# Lattice QCD for Heavy-Ion Collisions: Status Update



**Swagato Mukherjee** 

August 2022, Stavanger, Norway

### **lattice QCD: hot and heavy**



• bottomonia properties in QGP ?

heavy-quark energy loss / diffusion constant ?

### bottomonia in QGP

### update: first results for up to 3S & 2P states

novel sources respecting symmetries of the state + variational analysis



### thermal widths: large

### thermal mass shifts: small



Rasmus Larsen et.al.: Phys. Lett. B800, 135119 (2020)

### Bethe-Salpeter amplitudes



T=150 MeV: filled symbols



Rasmus Larsen et.al.: Phys. Rev. D102, 114508 (2020)

from bottomonia to heavy-quark potential in QGP

update: complex heavy-quark potential from LQCD results on  $\Upsilon(nS)$ ,  $\eta(nP)$ 



Y(3S)



Shuzhe Shi, Kai Zhou et.al.: Phys. Rev. D105, 014017 (2022)



8

Re[V(r, T)]: nearly T independent

where is color screening in QGP ?

Im[V(r, T)]: large, T dependent

# static-quark potential in QGP



update: first results for full QCD

• subtract continuum using vacuum correlation • characterize the dominant peak in  $\rho(\omega, T)$ 

### Im[V(r, T)]: large, T dependent



what happened to QGP color screening?

Rasmus Larsen et.al.: Phys. Rev. D105, 054513 (2022)

# static-quark potential: finer resolution and more precise data

# excellent agreement among large and small lattices



continuum-subtracted effective mass

### reconfirm results



#### Rasmus Larsen et.al.: in preparation

due to dynamical quarks?

Gaurang Parkar's talk: Aug. 5, 15:40, Track C

### heavy-quark diffusion constant

update: first results for full QCD





fit model  $\rho(\omega)$  to correlators

fit multiple models for  $\rho(\omega)$ 

quenched lattice QCD results:

- Francis et.al., Phys. Rev. D92, 116003 (2015)
- Brambilla et.al., Phys. Rev. D102, 7, 074503 (2020)
- Altenkort et.al., Phys. Rev. D103,1, 014511, (2021)
- Brambilla et.al., 2206.02861

### Luis Altenkort et.al.: in preparation



Hai-Tao Shu's talk: Aug. 4, 16:10, Track D

### **lattice QCD: hot and dense**

RHIC BES-II
NA61/SHINE
HADES
CBM



QCD equation of state ?

Incation of the QCD critical point ?

# Taylor expansion in $\mu_B$

## update: state-of-the-art Taylor expansion

• Taylor expansion of pressure:

$$\frac{\Delta P_N^E}{T^4} = \sum_{n=1}^N \frac{\chi_n^B}{n!} \left(\frac{\mu_B}{T}\right)^n$$

$$\Delta P = P(T, \mu_B) - P(T, 0)$$

• expansion coefficients:

$$\chi_n^B(T) = \frac{1}{VT^3} \left. \frac{\partial^n \ln Z(T, \mu_B)}{\partial (\mu_B/T)^n} \right|_{\mu_B = 0}$$



 Taylor expansion of net-baryon number density:

$$\mathcal{N}_{N}^{E}(T,\mu_{B}) = \frac{\partial P_{N}^{E}(T,\mu_{B})}{\partial \mu_{B}}$$



 Taylor expansion baryon number susceptibility:

$$\chi_2^E(T,\mu_B) = \frac{\partial^2 P_N^E(T,\mu_B)}{\partial \mu_B^2}$$

reliable range of  $\mu_B$  from empirical observations, non-monotonic behaviors



Jishnu Goswami, Phys. Rev. D105, 074511 (2022)

**Taylor expansion: a new variant** 

update: expansions in *T*,  $\mu_B$  around  $T_0(\mu_B)$ , 0

$$\Delta \left[\frac{P}{T^4}\right] \equiv \frac{P(T,\mu_B)}{T^4} - \frac{P(T_0,0)}{T_0^4}$$

$$\begin{split} \Delta \left[ \frac{P}{T^4} \right] &= \left. \frac{d[P(T,0)/T^4]}{dT} \right|_{T_0} \Delta T + \frac{1}{2!} \chi_2^B(T_0) \hat{\mu}_B^2 \\ &+ \frac{1}{2!} \left. \frac{d\chi_2^B(T)}{dT} \right|_{T_0} \hat{\mu}_B^2 \Delta T + \mathcal{O} \big( \hat{\mu}_B^4, (\Delta T)^2 \big) \end{split} \quad \Delta T = T - T_0(\mu_B) \end{split}$$

choose  $T_0(\mu_B)$  along a physics-motivated path in  $T - \mu_B$  plane

empirically observed to work till larger value of  $\mu_B$ Borsanyi et.al., Phys. Rev. Lett. 126, 232001 (2021)



... still an expansion up to  $\mathcal{O}(\mu_B^4)$ 

### Padé resummation of Taylor expansion

$$\sum_{n} \chi_{n}^{B} \mu_{B}^{n} \longrightarrow \sum_{i} \frac{a_{j}}{\mu_{B} - b_{i}}$$



Jishnu Goswami, Phys. Rev. D105, 074511 (2022)



very sensitive to orders & accuracies of Taylor coefficients

expansion in current-current correlation: all orders in  $\mu_B$ 

$$D_n = \int \mathrm{d}\mathbf{x_1} \cdots \mathrm{d}\mathbf{x_n} J_0(\mathbf{x_1}) \cdots J_0(\mathbf{x_n})$$



for a given gauge field background

 $\bar{q}_f$  $\gamma_0$  • resummed partition function: contributions of up to N-pt current-current correlation to all orders in  $\mu_B$ 

$$\frac{Z_N^R(T,\mu_B)}{Z(T,0)} = \left\langle \exp\left[\sum_{n=1}^N \bar{D}_n \left(\frac{\mu_B}{T}\right)^n\right] \right\rangle \qquad \qquad \bar{D}_n = D_n/n!$$

zeros of  $Z_N^R$  provides self-consistent check of reliability of results not expansion of Z, but of fermion action on a fixed background

• has been generalized to resum all order in  $T, \mu_B$ 

- generalization of Borsanyi et.al., Phys. Rev. Lett. 126, 232001 (2021)

average phase of partition function

zeros of partition function



### excellent convergence

stable while increased order

Mondal, Mukherjee, Hegde, Phys. Rev. Lett. 128, 022001 (2022)



● first results for up to 3S & 2P bottomonia in QGP

- heavy-quark potential from these results
- QGP static-quark potential for full QCD
- heavy-quark diffusion constant for full QCD
- resummed QCD EoS to all orders in chemical potential
  - resumming contributions of up to N-point current-current correlations
  - self-consistent check of reliability