \psi-c_{0} \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow}
$$

- Introducing auxiliary field d ("dimer")
- $L=i \psi^{\dagger}\left(\partial_{t}+\frac{\nabla^{2}}{2 m}\right) \psi-\psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} d-d^{\dagger} \psi_{\downarrow} \psi_{\uparrow}+\frac{d^{\dagger} d}{c_{0}}$
- Full dimer propagator:

$$
\begin{aligned}
G_{d}^{-1}(p) & = \\
& =\frac{1}{c_{0}}+\Sigma(p)
\end{aligned}
$$

$$
d
$$

Renormalization

- $G_{d}^{-1}(\omega, \mathbf{p})=c_{0}^{-1}+$ one-loop integral

- $=c_{0}^{-1}+\Lambda+\left(\frac{p^{2}}{4 m}-\omega\right)^{1 / 2}$
- Fine-tuning: $c_{0}^{-1}+\Lambda=\frac{1}{a}$ ($a=$ scattering length $)$
- When $1 / a=0$: bound state at threshold, "unitarity regime"

$$
G_{d}(\omega, \mathbf{p})=\frac{1}{\sqrt{\frac{p^{2}}{4 m}-\omega}}
$$

Nonrelativistic power counting

- Set $m=1$

$$
\begin{aligned}
S=\int d t d^{3} \mathbf{x} \psi^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2}\right) \psi & {[x]=-1,[t]=-2 } \\
& {[\psi]=\frac{3}{2} }
\end{aligned}
$$

- From the propagator of d we find: $[d]=2$
- OPE:

$$
\psi(\mathbf{x}) \psi(\mathbf{0})=\frac{d(\mathbf{x})}{|\mathbf{x}|}+\cdots
$$

EFTof weakly-bound halo
 nuclei: degrees of freedom

EFTof weakly-bound halo nuclei: degrees of freedom

- neutron ψ, forming dimer d

EFTof weakly-bound halo nuclei: degrees of freedom

- neutron ψ, forming dimer d

EFTof weakly-bound halo nuclei: degrees of freedom

- neutron ψ, forming dimer d

EFTof weakly-bound halo nuclei: degrees of freedom

- neutron ψ, forming dimer d
- the core ϕ

EFTof weakly-bound halo nuclei: degrees of freedom

- neutron ψ, forming dimer d
- the core ϕ

EFTof weakly-bound halo nuclei: degrees of freedom

- neutron ψ, forming dimer d
- the core ϕ
- the halo nucleus h

EFTof weakly-bound halo nuclei: degrees of freedom

- neutron ψ, forming dimer d
- the core ϕ
- the halo nucleus h

EFTof weakly-bound halo nuclei: degrees of freedom

- neutron ψ,forming dimer d
- the core ϕ
- the halo nucleus h
- Interaction: $h^{\dagger} d \phi+d^{\dagger} \phi^{\dagger} h$

EFTof weakly-bound halo nuclei: degrees of freedom

- neutron ψ, forming dimer d
- the core ϕ
- the halo nucleus h
- Interaction: $h^{\dagger} d \phi+d^{\dagger} \phi^{\dagger} h$

- dimension: $\frac{3}{2}+\frac{3}{2}+2=5$: marginal

EFTof weakly-bound halo nuclei: degrees of freedom

- neutron ψ,forming dimer d
- the core ϕ
- the halo nucleus h
- Interaction: $h^{\dagger} d \phi+d^{\dagger} \phi^{\dagger} h$

- dimension: $\frac{3}{2}+\frac{3}{2}+2=5$: marginal
- leading-order EFT renormalizable

Effective Lagrangian

$$
\begin{gathered}
\mathscr{L}=h^{\dagger}\left(\mathrm{i}_{t}+\frac{\nabla^{2}}{2 m_{h}}+B\right) h+\phi^{\dagger}\left(\mathrm{i}_{t}+\frac{\nabla^{2}}{2 m_{\phi}}\right) \phi+g\left(h^{\dagger} \phi d+\phi^{\dagger} d^{\dagger} h\right) \\
+\psi^{\dagger}\left(\mathrm{i}_{t}+\frac{\nabla^{2}}{2 m}\right) \psi-\psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} d-d^{\dagger} \psi_{\downarrow} \psi_{\uparrow}+\frac{d^{\dagger} d}{c_{0}}
\end{gathered}
$$

Logarithmic running of $g(g \rightarrow 0$ in the IR, Landau pole in UV)

Charge and matter radii

Charge and matter radii

- Charge radius $\left\langle r_{c}^{2}\right\rangle=\frac{4}{\pi} \frac{A^{1 / 2}}{(A+2)^{5 / 2}} \frac{g^{2}}{B} f_{c}(\beta)$,

$$
\beta=\sqrt{\frac{\epsilon_{n}}{B}} \quad f_{c}(\beta)=\frac{1}{1-\beta^{2}}-\frac{\beta \arccos \beta}{\left(1-\beta^{2}\right)^{3 / 2}}
$$

Charge and matter radii

- Charge radius $\left\langle r_{c}^{2}\right\rangle=\frac{4}{\pi} \frac{A^{1 / 2}}{(A+2)^{5 / 2}} \frac{g^{2}}{B} f_{c}(\beta)$,

$$
\beta=\sqrt{\frac{\epsilon_{n}}{B}} \quad f_{c}(\beta)=\frac{1}{1-\beta^{2}}-\frac{\beta \arccos \beta}{\left(1-\beta^{2}\right)^{3 / 2}}
$$

- Matter radius $\left\langle r_{m}^{2}\right\rangle=\frac{2}{2 \pi} \frac{A^{3 / 2}}{(A+2)^{5 / 2}} \frac{g^{2}}{B}\left[f_{c}(\beta)+f_{n}(\beta)\right]$

$$
f_{n}(\beta)=\frac{1}{\beta^{3}}\left[\pi-2 \beta+\left(\beta^{2}-2\right) \frac{\arccos \beta}{\sqrt{1-\beta^{2}}}\right]
$$

Charge and matter radii

- Charge radius $\left\langle r_{c}^{2}\right\rangle=\frac{4}{\pi} \frac{A^{1 / 2}}{(A+2)^{5 / 2}} \frac{g^{2}}{B} f_{c}(\beta)$,

$$
\beta=\sqrt{\frac{\epsilon_{n}}{B}} \quad f_{c}(\beta)=\frac{1}{1-\beta^{2}}-\frac{\beta \arccos \beta}{\left(1-\beta^{2}\right)^{3 / 2}}
$$

- Matter radius $\left\langle r_{m}^{2}\right\rangle=\frac{2}{2 \pi} \frac{A^{3 / 2}}{(A+2)^{5 / 2}} \frac{g^{2}}{B}\left[f_{c}(\beta)+f_{n}(\beta)\right]$

$$
f_{n}(\beta)=\frac{1}{\beta^{3}}\left[\pi-2 \beta+\left(\beta^{2}-2\right) \frac{\arccos \beta}{\sqrt{1-\beta^{2}}}\right]
$$

- Each are not universal $\left(g^{2}\right)$, but universal ratio

$$
\frac{\left\langle r_{m}^{2}\right\rangle}{\left\langle r_{c}^{2}\right\rangle}=\frac{A}{2}\left[1+\frac{f_{n}(\beta)}{f_{c}(\beta)}\right]= \begin{cases}\frac{2}{3} A & B \gg \epsilon_{n} \\ A & B \ll \epsilon_{n}\end{cases}
$$

E1 dipole strength function

E1 dipole strength function

E1 dipole strength function

- $\left.\frac{d B(E 1)}{d \omega}(\omega) \sim \sum_{n}\left|\langle n|\left(\mathbf{r}_{c}-\mathbf{R}_{c m}\right)\right| 0\right\rangle\left.\right|^{2} \delta\left(E_{n}-\omega\right)$
- can be mapped to current-current correlation

$$
\frac{d B(E 1)}{d \omega}(\omega) \sim \frac{1}{\omega^{2}} \operatorname{lm}\langle J J\rangle(\omega)
$$

E1 dipole strength function

- $\left.\frac{d B(E 1)}{d \omega}(\omega) \sim \sum_{n}\left|\langle n|\left(\mathbf{r}_{c}-\mathbf{R}_{c m}\right)\right| 0\right\rangle\left.\right|^{2} \delta\left(E_{n}-\omega\right)$
- can be mapped to current-current correlation

$$
\frac{d B(E 1)}{d \omega}(\omega) \sim \frac{1}{\omega^{2}} \operatorname{lm}\langle J J\rangle(\omega)
$$

- similar to deep inelastic scatterings

E1 dipole strength function

- $\left.\frac{d B(E 1)}{d \omega}(\omega) \sim \sum_{n}\left|\langle n|\left(\mathbf{r}_{c}-\mathbf{R}_{c m}\right)\right| 0\right\rangle\left.\right|^{2} \delta\left(E_{n}-\omega\right)$
- can be mapped to current-current correlation

$$
\frac{d B(E 1)}{d \omega}(\omega) \sim \frac{1}{\omega^{2}} \operatorname{lm}\langle J J\rangle(\omega)
$$

- similar to deep inelastic scatterings

Dipole strength in unitarity limit

- When neutrons are in the unitarity limit $a=\infty$

$$
\frac{\mathrm{d} B(E 1)}{\mathrm{d} \omega} \sim g^{2} \frac{(\omega-B)^{2}}{\omega^{4}}
$$

Result for dipole strength

$$
\begin{align*}
& \frac{\mathrm{d} B(E 1)}{\mathrm{d} \omega}=\frac{3}{4 \pi} Z^{2} e^{2} \frac{12 g^{2}}{\pi} \frac{A^{1 / 2}}{(A+2)^{5 / 2}} \frac{(\omega-B)^{2}}{\omega^{4}} \\
& \times f_{E 1}\left(\frac{1}{-a \sqrt{\omega-B}}\right) \tag{29}
\end{align*}
$$

where

$$
\begin{equation*}
f_{E 1}(x)=1-\frac{8}{3} x\left(1+x^{2}\right)^{3 / 2}+4 x^{2}\left(1+\frac{2}{3} x^{2}\right) \tag{30}
\end{equation*}
$$

consistency check: sum rules

$$
\int_{0}^{\infty} \mathrm{d} \omega \frac{\mathrm{~d} B(E 1)}{\mathrm{d} \omega}=\frac{3}{4 \pi} Z^{2} e^{2}\left\langle r_{c}^{2}\right\rangle
$$

Corrections to EFT

- Corrections to EFT are irrelevant terms EFT
- Effective range in $n-n$ scattering: $r_{0} d^{\dagger}\left(\mathrm{i} \partial_{t}-\frac{1}{4} \nabla^{2}\right) d$
- s-wave core-neutron scattering $a_{c n} \phi^{\dagger} \psi^{\dagger} \psi \phi$
- exp upper bound on $n-{ }^{20} \mathrm{C}$ scattering length: correction < 25%
- p-wave core-neutron resonance (i.e., ${ }^{5} \mathrm{He}$) can also be included

Conclusion

- Weakly bound two-neutron halo nuclei are simple enough to be described by EFT
- Logarithmic running of coupling
- Ratios of lengths and shape of E1 dipole function are universal
- Corrections: n-n effective range (relatively easy), coreneutron scattering length or p-wave resonance (3-loop graphs)

Extra slides

Efimov effect?

- When the core-neutron scattering length is also large: Efimov effect, Borromean bound state inevitable
- But 3-body bound state can exist without the Efimov effect
strength of core-n
attraction

Efimov effect?

- When the core-neutron scattering length is also large: Efimov effect, Borromean bound state inevitable
- But 3-body bound state can exist without the Efimov effect

Efimov effect?

- When the core-neutron scattering length is also large: Efimov effect, Borromean bound state inevitable
- But 3-body bound state can exist without the Efimov effect

Efimov effect?

- When the core-neutron scattering length is also large: Efimov effect, Borromean bound state inevitable
- But 3-body bound state can exist without the Efimov effect

Efimov effect?

- When the core-neutron scattering length is also large: Efimov effect, Borromean bound state inevitable
- But 3-body bound state can exist without the Efimov effect

Example: Carbon-22

- $\left|a\left(n^{20} C\right)\right|<2.8 \mathrm{fm}$ Mosby et al 2013: non-Efimovian
- large matter radius Togano et al $2016 \rightarrow$ small binding energy
- maybe it is here:

Example: Carbon-22

- $\left|a\left(n^{20} C\right)\right|<2.8 \mathrm{fm}$ Mosby et al 2013: non-Efimovian
- large matter radius Togano et al $2016 \rightarrow$ small binding energy
- maybe it is here:

3-body bound
state appears

Example: Carbon-22

- $\left|a\left(n^{20} C\right)\right|<2.8 \mathrm{fm}$ Mosby et al 2013: non-Efimovian
- large matter radius Togano et al $2016 \rightarrow$ small binding energy
- maybe it is here:

