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Inference in HNEP is fundamentally challenging

While we understand very well how our data is generated...

Hypothesis H

p(CC, Z|t9) = p(x|za)p(2a|zn)p(2n|2p)P(2p|0)

O(100)

...we can’t observe the intermediate states Z:

p(x|0) = /dz p(l’%ZW)

hopeless integral —" well-understood
over millions of dim. physics processes
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“Simulation”
it Detector Data

makes text-book data analysis impossible...

p(0|r) = p}ggi)p(@




Inference in HNEP is fundamentally challenging

But we can generate sample data: x ~ p(x|€) by encoding

Hypothesis () ) Inference - - .
0 our physics into (very costly) simulators

Statistical
Analysis

Common Strategy: try to find a good low-dimensional

100
>
% Observable

Distributi . —
5 swewons | observables: x — y, = f(x)
% Jet
c Algorithms s 0 W I A7I'LAS B
S S
S 25 B . Background ZZ 777, .
S Clliun;;?_z L S N HoZZ" 4 estimate p(y, | @) from samples
O o I ' . :

G o[ [ Signal (m,=125 Gov) 7 for inference i.e. p(@|y,)

—
o

Tracks 5 % Syst.Unc. 1
_ {s=7TeV:Ldt=4.81b" 3]
8 Y, - (s=8TeV:/Ldt=581b" . :

“Simulation” ) . 1o
Detector Data Analysis

100 150 200 250
m,, [GeV]

This is the core of “reconstruction” and “analysis”
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ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

Breakthrough of neural-network based “Deep Learning”




Impressive Progress In the last Decade

“A painting by Grant Wood of This is a picture of Barack Obama

an astronaut couple, Language “His foot is positioned on the right side of the scale”
american gothic style” “The scale shows a higher weight”
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generate low-level data from high-level concepts

reconstruct high-level concepts from raw data
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ML Opportunities in Fundamental Physics

Acceleration of Computation S . Search for new (better) Algorithms
(e.g. sometimes by searching for a good approximation) (e.g. targeted search based on samples)

42 Years of Microprocessor Trend Data
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space of possible algorithms

simulation side: the physics is fixed: up to us to find best observables
nothing to search for —speed up simulation —>search for best reconstruction 7



Lightning Summary of ML

Learning: data-driven search for a function with optimal performance in a huge

Space of Algorithms

parameters

Algorithm f Evaluation

algorithm Feedback

training data

| /
Performance: 4:(a3,y)‘%(f¢ (CC), y)

performance
evaluation

How do we learn practically?



Lightning Summary of ML

search space should be large enough — trillions of parameters! How could this work?

— gradient-based optimization (“good sense of direction”)

oL
op

[ parameters )

inputs Algorithm f¢ l output |-> Evaluation objective

Feedback

To deal with hyper-planes in a 14-dimensional space, visualize a 3D — requires aIQOritth and evaluation tO

space and say fourteen'to yourself very loudly. -Hinton (DL pioneer)



Finding the right Search Space

At first Increasingly

fixed but generic, large and easily domain-specific, arbitrary computation
differentiable function class: encoding e.g. symmetries, dynamics, ...

R,y =f(R,x) x=f(x)

! hidden layer 1 hidden layer 2 hidden layer 3
input layer
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Differentiable Programming

The key: programming languages whose programs are
* avoid overhead of computer algebra (symbolic differentiation)
e exact gradients instead of numerical approx. (unstable in high dimensions)

import jax
import jax.numpy as jnp

=f func(x):
y = X
for 1 in range(4):
y += x[0]*%2 + jnp.sin(x[1]) + jnp.exp(-x[2])
y = y.sum()
return y

Program

exact gradients! l

gfunc = jax. (func)
gfunc(jnp.array([2.,3.,-2]))

(DeviceArray(141.36212, dtype=float32),

DeviceArray([ 49. , —10.8799095, -87.66867 ] | |
standard differentiable
| ‘ programming programming
1 TensorFlow ek PYTORCH

... but also C++, Fortran, ... ( see backup )



Differentiable Programming in ML

Immediate Gains from DiffProg: allows us to add physics into ML models

* bias towards good solutions by constraining solution space
 hard-coded knowledge does not need to be learned from data (efficiency)

no structure

Errors

differentiable
structure

put physics here

Data

12



Differentiable Programming in ML
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Differentiable Programming in ML

Complementary Approach: add physics-driven evaluation

put physics here

Evaluation I



Differentiable Programming in ML

Training Fast Simulators: produce events at correct relative proportions

At parton level, events should follow Matrix Element proportions

o(x,0) = ) | Mx,0)

l

e/ d

v | q

f we have differentiable Matrix Elements | .// | ({p:},0) we can check directly
[ parameters j

l - sample diversity \
Matrix Elements -

physics-driven evaluation

15
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Differentiable Programming in ML

MadJax: MadGraph calculations (originally FORTRAN) transpiled into differentiable
programming language (JAX) — usable as evaluation function during training

ete- -> U+p-

mg5_aMC

1 FKL flow
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[LH, M. Kagan]
arxiv:2203.00057 16



Differentiable Programming in ML

Same approach in Lattice QCD:

Learn proposal distribution for sampling
of fields on a lattice (for MCMC / |S)

* encode symmetries in ML sampler

.............................................................................................................................

» evaluate on LQCD action in DiffProg nimas
language (pytorch) HH
)

[ parameters j

l sample diversity
[ noise ]—» ML model —»[ fields result ]
LQCD Action
Albergo et al.

arxiv: 1904.12072
physics-driven evaluation arxiv:2101.08176 1/



Differentiable Programming in ML

Parton Density Functions: DP can train NNPDF as it was meant to be trained
One of the early use-cases of NNs in HEP: PDF parametrizations

@ physics-driven evaluation
-—>l PDF at Qo ' DGLAP ' @ Q1 ' DGLAP ' @ Q2 ' DGLAP l @ Q3 '

» “ @
Curiosity:

traditionally not(!) trained via gradient-descent
— too difficult to get gradients

— use genetic algorithms (mutation + select)
— works but is slow

genetic algorithms [Source] 18



https://www.cs.ubc.ca/~van/papers/2013-TOG-MuscleBasedBipeds/index.html

Differentiable Programming in ML

More recently: PDF evolution kernels implemented in DiffProg (Tensorflow)
» allows finally for a gradient-based training of NN

" For all fits shown in this paper we utilize gradient de-

scent (GD) methods to substitute the previously used |ge- dat 1.7 GeV

netic aﬁ.gorithm. This change can be shown to greatly re- 0.60 - e
duce the computing cost of a fit while maintaining a very DIS n3fit NGA (68 c.I.+10)
similar (and in occasions improved) x2-goodness. The less 0.55 -

stochastic nature of GD methods also produces more sta-

C
ble fits than its GA counterparts. T'he main reason why N Qi ? P D F

0.50 S
the GD methods had not been tested before were due to Machine Learning + PDFs + QCD
the difficulty of computing the gradient of the loss function

(mainly due to the convolution with the fastkernel tables)
in a efficient way. This is one example on how the usage
of new technologies can facilitate new studies thanks to 0.40 -
differentiable programming and distributed computing.

0.35
(£ = Aixi(1 — x)# NN(x) )
Convolution 10~53 10'—4 16—3 10'—2 10'—1 1'00
xgrid; >~ e X
R \
xgrid,> \ o | pdfi »61~> O Xer
It
- a 4 Tr/VI
; fitbasis o = :
t - : : split
N\ - 2 arxiv: 1907.05075
n > Un = n Vv
‘r: pilowdd 4 X [Carrazza et all

xgrid >
7 Preproc




m(x) [GeV]

Differentiable Programming Beyond ML

Gradients useful far beyond ML: e.g. complex fits via differentiable programming

Binned Likelihoods (LHC, EIC, Belle-Il, ...) Partial Wave Analysis
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https://app.slack.com/team/U0353VC9XNX

Speaking of Genetic Algorithms...



Speaking of Genetic Algorithms...

Automated Antenna Design with Evolutionary
Algorithms

Gregory S. Hornby

hornby@ema<il. arc.nasa.gove
University of California Santa Cruz, Mailtop 269-3, NASA Ames Research Center, Moffett Field, CA

Al Globus Derek S. Linden
San Jose State University JEM Engineering, 8683 Cherry Lane, Laurel, Maryland 20707

Jason D. Lohn
NASA Ames Research Center, Mail Stop 269-1, Moffett Field, CA 94035

Whereas the current practice of designing antennas by hand is severely limited because
it is both time and labor intensive and requires a significant amount of domain knowledge,

evolutionary algorithms can be used to search the design space and automatically find

The current practice of designing and optimizing antennas by hand is limited in its ability to
develop new and better antenna designs because it requires significant domain
expertise and is both time and labor intensive.

Algorithmic Optimization of Hardware?

22



One more thing to tune:

Beyond reconstruction & analysis, we have an additional knob we can tune:

* the experiment design itself!

-

Beam Types

Beam Energy

Detector Design

J

“Design”

Hypothesis 9

(

-

~

RGE Flow

Matrix
Elements

PDFs

Parton
Shower

Hadronization

Material
Interaction

J

“Simulation”

100
=
©
-
O
7
-
)
=
O
©
©
O

Detector Data

VaN
9 Inference

Statistical
Analysis

Observable
Distributions

Jet
Algorithms

Energy
Clusters

Tracks

"Analysis"

Example: ATLAS Calorimeter hand-designed
for Higgs Discovery (Photon Pointing)

excellent photon identification and jet background rejection,
by exploiting its fine longitudinal segmentation, thereby im-
proving the signal to background ratio. Further, the diphoton
invariant mass, defined as

My = \/2E1F5 (1 — cos )

where F, F, are the two photon energies and 6 is the angle

[Nikiforou, 1306.6756]



One more thing to tune:

Beyond reconstruction & analysis, we have an additional knob we can tune:
* the experiment design itself!

New Detectors are coming, can ML

VaN
Hypothesis (/ @) |nterence help design them?
4 ) 4 R
100 . .
RGE Flovy Statistical Al-assisted design
e " : I Analysis
Eloments 2 of the EIC Detec
Beam Types ‘ T I:)_Obs.:erv.able 7
- istributions —
PDFs O BN
Beam Energy 2 Jot A —
FElnie), g Algorithms | =
Shower =
Detector Design ©
\_ ) Hadronization _%; CIIEunsetE:')s/
“Design” Matetrial
Interaction Tracks
. y e ‘
N - a
us-m lation” d A ’ ’\.« A - X Fistiano Fanelli
it Detector Data "Analysis”

[AI4EIC]



https://indico.cern.ch/event/1072579/contributions/4802327/attachments/2457674/4212901/CAP_Fanelli_2022.pdf

a.u

One more thing to tune:

Genetic Algorithms yield e.g. projective design of tracking system

— ongoing R&D: 10% improvement in resolution

S50F "~ T - T T T
- 1<hi<15 :
400} § ECCE 2021 Simulation k
| —— D’ — x* K Fit :
g 4 )
300; 0=0.0112 = 0.0004 :
[ X2%/NDF = 2.2885 ]
200} 1
100} .
0 F
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500F

. 1<khi<15 .
[ § ECCE 2021 Simulation Projective -
r = D’ - x* K Fit

:-o =0.0100 = 0.0005
" X%NDF = 1.2031

T | T Y T T J
4

18 19 2
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DIRC || UuRWELL3 |
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!
u we "' 7
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Ut X
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| Vertex ITS3 |
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it

EST 4 i

| uRwell 1

| Support Cone Angle (6) | |
arxiv:2205.09185

Can a gradient-based optimization work / improve?
(similar to NNPDF example?)
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An Example from outside Physics

CEM

simulator evalua

simulator evaluat

[Source]

unoptimized design optimized design

B - B - I - Rer=
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https://www.deepmind.com/publications/physical-design-using-differentiable-learned-simulators

Differentiable Design Optimization

Key difficulty: HEP simulation is highly stochastic and discrete (decays, showers,...)
— need gradient over complex expectation over data and event histories

VoEof(2)]g = Ve | dzlyey | dz p(z|z, 0)p(2]0, ¢)
el = s [ sty [fdEHEE

lent wrt
gradient wr expected performance probability of data under design ¢

to fit paramets

Ways to gradient-based training
* replace true simulator with smooth, differentiable “surrogate” (ML generative model)
* neural network based proposal, train on gradients of policy instead of simulation



Differentiable Design Optimization

Example: Optimize Muon shielding in SHIP
* |ocal differentiable proxy + gradient descent

Emulsion spectrometer

-1
N

Target & Magnetised hadron absorber

J
N
<

l\’
| £
-

pe

Active muon shield

O Lantwin _

[see A.Ustyuzhanin's Talk in last year’s QCHS]
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https://indico.uis.no/event/12/contributions/240/attachments/122/195/Ustyuzhanin-ConfXIV.pdf

Differentiable Design Optimization

Example: End-to-end differentiable Muon Tomography Design Optimization
* instead of surrogate, implement a detector simulation in diffprog language

» fast convergence to good design

/
Loss

i
=

measured
precisely but

Loss Composition
o o o o o =

less efficiently

Epoch
/ \ g.
: . .
Example 2: o
Muons . L
s procisely  LG-Strong] " y
but more [see G. Strong's presentation Thursday Track H]

efficiently


https://indico.uis.no/event/12/contributions/240/attachments/122/195/Ustyuzhanin-ConfXIV.pdf

Differentiable Design Optimization

Differentiable Simulators & Design Optimization: very early days
— a lot of foundational work to be done - join!
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Second MODE Workshop on Differentiable Programming for
Experiment Design

12-16 Sept 2022
OAC conference center, Kolymbari, Crete, Greece.
Europe/Zurich timezone

Overview In case of issues please contact Dr. Pietro Vischia at the email address below.
Scientific This workshop is part of the activities of the MODE Collaboration and of the SIVERT
Programme project.

SALCI L s e MODE stands for "Machine-learning Optimized Design of Experiments”.
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Reqitration The workshop will take place at the OAC (https://www.oac.gr/en/) in Kolymbari, Crete D I FFERE NTIAB LE AN D PRO BAB I LISTI C PROG RAM M IN G FO R

(Greece). Information on the accommodation available in a dedicated page.
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Code of Conduct support: we have limited availability to cover part of the travel expenses and waiving of the
conference fee for some selected young participants. Priority will be given to participants
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https://indico.cern.ch/event/1145124/

Summary

HNEP Analysis is dominated by simulation & optimization problems
e fast simulation, search for best observables
* ripe for significant improvement by ML methods

Differentiable Programming:
* one of the underlying secrets of Deep Learning, lots of interest in recent years

e allows a more nuanced look at ML: encode physics into model & evaluation

Generalizing from ML: we can abilities of diff. prog. to solve non-ML tasks

» nascent field of ML and/or gradient-based experimental design
optimization e.g. for EIC



