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why radiative corrections on the lattice?

FLAG21, arXiv:2111.09849

1.14 1.18 1.22 1.26

=
+

+
=

+
=

 QCDSF/UKQCD 07 
 ETM 09         
 ETM 10D (stat. err. only)
 ALPHA 13A       
 ETM 14D (stat. err. only)
 FLAG average for =
 MILC 04        
 HPQCD/UKQCD 07 
 RBC/UKQCD 08   
 Aubin 08       
 MILC 09        
 MILC 09A       
 BMW 10         
 RBC/UKQCD 10A  
 JLQCD/TWQCD 10 
 MILC 10        
 Laiho 11       
 RBC/UKQCD 12   
 RBC/UKQCD 14B  
 BMW 16         
 QCDSF/UKQCD 16 
 FLAG average for = +
 ETM 10E (stat. err. only)
 MILC 11 (stat. err. only)
 MILC 13A        
 HPQCD 13A       
 ETM 13F         
 FNAL/MILC 14A   
 ETM 14E         
 FNAL/MILC 17   
 CalLat 20  
 ETM 21   
 FLAG average for = + +

± / ±

0.95 0.97 0.99 1.01

=
+

+
=

+
=

no
n-

la
tti

ce

Leutwyler 84
Bijnens 03
Jamin 04
Cirigliano 05
Kastner 08

ETM 09A
ETM 10D (stat. err. only)
FLAG average for =

RBC/UKQCD 07
RBC/UKQCD 10
JLQCD 11
JLQCD 12
FNAL/MILC 12I
RBC/UKQCD 13
RBC/UKQCD 15A
JLQCD 17
PACS 19
FLAG average for = +

FNAL/MILC 13E
ETM 16
FNAL/MILC 18
FLAG average for = + +

+ ( )

f
K±/fπ± = 1.1932(21) , f+(0) = 0.9698(17)

0.2% form LQCD!

QED(+IB) 
corrections do 

matter!

QED(+IB) 
corrections are  

non-perturbative!



why radiative corrections on the lattice?
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why radiative corrections on the lattice?

• QCD lattice results for K`2, π`2 and K`3 decays are extremely precise

• QED (that necessarily means also isospin breaking) radiative corrections are phenomenologically
relevant at this level of precision

• we clearly see this in the nuclear β-decays Vud saga

• radiative corrections are non–perturbative!

• lattice calculations are therefore needed to confirm and/or to complement EFT calculations (in
this talk χpt)
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QED radiative corrections on the lattice

extracting QED radiative corrections from a non-perturbative lattice
simulation is a challenging problem!

• QED is a long-range unconfined interaction that needs to be consistently
defined on a finite volume (see backup)

• finite-volume effects are potentially very large, e.g. of O(L−1) in the
case of the masses of stable hadrons

• in the case of decay rates the problem is much more involved because of
the appearance of infrared divergences, O(log(L)), at intermediate
stages of the calculation: the infrared problem!

• an alternative approach is to calculate the relevant convolution integrals,
of the product of the non–local QCD matrix elements with the QED
analytical kernels, by estimating the long distance tails of the QCD
objects

• from the numerical point of view, it is difficult to disentangle QED
radiative corrections from the leading QCD contributions



P`2(γ)



lattice calculation of the O(α) QED radiative corrections to P`2 decays

what we need to calculate?
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including QED radiative corrections into a non-perturbative lattice calculation is a very challenging problem!

• QED is a long-range unconfined interaction that needs to be consistently defined on a finite volume: this is a very subtle
issue that I’ll not discuss in this talk (see backup slides);

• finite volume e↵ects are potentially very large, e.g. of O(1/L) in the case of the masses of stable hadrons

• in the case of decay rates the problem is much more involved because of the appearance of infrared divergences at
intermediate stages of the calculation: the infrared problem!

• in order to perform this calculation one has to cope, on the lattice, with the well known infrared problem

f.bloch, a.nordsieck, Phys.Rev. 52 (1937)

t.d.lee, m.nauenberg, Phys.Rev. 133 (1964)

p.p.kulish, l.d.faddeev, Theor.Math.Phys. 4 (1970)

• infrared divergences appear at intermediate stages of the calculation and cancel in physical observables by summing virtual and real photon contributions



the RM123+SOTON method

RM123+SOTON, PRD 91 (2015)

• let’s consider the infrared-safe observable: at O(α) this is obtained by considering the real contributions with a single photon in the final state

Γ(E) = Γ0 + e
2

lim
L→∞

{ΓV (L) + ΓR(L,E)}

• the finite-volume calculation of the real contribution is an issue: momenta are quantized!

• for this reason, by relying on the universality of infrared divergences, it is convenient to rewrite the previous formula as

where Γ
pt
V,R

are evaluated in the point-like effective theory: these have the same infrared behaviour of ΓV,R
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the RM123+SOTON method

Pointlike Real SD Virtual SD

Γ(E) = Γ0 + e
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lim
mγ→0

{
Γ
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• the RM123+SOTON master formula is a sum of three contributions

• the calculation started in RM123+SOTON, PRD 91 (2015) with a generalization of the infinite–volume point–like contribution Γpt(E), originally obtained by
berman 58 and kinoshita 59 (see backup)

• the analytical calculation of Γ
pt
V

(L), up to and including 1/L terms, allows to turn a log(L) into a 1/L2 finite volume effect: this is possible thanks to

the universality of soft–photon contributions (Low’s theorem)
established in RM123+SOTON, PRD 95 (2017)

checked in RBC-UKQCD PRD 105 (2022)

• the observation that (universality again) ΓSDR (E) is negligible in the limit of very small photon energies, together with the challenging numerical

calculation of ΓSDV , allowed to obtain. . .
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results for Γ[K− → µν̄µ(γ)] and Γ[π− → µν̄µ(γ)]

RM123+SOTON, PRL 120 (2018), PRD 100 (2019)

ΓP (E) = Γ
0
P {1 + δRP (E)} ,

• first–principle lattice results:

δRK(E
max
K ) = 0.0024(10)

δRπ(E
max
π ) = 0.0153(19)

δRKπ = −0.0126(14)

• to be compared with the result obtained in χpt (v.cirigliano and h.neufeld,

PLB 700 (2011)) and currently quoted by the PDG:

δRK(E
max
K ) = 0.0064(24)

δRπ(E
max
π ) = 0.0176(21)

δR
χ
Kπ

= −0.0112(21)
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FIG. 5: Connected diagrams contributing at O(α) contribution to the amplitude for the decay

π+ → ℓ+νl.

Having determined A0 and hence the amplitude ūνℓ α(pνℓ
)(M0)αβ vℓ β(pℓ), the O(α0) con-

tribution to the decay width is readily obtained

Γtree
0 (π+ → ℓ+νℓ) =

G2
F |Vud|2f 2

π

8π
mπ m2

ℓ

(
1 − m2

ℓ

m2
π

)2

. (20)

In this equation we use the label tree to denote the absence of electromagnetic effects since

the subscript 0 here indicates that there are no photons in the final state.

B. Calculation at O(α)

We now consider the one-photon exchange contributions to the decay π+ → ℓ+νℓ and

show the corresponding six connected diagrams in Fig. 5 and the disconnected diagrams in

Fig. 6. By “disconnected” here we mean that there is a sea-quark loop connected, as usual,

to the remainder of the diagram by a photon and/or gluons (the presence of the gluons is

implicit in the diagrams). The photon propagator in these diagrams in the Feynman gauge

and in infinite (Euclidean) volume is given by

δµν∆(x1, x2) = δµν

∫
d4k

(2π)4

eik·(x1−x2)

k2
. (21)

In a finite volume the momentum integration is replaced by a summation over the mo-

menta which are allowed by the boundary conditions. For periodic boundary conditions,

we can neglect the contributions from the zero-mode k = 0 since a very soft photon does

(a) (b)

FIG. 6. Top panel: the strong IB correction δCSIB
K ðtÞ=Cð0Þ

K ðtÞ for the charged kaon obtained on the ensemble D20.48 (see Appendix A).
The solid line is the “linear” fit (45) applied in the time interval where the ground state is dominant. Middle panel: contributions of the
exchange [2(a)] and self-energy [2(b)+2(c)] diagrams. The circles represent the sum [2(a)+2(b)+2(c)], i.e., the ratio δCJ

KðtÞ=C
ð0Þ
K ðtÞ.

Bottom panel: contributions of the tadpole operator δCT
KðtÞ=C

ð0Þ
K ðtÞ, i.e., diagrams [2(d)+2(e)], and of the e.m. shift of the critical mass

δCP
KðtÞ=C

ð0Þ
K ðtÞ, i.e., diagrams [3(a)+3(b)]. The sum δ½CT

KðtÞ þ CP
KðtÞ%=C

ð0Þ
K ðtÞ, shown by the circles, is nonvanishing and it is

determined quite precisely (see the right-hand plot where it is presented on an expanded scale). Errors are statistical only.

M. DI CARLO et al. PHYS. REV. D 100, 034514 (2019)

034514-14

• lattice calculation performed by using the RM123 method, i.e. by expanding the lattice path-integral with respect
to α and the up-down quark mass difference

• renormalization constants computed non–perturbatively in the RI′-MOM scheme and matched perturbatively with
the so-called W -scheme (a.sirlin, NPB 196 (1982); e.braaten and c.s.li PRD 42 (1990)) in which GF is defined
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FIG. 6: Disconnected diagrams contributing at O(α) contribution to the amplitude for the decay

π+ → ℓ+νl. The curly line represents the photon and a sum over quark flavours q, q1 and q2 is to

be performed.

not resolve the structure of the pion and its effects cancel in Γ0 − Γpt
0 in Eq. (3). Although

we evaluate Γ0 + Γ1(∆E) (see Eq. (2)) in perturbation theory directly in infinite volume,
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4
∑

ρ sin2 kρ

2

, (22)

where all quantities are in lattice units and the expression corresponds to the simplest lattice
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problem has been studied in [22] and, more recently in [3, 4], where it has been shown, at

O(α), that the quenching of zero momentum modes corresponds in the infinite-volume limit

to the removal of sets of measure zero from the functional integral and that finite volume
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K ðtÞ for the charged kaon obtained on the ensemble D20.48 (see Appendix A).
The solid line is the “linear” fit (45) applied in the time interval where the ground state is dominant. Middle panel: contributions of the
exchange [2(a)] and self-energy [2(b)+2(c)] diagrams. The circles represent the sum [2(a)+2(b)+2(c)], i.e., the ratio δCJ
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ð0Þ
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Bottom panel: contributions of the tadpole operator δCT
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K ðtÞ, i.e., diagrams [2(d)+2(e)], and of the e.m. shift of the critical mass
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K ðtÞ, i.e., diagrams [3(a)+3(b)]. The sum δ½CT

KðtÞ þ CP
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• contributions corresponding to charged sea-quarks estimated by using χpt but not computed: this is the so called
electroquenched approximation, there is certainly room for improvement here. . .
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δCP
PðtÞ ¼ 4παem

X

f¼f1;f2

δmcrit
f ·

X

x⃗;y

h0jTfJρWð0Þiq̄fðyÞγ5qfðyÞϕ
†
Pðx⃗;−tÞgj0i

pρ
P

MP
; ð34Þ

δCS
PðtÞ ¼ −4παem

X

f¼f1;f2

mf
Zf

m

Zð0Þ
m

·
X

x⃗;y

h0jTfJρWð0Þ½q̄fðyÞqfðyÞ%ϕ
†
Pðx⃗;−tÞgj0i

pρ
P

MP
; ð35Þ

whereΔem
μν ðy1; y2Þ is the photon propagator, JρWðxÞ is the local version of the hadronic (V − A) weak current renormalized in

QCD only,3

JρWðxÞ ¼ q̄f2ðxÞγ
ρ½Zð0Þ

V − Zð0Þ
A γ5%qf1ðxÞ; ð36Þ

jemμ is the (lattice) conserved e.m. current,4

jemμ ðyÞ ¼
X

f

ef
1

2
½q̄fðyÞðγμ − iτ3γ5ÞUμðyÞqfðyþ aμ̂Þ þ q̄fðyþ aμ̂Þðγμ þ iτ3γ5ÞU†

μðyÞqfðyÞ%; ð37Þ

and Tem
μ is the tadpole operator

Tem
μ ðyÞ ¼

X

f

e2f
1

2
½q̄fðyÞðγμ − iτ3γ5ÞUμðyÞqfðyþ aμ̂Þ − q̄fðyþ aμ̂Þðγμ þ iτ3γ5ÞU†

μðyÞqfðyÞ%: ð38Þ

In Eqs. (32)–(35), ϕ†
Pðx⃗;−tÞ ¼ iq̄f1ðx⃗;−tÞγ5qf2ðx⃗;−tÞ is

the interpolating field for a P meson composed by two
valence quarks f1 and f2 with charges e1e and e2e. The
Wilson r-parameters rf1 and rf2 are always chosen to be
opposite rf1 ¼ −rf2 (see Appendix A). We have also
chosen to place the weak current at the origin and to
create the P meson at a negative time −t, where t and T − t
are sufficiently large to suppress the contributions from
heavier states and from the backward propagating P meson
(this latter condition may be convenient but is not neces-
sary). In Eq. (35), Zð0Þ

m is the mass RC in pure QCD, which
for our maximally twisted-mass setup is given by

Zð0Þ
m ¼ 1=Zð0Þ

P , where Zð0Þ
P is the RC of the pseudoscalar

density determined in Ref. [28]. The quantity Zf
m is related

to the e.m. correction to the mass RC,

ZQCDþQED
m ¼

!
1 −

αem
4π

Zf
m

"
Zð0Þ
m þOðαmemαns Þ

× ðm > 1; n ≥ 0Þ ð39Þ

and can be written in the form

Zf
m ¼ Zf

QEDZ
fact
m ; ð40Þ

where Zf
QED is the pure QED contribution at leading order

in αem, given in the MS scheme at a renormalization scale μ
by [30,31]

Zf
QEDðMS; μÞ ¼ e2fð6 logðaμÞ − 22.5954Þ; ð41Þ

where ef is the fractional charge of the quark qf and Zfact
m

takes into account all the corrections of order Oðαns Þ with
n ≥ 1.

(a) (b) (c)

FIG. 5. Connected diagrams contributing atOðαemÞ to theKþ → lþνl decay amplitude corresponding to photon exchanges involving
the final-state lepton.

3In our maximally twisted-mass setup, in which the Wilson r
parameters rf1 and rf2 are always chosen to be opposite rf1 ¼
−rf2 (see Appendix A), the vector (axial) weak current in the
physical basis renormalizes multiplicatively with the RC ZA (ZV )
of the axial (vector) current for Wilson-like fermions, i.e., Zð0Þ

V ¼
ZA and Zð0Þ

A ¼ ZV (see Appendix D).
4The use of the conserved e.m. current guarantees the absence

of additional contact terms in the product jemμ ðy1Þjemν ðy2Þ.
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IV. RENORMALIZATION OF THE EFFECTIVE
HAMILTONIAN AND CHIRALITY MIXING

In this section, we provide the basic formalism to derive
the e.m. corrections to the RCs nonperturbatively; further
details of the calculation will be presented in a forthcoming
publication [29]. This procedure relates the bare lattice
operators to those in the RI′-MOM (and similar) renorm-
alization schemes up to orderOðαemÞ and to all orders in αs.
We also improve the precision of the matching of the weak
operator O1 [see Eq. (24)] renormalized in the RI’-MOM
scheme to that in the W regularization by calculating the
coefficient of the term proportional to αemαs logðM2

W=μ
2Þ

in the matching coefficient. Using the two-loop anomalous
dimension thus determined, we can evolve the operator to
the renormalization scale of MW . Following this calcula-
tion, the error due to renormalization is reduced from order
Oðαemαsð1=aÞÞ to order OðαemαsðMWÞÞ.
The effective Hamiltonian, including the perturbative

electroweak matching with the Standard Model [18], can be
written in the form

HW ¼ GFffiffiffi
2

p V$
q1q2

"
1þ αem

π
log

#
MZ

MW

$%
OW-reg

1 ðMWÞ; ð62Þ

where the term proportional to the logarithm has been
already included in Eq. (29) and OW-reg

1 ðMWÞ is the
operator renormalized in the W-regularization scheme,
which is used to regularize the photon propagator. Since
the W-boson mass is too large to be simulated on the lattice,
a matching of the lattice weak operator O1 to the
W-regularization scheme is necessary. In addition, for
lattice formulations which break chiral symmetry, like
the one used in the present study, the lattice weak operator
O1 mixes with other four-fermion operators of different
chirality.

A. The renormalized weak operator in the
W-regularization scheme

In order to obtain the operator renormalized in the
W-regularization scheme, we start by renormalizing the
lattice four-fermion operator O1 defined in Eq. (24) in
the RI′-MOM scheme [35], obtaining ORI0

1 ðμÞ, and then
perturbatively match the operator ORI0

1 ðμÞ to the one in the
W regularization [11],

OW-reg
1 ðMWÞ ¼ ZW-RI0

#
MW

μ
; αsðμÞ; αem

$
ORI’

1 ðμÞ: ð63Þ

The coefficient ZW-RI0ðMW=μ; αsðμÞ;αemÞ can be computed
by first evolving the operator in the RI’scheme to the scale
MW and then matching it to the corresponding operator in
the W scheme. The coefficient can therefore be written as
the product of a matching coefficient and an evolution
operator

ZW-RI’

#
MW

μ
; αsðμÞ;αem

$

¼ ZW-RI’ð1; αsðMWÞ; αemÞURI’ðMW; μ; αemÞ: ð64Þ

Below we will only consider terms of first order in αem and,
therefore we will consistently neglect the running of αem.
We note that the original bare lattice operators and

OW-reg
1 ðMWÞ are gauge invariant, and thus the correspond-

ing matching coefficients are gauge invariant. This is not
the case for ORI’

1 ðμÞ that instead depends not only on the
external states chosen to define the renormalization con-
ditions, but also on the gauge. Consequently, the matching
coefficient ZW-RI’ðMW

μ ; αsðμÞ; αemÞ and the evolution oper-
ator URI’ðMW; μ;αemÞ are in general gauge dependent.
However, at the order of perturbation theory to which
we are working, the evolution operator turns out to be both
scheme and gauge independent.
In the following, we discuss in turn the matching

coefficient, ZW-RI’ð1;αsðMWÞ; αemÞ, the evolution operator
URI’ðMW; μ; αemÞ, and the definition of the renormalized
operatorORI’

1 ðμÞ, which will be obtained nonperturbatively.

FIG. 8. Results for the ratio δC̄μ
PðtÞ=C̄

μð0Þ
P ðtÞ, given by Eq. (55),

for Kμ2 and πμ2 decays obtained from the gauge ensembles
B55.32 (top panel) and D30.48 (bottom panel). The vertical
dashed lines indicate the time region used for the extraction of the
ratio δAμ

P=A
ð0Þ
P . Errors are statistical only.
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• excellent numerical signals
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whereΔem
μν ðy1; y2Þ is the photon propagator, JρWðxÞ is the local version of the hadronic (V − A) weak current renormalized in
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In Eqs. (32)–(35), ϕ†
Pðx⃗;−tÞ ¼ iq̄f1ðx⃗;−tÞγ5qf2ðx⃗;−tÞ is

the interpolating field for a P meson composed by two
valence quarks f1 and f2 with charges e1e and e2e. The
Wilson r-parameters rf1 and rf2 are always chosen to be
opposite rf1 ¼ −rf2 (see Appendix A). We have also
chosen to place the weak current at the origin and to
create the P meson at a negative time −t, where t and T − t
are sufficiently large to suppress the contributions from
heavier states and from the backward propagating P meson
(this latter condition may be convenient but is not neces-
sary). In Eq. (35), Zð0Þ

m is the mass RC in pure QCD, which
for our maximally twisted-mass setup is given by
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m ¼ 1=Zð0Þ

P , where Zð0Þ
P is the RC of the pseudoscalar

density determined in Ref. [28]. The quantity Zf
m is related

to the e.m. correction to the mass RC,

ZQCDþQED
m ¼

!
1 −

αem
4π

Zf
m

"
Zð0Þ
m þOðαmemαns Þ

× ðm > 1; n ≥ 0Þ ð39Þ

and can be written in the form

Zf
m ¼ Zf

QEDZ
fact
m ; ð40Þ

where Zf
QED is the pure QED contribution at leading order
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by [30,31]
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−rf2 (see Appendix A), the vector (axial) weak current in the
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alization schemes up to orderOðαemÞ and to all orders in αs.
We also improve the precision of the matching of the weak
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In order to obtain the operator renormalized in the
W-regularization scheme, we start by renormalizing the
lattice four-fermion operator O1 defined in Eq. (24) in
the RI′-MOM scheme [35], obtaining ORI0

1 ðμÞ, and then
perturbatively match the operator ORI0

1 ðμÞ to the one in the
W regularization [11],

OW-reg
1 ðMWÞ ¼ ZW-RI0

#
MW

μ
; αsðμÞ; αem

$
ORI’

1 ðμÞ: ð63Þ

The coefficient ZW-RI0ðMW=μ; αsðμÞ;αemÞ can be computed
by first evolving the operator in the RI’scheme to the scale
MW and then matching it to the corresponding operator in
the W scheme. The coefficient can therefore be written as
the product of a matching coefficient and an evolution
operator

ZW-RI’

#
MW

μ
; αsðμÞ;αem

$

¼ ZW-RI’ð1; αsðMWÞ; αemÞURI’ðMW; μ; αemÞ: ð64Þ

Below we will only consider terms of first order in αem and,
therefore we will consistently neglect the running of αem.
We note that the original bare lattice operators and

OW-reg
1 ðMWÞ are gauge invariant, and thus the correspond-

ing matching coefficients are gauge invariant. This is not
the case for ORI’

1 ðμÞ that instead depends not only on the
external states chosen to define the renormalization con-
ditions, but also on the gauge. Consequently, the matching
coefficient ZW-RI’ðMW

μ ; αsðμÞ; αemÞ and the evolution oper-
ator URI’ðMW; μ;αemÞ are in general gauge dependent.
However, at the order of perturbation theory to which
we are working, the evolution operator turns out to be both
scheme and gauge independent.
In the following, we discuss in turn the matching

coefficient, ZW-RI’ð1;αsðMWÞ; αemÞ, the evolution operator
URI’ðMW; μ; αemÞ, and the definition of the renormalized
operatorORI’

1 ðμÞ, which will be obtained nonperturbatively.

FIG. 8. Results for the ratio δC̄μ
PðtÞ=C̄

μð0Þ
P ðtÞ, given by Eq. (55),

for Kμ2 and πμ2 decays obtained from the gauge ensembles
B55.32 (top panel) and D30.48 (bottom panel). The vertical
dashed lines indicate the time region used for the extraction of the
ratio δAμ

P=A
ð0Þ
P . Errors are statistical only.
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δCP
PðtÞ ¼ 4παem

X

f¼f1;f2

δmcrit
f ·

X

x⃗;y

h0jTfJρWð0Þiq̄fðyÞγ5qfðyÞϕ
†
Pðx⃗;−tÞgj0i

pρ
P

MP
; ð34Þ

δCS
PðtÞ ¼ −4παem

X

f¼f1;f2

mf
Zf

m

Zð0Þ
m

·
X

x⃗;y

h0jTfJρWð0Þ½q̄fðyÞqfðyÞ%ϕ
†
Pðx⃗;−tÞgj0i

pρ
P

MP
; ð35Þ

whereΔem
μν ðy1; y2Þ is the photon propagator, JρWðxÞ is the local version of the hadronic (V − A) weak current renormalized in

QCD only,3

JρWðxÞ ¼ q̄f2ðxÞγ
ρ½Zð0Þ

V − Zð0Þ
A γ5%qf1ðxÞ; ð36Þ

jemμ is the (lattice) conserved e.m. current,4

jemμ ðyÞ ¼
X

f

ef
1

2
½q̄fðyÞðγμ − iτ3γ5ÞUμðyÞqfðyþ aμ̂Þ þ q̄fðyþ aμ̂Þðγμ þ iτ3γ5ÞU†

μðyÞqfðyÞ%; ð37Þ

and Tem
μ is the tadpole operator

Tem
μ ðyÞ ¼

X

f

e2f
1

2
½q̄fðyÞðγμ − iτ3γ5ÞUμðyÞqfðyþ aμ̂Þ − q̄fðyþ aμ̂Þðγμ þ iτ3γ5ÞU†

μðyÞqfðyÞ%: ð38Þ

In Eqs. (32)–(35), ϕ†
Pðx⃗;−tÞ ¼ iq̄f1ðx⃗;−tÞγ5qf2ðx⃗;−tÞ is

the interpolating field for a P meson composed by two
valence quarks f1 and f2 with charges e1e and e2e. The
Wilson r-parameters rf1 and rf2 are always chosen to be
opposite rf1 ¼ −rf2 (see Appendix A). We have also
chosen to place the weak current at the origin and to
create the P meson at a negative time −t, where t and T − t
are sufficiently large to suppress the contributions from
heavier states and from the backward propagating P meson
(this latter condition may be convenient but is not neces-
sary). In Eq. (35), Zð0Þ

m is the mass RC in pure QCD, which
for our maximally twisted-mass setup is given by

Zð0Þ
m ¼ 1=Zð0Þ

P , where Zð0Þ
P is the RC of the pseudoscalar

density determined in Ref. [28]. The quantity Zf
m is related

to the e.m. correction to the mass RC,

ZQCDþQED
m ¼

!
1 −

αem
4π

Zf
m

"
Zð0Þ
m þOðαmemαns Þ

× ðm > 1; n ≥ 0Þ ð39Þ

and can be written in the form

Zf
m ¼ Zf

QEDZ
fact
m ; ð40Þ

where Zf
QED is the pure QED contribution at leading order

in αem, given in the MS scheme at a renormalization scale μ
by [30,31]

Zf
QEDðMS; μÞ ¼ e2fð6 logðaμÞ − 22.5954Þ; ð41Þ

where ef is the fractional charge of the quark qf and Zfact
m

takes into account all the corrections of order Oðαns Þ with
n ≥ 1.

(a) (b) (c)

FIG. 5. Connected diagrams contributing atOðαemÞ to theKþ → lþνl decay amplitude corresponding to photon exchanges involving
the final-state lepton.

3In our maximally twisted-mass setup, in which the Wilson r
parameters rf1 and rf2 are always chosen to be opposite rf1 ¼
−rf2 (see Appendix A), the vector (axial) weak current in the
physical basis renormalizes multiplicatively with the RC ZA (ZV )
of the axial (vector) current for Wilson-like fermions, i.e., Zð0Þ

V ¼
ZA and Zð0Þ

A ¼ ZV (see Appendix D).
4The use of the conserved e.m. current guarantees the absence

of additional contact terms in the product jemμ ðy1Þjemν ðy2Þ.
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IV. RENORMALIZATION OF THE EFFECTIVE
HAMILTONIAN AND CHIRALITY MIXING

In this section, we provide the basic formalism to derive
the e.m. corrections to the RCs nonperturbatively; further
details of the calculation will be presented in a forthcoming
publication [29]. This procedure relates the bare lattice
operators to those in the RI′-MOM (and similar) renorm-
alization schemes up to orderOðαemÞ and to all orders in αs.
We also improve the precision of the matching of the weak
operator O1 [see Eq. (24)] renormalized in the RI’-MOM
scheme to that in the W regularization by calculating the
coefficient of the term proportional to αemαs logðM2

W=μ
2Þ

in the matching coefficient. Using the two-loop anomalous
dimension thus determined, we can evolve the operator to
the renormalization scale of MW . Following this calcula-
tion, the error due to renormalization is reduced from order
Oðαemαsð1=aÞÞ to order OðαemαsðMWÞÞ.
The effective Hamiltonian, including the perturbative

electroweak matching with the Standard Model [18], can be
written in the form

HW ¼ GFffiffiffi
2

p V$
q1q2

"
1þ αem

π
log

#
MZ

MW

$%
OW-reg

1 ðMWÞ; ð62Þ

where the term proportional to the logarithm has been
already included in Eq. (29) and OW-reg

1 ðMWÞ is the
operator renormalized in the W-regularization scheme,
which is used to regularize the photon propagator. Since
the W-boson mass is too large to be simulated on the lattice,
a matching of the lattice weak operator O1 to the
W-regularization scheme is necessary. In addition, for
lattice formulations which break chiral symmetry, like
the one used in the present study, the lattice weak operator
O1 mixes with other four-fermion operators of different
chirality.

A. The renormalized weak operator in the
W-regularization scheme

In order to obtain the operator renormalized in the
W-regularization scheme, we start by renormalizing the
lattice four-fermion operator O1 defined in Eq. (24) in
the RI′-MOM scheme [35], obtaining ORI0

1 ðμÞ, and then
perturbatively match the operator ORI0

1 ðμÞ to the one in the
W regularization [11],

OW-reg
1 ðMWÞ ¼ ZW-RI0

#
MW

μ
; αsðμÞ; αem

$
ORI’

1 ðμÞ: ð63Þ

The coefficient ZW-RI0ðMW=μ; αsðμÞ;αemÞ can be computed
by first evolving the operator in the RI’scheme to the scale
MW and then matching it to the corresponding operator in
the W scheme. The coefficient can therefore be written as
the product of a matching coefficient and an evolution
operator

ZW-RI’

#
MW

μ
; αsðμÞ;αem

$

¼ ZW-RI’ð1; αsðMWÞ; αemÞURI’ðMW; μ; αemÞ: ð64Þ

Below we will only consider terms of first order in αem and,
therefore we will consistently neglect the running of αem.
We note that the original bare lattice operators and

OW-reg
1 ðMWÞ are gauge invariant, and thus the correspond-

ing matching coefficients are gauge invariant. This is not
the case for ORI’

1 ðμÞ that instead depends not only on the
external states chosen to define the renormalization con-
ditions, but also on the gauge. Consequently, the matching
coefficient ZW-RI’ðMW

μ ; αsðμÞ; αemÞ and the evolution oper-
ator URI’ðMW; μ;αemÞ are in general gauge dependent.
However, at the order of perturbation theory to which
we are working, the evolution operator turns out to be both
scheme and gauge independent.
In the following, we discuss in turn the matching

coefficient, ZW-RI’ð1;αsðMWÞ; αemÞ, the evolution operator
URI’ðMW; μ; αemÞ, and the definition of the renormalized
operatorORI’

1 ðμÞ, which will be obtained nonperturbatively.

FIG. 8. Results for the ratio δC̄μ
PðtÞ=C̄

μð0Þ
P ðtÞ, given by Eq. (55),

for Kμ2 and πμ2 decays obtained from the gauge ensembles
B55.32 (top panel) and D30.48 (bottom panel). The vertical
dashed lines indicate the time region used for the extraction of the
ratio δAμ

P=A
ð0Þ
P . Errors are statistical only.
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In order to study the FVEs in detail, we consider four
ensembles generated at the same values of β and quark
masses, but differing in the size of the lattice; these are the
ensembles A40.40, A40.32, A40.24, and A40.20 (see
Appendix A). The residual FVEs after the subtraction
of the universal terms as in Eq. (96) are illustrated in the
plots in Fig. 9 for δRπ and δRK in the fully inclusive case,
i.e., where the energy of the final-state photon is integrated
over the full phase space. In this case, ΔEγ ¼ ΔEmax;P

γ ¼
MPð1 −m2

μ=M2
PÞ=2, which corresponds to ΔEmax;K

γ ≃
235 MeV and ΔEmax;π

γ ≃ 29 MeV, respectively. With a
muon as the final state lepton, the contribution from
photons with energy greater than about 20 MeV is
negligible and hence the pointlike approximation is valid.
In the top plot, the universal FV corrections have been
subtracted and so we would expect the remaining effects
to be of order Oð1=ðMPLÞ2Þ and this is indeed what
we see.

In the bottom plot of Fig. 9, in addition to subtracting the
universal FVEs, we also subtract the contribution to the
order Oð1=ðMPLÞ2Þ corrections from the pointlike con-
tribution to b2, which can be found in Eq. (3.2) of Ref. [39].
We observe that this additional subtraction does not reduce
the Oð1=ðMPLÞ2Þ effects, underlining the expectation that
these effects are indeed structure dependent.
It can be seen that after subtraction of the universal terms

the residual structure-dependent FVEs are almost linear in
1=L2, which implies that the FVEs of order Oð1=ðMPLÞ3Þ
are quite small; indeed they are too small to be resolved
with the present statistics. Nevertheless, since the QEDL
formulation of QED on a finite box, which is adopted in
this work, violates locality [13], we may expect that there
are also FVEs of order Oða3=L3Þ [39]. We have checked
explicitly that the addition of such a term in fitting the
results shown in Fig. 9 changes the extrapolated value at
infinite volume well within the statistical errors.

 (a)

 (b)

FIG. 9. Results for the corrections δRπ and δRK for the gauge ensembles A40.20, A40.24, A40.32, and A40.40 sharing the same lattice
spacing, pion, kaon, and muon masses, but with different lattice sizes (see Table II). Top panel (a): the universal FVEs, i.e., the terms up
to orderOð1=MPLÞ in Eq. (95), are subtracted for each quantity. Bottom panel (b): the same as in (a), but in addition to the subtraction of
the universal terms, bpt2 =ðMPLÞ2, where b

pt
2 is the pointlike contribution to b2 in Eq. (95), is also removed. The solid and dashed lines are

linear fits in 1=L2. The maximum photon energy ΔEγ corresponds to the fully inclusive case ΔEγ ¼ ΔEmax;P
γ ¼ MPð1 −m2

μ=M2
PÞ=2.
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• one has to look at the singularities in k after performing the k0

integral: these are the pinched singularities coming from on–shell
internal particles

• the analysis has been repeated and extended to the non-universal
1/L2 FVE RBC-UKQCD PRD.105.2022, m.dicarlo talk
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Figure 1: Skeleton expansion of the P� ! `⌫̄� amplitude at O(e2)

FIG. 3: Skeleton diagrams contributing at O(↵) to �0 for the decay P� ! `�⌫̄l. The thick black

line represents the pseudoscalar meson and the broken green line represents the leptons. The

photon is represented by the wavy line. The vertices marked � and W represent the coupling

of the photon(s) to the meson or weak Hamiltonian respectively. Their definitions are given in

Appendix A.

meson, we will always work in the Feynman gauge although the results are valid in any

gauge.

A. FV corrections for the self-energy diagram

In order to set the context for our calculation of the FV corrections to the decay amplitude

we start with a discussion of the electromagnetic e↵ects in the mass mP given by the diagrams

in Figs. 3(b) and Fig. 3(c) using the Feynman rules from the Lagrangian in Eq. (20). In
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results for Γ[K− → µν̄µ(γ)] and Γ[π− → µν̄µ(γ)]

ΓP (E) = Γ
0
P {1 + δRP (E)} ,

• the RM123+SOTON approach is now really a method:

δR
RM123+SOTON
Kπ = −0.0126(14)

δR
RBC+UKQCD
Kπ

= −0.0088(39)

δR
χ
Kπ

= −0.0112(21)

RM123+SOTON, PRL 120 (2018), PRD 100 (2019)

4

relators described in Ref. [6]. Their numerical determi-
nation is illustrated briefly in Refs. [25, 26] and in detail

in Ref. [27]. The quality of the extraction of �A`=µ
P /�A

(0)
P

is illustrated in the supplemental material.

IV. FINITE VOLUME EFFECTS AT O(↵EM)

The subtraction �0(L)��pt
0 (L) makes the rate IR finite

and cancels the structure-independent FVEs. The point-
like decay rate �pt

0 (L) is given by

�pt
0 (L) = 2

↵em

4⇡
YP (L) �tree

P , (10)

where the factor YP (L) is explicitly given by Eq. (98) of
Ref. [10]. Eq. (8) is therefore replaced by

�AP = �AQCD
P +

X

i

�Ai
P +�A`

P �↵em

4⇡
YP (L) A

(0)
P , (11)

where YP (L) has the form

YP (L) = bIR log(MP L) + b0 +
b1

MP L

+
b2

(MP L)2
+

b3

(MP L)3
+ O(e�MP L) (12)

with the coe�cients bj (j = IR, 0, 1, 2, 3) depending
on the dimensionless ratio m`/MP [10]. The important
point is that the SD FVEs start only at order O(1/L2),
i.e. all the terms up to O(1/L) in Eq. (12) are “univer-
sal” [10]. Being independent of the structure they can be
computed for a point-like charged meson.

The FVE subtraction (11) up to order O(1/L) is il-
lustrated in Fig. 5 for �RK , �R⇡ and �RK⇡ in the inclu-
sive case �E� = �Emax,P

� = MP (1�m2
µ/M2

P )/2, which

corresponds to �Emax,K
� ' 235 MeV and �Emax,⇡

� '
29 MeV, respectively. It can be seen that after subtrac-
tion of the universal terms the residual FVEs are almost
linear in 1/L2 and ⇡ 3 times smaller in the case of �RK⇡.

V. RESULTS FOR THE RATIO �(K`2)/�(⇡`2)

The (inclusive) data for �RK⇡, obtained using Eqs. (7)
and (11-12), are shown in Fig. 6. The “universal” FVEs
are subtracted from the data and the combined chiral,
continuum and infinite volume extrapolations are per-
formed using the following Ansatz:

�RK⇡ = R0 + R�log(mud) + R1mud + R2m
2
ud + Da2

+
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where mud is the renormalized u/d quark mass, EP
` =

MP (1 + m2
`/M

2
P )/2 is the lepton energy in the P-meson
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FIG. 5: Results for the corrections �R⇡, �RK and �RK⇡ for the
gauge ensembles A40.20, A40.24, A40.32 and A40.40 sharing the
same lattice spacing, pion and kaon masses, but di↵erent lattice
sizes (see the supplemental material). The universal FVEs, i.e. the
terms up to order O(1/L) in Eq. (12), are subtracted for each
quantity. The lines are linear fits in 1/L2. The maximum photon

energy �E� corresponds to the inclusive case �E� = �Emax,P
� =

MP (1 � m2
µ/M2

P )/2.
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rest frame, and R0,1,2, D, K2 and K`
2 are free parameters.

In Eq. (13) the chiral coe�cient R� is known [11] and
given by R� = ↵em(2Z/9 � 3)/4⇡ in qQED, where Z is
obtained from the chiral limit of the O(↵em) correction
to M2

⇡± (i.e. �M2
⇡± = 4⇡↵emZf2

0 + O(mud)). In Ref. [5]
we found Z = 0.658 (40).

Using Eq. (13) we have fitted the data for �RK⇡ us-
ing a �2-minimization procedure with an uncorrelated
�2, obtaining values of �2/d.o.f. always around 1.2. The
uncertainties on the fitting parameters do not depend on
the �2-value, because they are obtained using the boot-
strap samplings of Ref. [18] (see section II). This guaran-
tees that all the correlations among the data points and
among the fitting parameters are properly taken into ac-
count. The quality of our fits is illustrated in Fig. 6.

At the physical pion mass in the continuum and
infinite-volume limits we obtain

�Rphys
K⇡ = �0.0122 (10)stat (2)input (8)chir (5)FV E

(4)disc (6)qQED

= �0.0122 (16) , (14)
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results for Γ[P− → `ν̄`γ]

RM123+SOTON, PRD 103 (2021)

• first–principles lattice results for the radiative decays

K− → `ν̄`γ and π− → `ν̄`γ have then been
obtained

see also kane et al., PoS LATTICE2021.162

PoS LATTICE2019.134

• on the one hand, these confirmed the assumptions on

ΓSDR (E)

• on the other, by looking at the form–factors at fixed
photon energy, a global SM fit of the existing
measurements (KLOE, E787, ISTRA+, OKA)
highlights a tension between theory and experiments
(mostly among experiments) in the muon channel

13

bin E� (MeV) pe (MeV) �Rexp,i ⇥ 106 �RSD,i ⇥ 106 �Rth,i ⇥ 106 exp / th ChPT

1 10 - 50 > 200 0.94 ± 0.30 ± 0.03 0.26 ± 0.04 1.25 ± 0.04 0.75 ± 0.24 1.13 ± 0.03

2 50 - 100 > 200 2.03 ± 0.22 ± 0.02 2.26 ± 0.30 2.28 ± 0.30 0.89 ± 0.15 1.44 ± 0.36

3 100 - 150 > 200 4.47 ± 0.30 ± 0.03 5.06 ± 0.67 5.07 ± 0.67 0.88 ± 0.13 3.50 ± 0.96

4 150 - 200 > 200 4.81 ± 0.37 ± 0.04 6.00 ± 0.78 6.00 ± 0.78 0.80 ± 0.12 4.46 ± 1.25

5 200 - 250 > 200 2.58 ± 0.26 ± 0.03 2.85 ± 0.38 2.85 ± 0.38 0.91 ± 0.15 2.25 ± 0.63

1-5 10 - 250 > 200 14.83 ± 0.66 ± 0.13 16.43 ± 2.12 17.43 ± 2.12 0.85 ± 0.11 12.79 ± 3.24

TABLE IV. Values of the KLOE experimental data �Rexp,i [9] and of the theoretical predictions �RSD,i

and �Rth,i, evaluated with the vector and axial form factors of Ref. [8] given in Eqs. (13)-(17), tabulated

in the 5 bins of the photon’s energy adopted by the KLOE experiment on K ! e⌫� decays. The seventh

column is the ratio between the experimental data and our theoretical predictions. In the fourth column the

first error is statistical and the second one is systematic. The last column shows the prediction of ChPT at

order O(e2p4), based on the vector and axial form factors given in Eq. (53).
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FIG. 1. Left panel: comparison of the KLOE experimental data �Rexp,i [9] (red circles) with the theoret-

ical predictions �Rth,i, (blue squares) evaluated with the vector and axial form factors of Ref. [8] given in

Eqs. (13) - (17), for the 5 bins (see Table IV). The green diamonds correspond to the prediction of ChPT at

order O(e2p4), based on the vector and axial form factors given in Eq. (53). Right panel: Comparison of

the form-factor F+(x�) extracted by the KLOE collaboration in Ref. [9] and the theoretical prediction from

Eqs. (13) - (17). The shaded areas represent uncertainties at the level of 1 standard deviation.

where we compare the form-factor F+(x�) extracted by the KLOE collaboration in Ref. [9] with
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In fitting the kaon data we adopt a simple linear parameterization of the form factors �±(GW),
suggested by our lattice results, namely

�±(GW) = e
⇠± + e⇡±GW , (12)

where the four quantities e
⇠± and e⇡± are now treated as free parameters.

A total of 51 experimental data points (5 points from KLOE, 25 points from E787, 11 points
from ISTRA+ and 10 points from OKA) are fitted using the form factors (12) adopting a standard
j

2-minimization procedure with a bootstrap sample of 5000 events generated to propagate the
uncertainties of the experimental data and giving the same weight to each of the four experiments.
In our fitting procedure the experimental data are treated as uncorrelated, since no correlation matrix
is available. The quality of the best fit is poor: the optimal value of j

2
/(no. of points) is equal to

1.3, 5.3, 3.1 and 2.2 for the KLOE, E787, ISTRA+ and OKA data, respectively. The comparison of
the results of the global SM fit with all the experimental data is shown in Fig. 6. The largest tension
occurs for the E787 data and is a consequence of the simultaneous presence of the KLOE data.
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blue squares represent the SM predictions evaluated with the lattice form factors determined in Ref. [8].

In Fig. 7 the “optimal" form factors, obtained from Eq. (12), are compared to our lattice form
factors, obtained from Eq. (5), and to the predictions of ChPT at order O(4

2
?

4
) given by Eq. (6).

While the discrepancy for the form factor �+
(GW) is relatively mild, for ��

(GW) there is a discrepancy
of a factor of ⇡ 2 with the lattice results and even more with the O(4

2
?

4
) ChPT predictions.

Our findings call for improvements in the determination of the SD form factors �
±
(GW) from

both experiment and theory. In this respect, we look forward to the results from the analysis of the
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Figure 7: Comparison of the form factors �+
(GW) (left panel) and ��

(GW) (right panel), obtained by the
simultaneous fit (12) of the KLOE [10], E787 [12], ISTRA+ [14] and OKA [15] experimental data, with our
lattice results from Ref. [8] corresponding to Eq. (5) and with the ChPT predictions at order O(4

2
?

4
) given

by Eq. (6). All the shaded areas represent uncertainties at the level of 1 standard deviation.

NA62 experiment on the 42W decay, which is in progress and is expected to provide the most precise
determination of |�+

(GW) | [13]. If a discrepancy between the form factors obtained from decays
into electrons from NA62 and those obtained from decays into muons from the E787 experiment
will be confirmed, this would provide a motivation for better determinations also of the form factors
from  ! `a`W decays. On the theoretical side it can be expected that the precision achieved in
Ref. [8] will be improved in the next generation of computations.

We point out that it is also conceivable that the tensions observed above between the experimen-
tal data and our lattice predictions are due to the presence of new physics, such as flavor changing
interactions beyond the + � � couplings of the Standard Model and/or non-universal corrections to
the lepton couplings. This possibility deserves further theoretical investigations.
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what about RM123+SOTON for semileptonic decays?

• the problem is more challenging in the case of semileptonic decays because, for
generic kinematical configurations, the physical observable cannot be extracted
from euclidean correlators by the leading exponential contributions

• nevertheless, the RM123+SOTON method can be extended to the case of
semileptonic decays

• the infrared divergence is again proportional to the leading order decay rate

(obvious) and the O(L−1) infrared corrections are again universal although, as
expected from Low’s theorem, their evaluation requires the knowledge of the
derivatives of the form-factors f±(q2) with respect to q2 = (pK − pπ)2

• there are other finite–volume corrections though, analogous to the ones studied
by l.lellouch, m.lüscher CMP 219 (2001) in the case of K 7→ ππ decays, that appear
because of the problem of analytical continuation: the pinched singularities
associated with on–shell lepton–hadrons internal states

• a detailed analysis of these contributions is currently underway

`

ν̄`

K0 π+



the χlatt approach to K`3 decays

c-y.seng et al. JHEP 179 (2020)

p-x.ma et al. PRD 103 (2021)

• a more pragmatic approach to the calculation of radiative corrections to K`3
decays has been developed and successfully implemented recently

• the idea is that of extracting from lattice simulations in the flavour SU(3) limit
the relevant low–energy constants that enter the χpt calculation of the radiative
corrections

• the unphysical p` = 0, mK = mπ kinematics avoids the problem of analytical
continuation

• the use of sirlin decomposition, originally developed for n 7→ p`ν̄(γ),

δRK`
=

α

2π

{
g̃ + 3 log

mZ

mp
+ log

mZ

mW
+ ãg

}

+ δ
QED
HO

+ 2�VAγW

allows to isolate the poorly known non–perturbative contributions into the so
called γW–box diagram

• this contribution is both ultraviolet and infrared finite

on jVusj independently. The traditional way of determining
jVusj relies on the experimental measurements of K0

L →
πeν to avoid the isospin-breaking effects (π0-η mixing) in
the charged kaon decays and the complication from the
second (scalar) form factor present in the muonic decays.
Nowadays, due to the high-statistics data collected in the
experiments, the comparison between different decay
modes is justified [11]. The decays including K0

L → πlν,
K! → π0l!ν and K0

S → πeν with l ¼ e, μ are used to
determine jVusj via the master formula [1]

ΓKl3 ¼
G2

Fm
5
K

192π3
SEWð1þ δlK þ δSU2ÞC2jVusj2f2þð0ÞIlK: ð2Þ

Here, ΓKl3 is the Kl3 decay width, GF is the Fermi
constant, mK is the kaon mass, SEW is the short-distance
radiative correction, δlK is the long-distance radiative
correction, δSU2 is the strong isospin-violating effect, C2

is 1 for the neutral kaon decay and 1=2 for the charged case,
fþðq2Þ is the K0 → π− vector form factor and IlK is the
phase-space integral which contains the information of the
momentum dependence in the form factors. Averaging over
the experimental measurements with appropriate theory
inputs of various Standard Model corrections, the product
jVusjfþð0Þ is given as [12]

fþð0ÞjVusj ¼ 0.2165ð4Þ; ð3Þ

with the uncertainty dominated by the experimental mea-
surements and RCs. The form factor fþð0Þ can be provided
by lattice QCD calculations [13–17]. The Flavor Lattice
Averaging Group (FLAG) average [18] forNf ¼ 2þ 1þ 1
simulations yields fþð0Þ ¼ 0.9698ð17Þ according to an
update on December 2020, which results in a determination
of

jVusj ¼ 0.2232ð4ÞexpþRCð4Þlat; for Kl3: ð4Þ

High-precision experimental data on Kμ2 and πμ2
decays [19,20] also accurately determine the ratio
jVus=VudjfK!=fπ! ¼0.2760ð4Þ [12]. Employing the
FLAG Nf ¼ 2þ 1þ 1 lattice QCD average [21–24] for
the ratio of decay constants fK!=fπ! ¼ 1.1932ð21Þ, a
value of jVusj ¼ 0.2252ð5Þ is obtained, which has a
2.6σ deviation from the Kl3-based value. Combining
the jVusj from Kl3 and Kμ2 decays yield

2

jVusj ¼ 0.2243ð8Þ; weighted average of Kl3 andKμ2:

ð5Þ

It should also be mentioned that jVusj obtained from
hyperon and tau decays are given by jVusj¼ 0.2250ð27Þ
[25] and 0.2221(13) [26], respectively, both having larger
uncertainties than the kaon decays.
To gain a better understanding of the violation of the

first-row CKM unitarity in Eq. (1) and the disagreement in
the determination of jVusj between the Kl3 and Kμ2, for the
Kl3 decays it requires both a more precise determination of
the form factor fþð0Þ and a direct calculation of RCs from
lattice QCD. The latter is more challenging due to the
inclusion of both weak and electromagnetic currents in the
calculation and is the focus in this paper.
Recently, the horizons of lattice QCD studies have been

extended to include various processes with higher-order
electroweak interactions. The examples include kaon mix-
ing [27–29], rare kaon decays [30–35], double beta decays
[36–44], inclusive B-meson decays [45–47], as well as the
electromagentic and radiative corrections to the weak
decays [48–55]. Among all these processes, the lattice
QCD calculation of RCs in Kl3 still remains one of the
largest challenges as it essentially involves a computation
of five-point correlation functions. In Ref. [56], it proposes
a new method which bridges the lattice QCD calculation
with chiral perturbation theory (ChPT) [57,58]. For the
Kl3 decay in the flavor SU(3) limit, it demonstrates that the
lattice QCD calculation of the axial γW-box diagrams can
provide all unknown low-energy constants (LECs) that
enter the long-distance radiative correction δlK in the ChPT
representation at the order of Oðe2p2Þ, thus removing the
dependence of the RCs on the model used to estimate these
LECs. In this paper we will first briefly introduce the
methodology and then present the lattice calculation
of RCs.

II. METHODOLOGY

We start the discussion of the treatment of RCs in Kl3
decays with two theoretical frameworks: Sirlin’s represen-
tation and the ChPT representation.
Sirlin’s representation is particularly useful in the

treatment of the semileptonic decay Hi → Hfeν̄e with
the hadrons Hi and Hf having nearly the same masses
mi ≈mf. In this case, theOðGFαeÞ RCs to the decay width
is given as [59]

FIG. 1. The γW-box diagrams for the semileptonic decay
process Hi → Hfeν̄e.

2Here jVusj is slightly different from the PDG value 0.2245(8)
due to the update of the FLAG value of fþð0Þ. Correspondingly,
the value of jVudj2 þ jVusj2 þ jVubj2 given in Eq. (1) also slightly
differs from the PDG value of 0.9985ð3ÞVud

ð4ÞVus
.
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• the γW –box contribution is explicitly given by

Hµν(x) = T 〈π|Jemµ (x)J
W
ν (0)|K〉

MK(Q
2
) = −

√
Q2

6mK

∫
d
4
xω(x,Q

2
)ε
µνα0

xαHµν(x)

�VAγW =
3α

2π

∫
dQ2

Q2

m2
W

m2
W

+Q2
MK(Q

2
)

where ω(x,Q2) is known analytically

• MK(Q2) has been matched to perturbation theory in the high Q2 region and
integrated numerically

• the matching with χpt formulae allows the extraction of the relevant low–energy
constants

• in this approach, QED is treated in infinite volume. . . it requires a separation of
scales and a parametrization/modelling of the QCD kernels at long distances

be safely neglected. We use local vector and axial-vector
currents in the calculation. These currents are matched to the
conserved ones by multiplying the renormalization factors
ZV=A, whose value are quoted from Ref. [69]. The correlation
functions are constructed using the field sparsening technique
[70,71] with a significant reduction in the propagator storage.
For the locations of two current insertions Jemμ and JW;A

ν , we
treat one as the source of the propagator and the other as the
sink. In this way the hadronic function HVA

μν ðt; x⃗Þ, which
depends on the coordinate-space variable x can be obtained.
Such technique has also been used in the computation of
three-point correction function to extract the pion charge
radius [72]. The flavor SU(3) limit is achieved by tuning
down the strange quark mass to be the same as the light
quark mass.

InsertingHVA
μν ðt; x⃗Þ into the integral (14), we calculate the

scalar function MKðQ2Þ. The lattice results for MKðQ2Þ ×
ðm2

W=Q
2Þ as a function of Q2 are shown in the left panel of

Fig. 3. At large Q2 (Q2 ≳ 1 GeV2), the lattice results from
different gauge ensembles start to disagree, suggesting the
obvious lattice discretization effects. In the right panel of
Fig. 3, a continuum extrapolation is performed to obtain the
results in the continuum limit for Iwasaki and DSDR
ensembles separately. To reduce the systematic uncertainties
contained in the lattice data at large Q2, we calculate the
MKðQ2Þ in PQCD using the RunDec package [73]. At lowQ2

the perturbative results suffer from large PQCD truncation
effects due to the lack of higher-loop and higher-twist
contributions.We observe an expected discrepancy between
the orange and magenta curves at lowQ2, where the former
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M
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2 )
 (m

2 W
/Q
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FIG. 3. MKðQ2Þ × ðm2
W=Q

2Þ as a function ofQ2. In the left panel, the lattice results for all five ensembles are given. In the right panel,
we have extrapolated the Iwasaki and DSDR results to their continuum limit. The remaining orange and magenta curves are the results
from perturbation theory.

TABLE II. For each ensemble, given three choices of Q2
cut, the lattice results of □VA;≤

γW jK0;SUð3Þ are shown.

□

VA;≤
γW jK0;SUð3Þ

Ensemble

Q2
cut 1 GeV2 2 GeV2 3 GeV2

24D 0.160ð6Þ × 10−3 0.274ð7Þ × 10−3 0.346ð7Þ × 10−3

DSDR 32D 0.160ð5Þ × 10−3 0.275ð5Þ × 10−3 0.347ð6Þ × 10−3

32D-fine 0.145ð6Þ × 10−3 0.260ð6Þ × 10−3 0.337ð7Þ × 10−3

Iwasaki 48I 0.149ð8Þ × 10−3 0.268ð8Þ × 10−3 0.350ð9Þ × 10−3

64I 0.149ð7Þ × 10−3 0.273ð8Þ × 10−3 0.360ð9Þ × 10−3
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3

FIG. 1: Diagrams contributing to the process P+ ! l+ ⌫l l
0+ l0�. We work in the electroquenched approximation in

which the sea quarks are electrically neutral so contributions from disconnected diagrams are neglected (see Fig. 3 and
the corresponding discussion).

in the subtraction of the point-like term from the hadronic matrix element, which itself is a necessary step to extract
each of the SD form factors.

II. THE HADRONIC TENSOR IN MINKOWSKIAN AND EUCLIDEAN SPACE-TIME

At lowest order in the electroweak interaction, P+ ! l+ ⌫l l
0+ l0� decays are obtained from the diagrams depicted in

Fig. 1. If l = l0, we also need to consider the diagrams obtained by interchanging the two identical charged leptons.
The diagram 1(b) can readily be computed in perturbation theory, with the meson decay constant as the only required
non-perturbative input. In diagram 1(a) the non-perturbative hadronic contribution to the matrix element factorizes,
and is encoded in the following tensor:

Hµ⌫
W (k, p) =

Z
d4x eik·x h0|T [Jµ

em(x)J⌫
W (0)]|P (p)i , (1)

where k = (E� , k) is the four-momentum of the virtual photon and p = (E, p) is that of the incoming pseudoscalar

meson P . The meson and photon energies satisfy E =
p

m2
P + p2 and E� =

p
k2 + k2. The two operators

Jµ
em(x) =

X

f

qf  ̄f (x)�µ f (x) J⌫
W (x) = J⌫

V (x) � J⌫
A(x) =  ̄D(x) (�⌫ � �⌫�5) U (x) , (2)

are respectively the electromagnetic hadronic current and the hadronic weak current expressed in terms of the quark
fields  f having electric charge qf in units of the charge of the positron;  U and  D indicate the fields of an up-type
or a down-type quark. In Eq. (2) we have written the weak current, J⌫

W , corresponding to a positively charged meson
P+; for a negatively charged meson we make the replacement D $ U .

The hadronic tensor can be decomposed into form factors which are scalar functions encoding the non-perturbative
strong dynamics. Following Ref. [19], we write:

Hµ⌫
W = Hµ⌫

pt + Hµ⌫
SD , (3)

Hµ⌫
pt = fP


gµ⌫ � (2p � k)µ(p � k)⌫

(p � k)2 � m2
P

�
, (4)

Hµ⌫
SD =

H1

mP

�
k2gµ⌫ � kµk⌫

�
+

H2

mP

⇥
(k · p � k2)kµ � k2 (p � k)

µ⇤

(p � k)2 � m2
P

(p � k)
⌫

+
FA

mP

⇥
(k · p � k2)gµ⌫ � (p � k)µk⌫

⇤

�i
FV

mP
✏µ⌫↵�k↵p� . (5)

With this decomposition we have separated the point-like contribution to the hadronic tensor from the structure-
dependent one. The former depends only on the meson decay constant and is obtained by assuming a point-like
meson. The SD contribution describes the interaction between the virtual photon and the hadronic structure of the
pseudoscalar meson. The SD form factors, H1, H2, FA and FV , are scalar functions of k2 and (p � k)2. Note that,
compared to our earlier work, see for example Eq. (B4) of Ref.[19] or Eq. (3) of Ref. [3], we have modified the definitions
of H1,2 by a factor of mP and introduced the denominator (p� k)2 �m2

P in the factor multiplying H2. In these earlier
papers we were studying radiative corrections to leptonic decays with a real photon in the final state for which the form

• weak decays with intermediate virtual photons have also been studied

• also here, with physical meson masses and for generic kinematics, one
might have problems of analytical continuation

• to date, kaon decays have been studied with mπ ∼ 350 MeV where
these problems don’t arise

RM123+SOTON, PRD 105 (2022)
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FIG. 8: The fitting functions corresponding to the polynomial and the pole-like fits of Eqs. (46) and(47) are plotted,
along with the lattice data, as function of xq and at a fixed value of xk = 0.28 (panels 1-4) and xk = 0.41 (panels 5-8) .

The red line corresponds to the 1-loop ChPT prediction with F = fK/
p
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• the decay rates can be computed by extracting the four different form–factors that
parametrize the hadronic tensor

H
µα

(k, p) =

∫
d
4
y e
ik·y

T〈0|jαW (0)j
µ
em(y)|P (p)〉

= H1

[
k

2
g
µα − kµkα

]

+H2

[
(p · k − k2

)k
µ − k2

(p− k)
µ
]

(p− k)
α

− i
FV

mP
ε
µαγβ

kγpβ

+
FA

mP

[
(p · k − k2

)g
µα − (p− k)

µ
k
α
]

+ fP

[
g
µα

+
(2p− k)µ(p− k)α

2p · k − k2

]
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FIG. 8: The fitting functions corresponding to the polynomial and the pole-like fits of Eqs. (46) and(47) are plotted,
along with the lattice data, as function of xq and at a fixed value of xk = 0.28 (panels 1-4) and xk = 0.41 (panels 5-8) .

The red line corresponds to the 1-loop ChPT prediction with F = fK/
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Figure 5. The main idea of IVR method. In the temporal direction, Hµ⌫(x)
��
t<�ts

is reconstructed

by using Hµ⌫(x) at t = �ts. In the spatial direction, the finite-volume e↵ects are corrected by

calculating �
(1)
IVR and �

(2)
IVR via the ground-state dominance.

and denoted as �
(1)
IVR and �

(2)
IVR, respectively. Combining �

(1)
IVR and �

(2)
IVR together yields the

so-called correction �IVR.

Combining the corrections to the temporal truncation e↵ects and finite-volume e↵ects,

the main idea of IVR method is summarized in Fig. 5.

For su�ciently large time separation, H(L),µ⌫(x) is saturated by ground-state contribu-

tion:

H(L),µ⌫(~x, t < �ts) = H
(L),µ⌫
K (~x, t) =

1

L3

X

~p

Hµ⌫
K (~p, t)ei~p·~x

H(L),µ⌫(~x, t > t0s) = H(L),µ⌫
⇢ (~x, t) =

1

L3

X

~p

Hµ⌫
⇢ (~p, t)ei~p·~x.

(42)

Here the hadronic kernels Hµ⌫
K,⇢(~p, t) can be written in terms of form factors, whose explicit

forms are determined from lattice data H(L),µ⌫(~x, t). For more detailed discussions, we refer

to Appendix B. In Fig. 6, we show the scalar function I1(|~x|2, t) = �µ⌫Hµ⌫(x) at t = ±12

as an example that the lattice data are well dominated by the kaon and rho state. The

consistency between lattice data and ground-state contribution at long distance has also

been checked for other scalar functions. As a next step, we reconstruct the infinite-volume

20

• or the problem can be addressed by using infinite–volume QED

H
µα

(k, p) =

∫
d
4
y e
ik·y

H
µα

(y)

=

∫

L
d
4
y e
ik·y

H
µα
L

(y)

+

∫

L
d
4
y e
ik·y {

H
µα

(y)−Hµα
L

(y)
}

+

∫

>L
d
4
y e
ik·y

H
µα

(y)

x-y.tuo et al., PRD 105 (2022)

Figure 12. Similar as Fig. 11, but utilizing the constraint from Ward identity.

V. CONCLUSION

In this work, we build a lattice calculation procedure to determine K ! `⌫``
0+`0� decay

width by solving a series of technical problems. IVR method is used to reduce temporal trun-

cation e↵ects and finite-volume e↵ects. Other approaches, such as scalar function method

and Monte-Carlo phase-space integration, are proposed to simplify the calculation. Using

these techniques, a practical methodology is developed to compute decay width with four

daughter particles in the final state, as summarized in Fig. 7.

Using this methodology, we perform a realistic lattice calculation of K ! `⌫``
0+`0� decay

width using an ensemble with pion mass 352 MeV and kaon mass 506 MeV, and obtain

the branching ratios comparable to ChPT or experimental results. Through the calculation,

we demonstrate the capability of lattice QCD to improve Standard Model prediction in

K ! `⌫``
0+`0� decay width. By examining the ts-dependence and L1-dependence of decay

width, we show that the IVR method is a vital approach to reduce the systematic e↵ects.
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Decays into virtual photons - results for the rates

Experimental results exist for three of the four channels,
K ! µ⌫µ e+e�, K ! e⌫e µ+µ� and K ! e⌫e e+e� from the E865 experiment at
BNL. hep-ex/0204006, hep-ex/0505001

Channel This work Tuo et al. ChPT Experiment
Br[K ! µ⌫µ e+e�] 8.26(13) 10�8 10.59(33) 10�8 8.25 10�8 7.93(33) 10�8

Br[K ! e⌫e µ+µ�] 0.762(49) 10�8 0.72(5) 10�8 0.62 10�8 1.72(45) 10�8

Br[K ! e⌫e e+e�] 1.95(11) 10�8 1.77(16) 10�8 1.75 10�8 2.91(23) 10�8

Br[K ! µ⌫µ µ+µ�] 1.178(35) 10�8 1.45(6) 10�8 1.10 10�8 �

Recall that both our results and those of Tuo et al. were obtained at unphysical u
and d quark masses and at a single lattice spacing and single volume.The quoted
errors do not include estimates of the corresponding systematic uncertainties.

The results from Tuo et al. are from v2 of their paper posted in February 2022.

Example: Analysis of the form factors from K ! µ⌫µ e+e� and K ! e⌫e e+e�

decays gives H1(0, 0) = 0.227(19). hep-ex/0204006

From K ! e⌫e µ+µ� decays, H1(0, 0) = 0.303(41). hep-ex/0505001

We find H1(0, 0) = 0.176(9) (at unphysical mud).

Chris Sachrajda QCD+QED, June 24th 2022 30



summarizing. . .



conclusions & outlooks

• lattice QCD calculations of π`2, K`2 and K`3 decay rates reached the
impressive precision of 0.2%

• at this level QED radiative corrections are relevant and must be computed with
the required non–perturbative accuracy

• first–principle lattice results for π`2(γ), K`2(γ) are now available from different
groups

• a new method to extract from the lattice the low energy constant entering
K`3(γ) decays has been recently developed and successfully implemented

• new techniques to calculate radiative decay rates with both real and virtual
photons have been developed and interesting first–principles results are already
available

• very likely i had to skip many of the things i wanted to say. . . for sure i have not
touched heavy–light and heavy–heavy meson decays and many other things. . .

• from the lattice point of view, nowadays precision means 0.1% and QCD+QED:
much more to come in the near future. . .

RM123+SOTON PRL.120.2018 PRD.100.2019 PRD.103.2021
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bin E� (MeV) pe (MeV) �Rexp,i ⇥ 106 �RSD,i ⇥ 106 �Rth,i ⇥ 106 exp / th ChPT

1 10 - 50 > 200 0.94 ± 0.30 ± 0.03 0.26 ± 0.04 1.25 ± 0.04 0.75 ± 0.24 1.13 ± 0.03

2 50 - 100 > 200 2.03 ± 0.22 ± 0.02 2.26 ± 0.30 2.28 ± 0.30 0.89 ± 0.15 1.44 ± 0.36

3 100 - 150 > 200 4.47 ± 0.30 ± 0.03 5.06 ± 0.67 5.07 ± 0.67 0.88 ± 0.13 3.50 ± 0.96

4 150 - 200 > 200 4.81 ± 0.37 ± 0.04 6.00 ± 0.78 6.00 ± 0.78 0.80 ± 0.12 4.46 ± 1.25

5 200 - 250 > 200 2.58 ± 0.26 ± 0.03 2.85 ± 0.38 2.85 ± 0.38 0.91 ± 0.15 2.25 ± 0.63

1-5 10 - 250 > 200 14.83 ± 0.66 ± 0.13 16.43 ± 2.12 17.43 ± 2.12 0.85 ± 0.11 12.79 ± 3.24

TABLE IV. Values of the KLOE experimental data �Rexp,i [9] and of the theoretical predictions �RSD,i

and �Rth,i, evaluated with the vector and axial form factors of Ref. [8] given in Eqs. (13)-(17), tabulated

in the 5 bins of the photon’s energy adopted by the KLOE experiment on K ! e⌫� decays. The seventh

column is the ratio between the experimental data and our theoretical predictions. In the fourth column the

first error is statistical and the second one is systematic. The last column shows the prediction of ChPT at

order O(e2p4), based on the vector and axial form factors given in Eq. (53).
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FIG. 1. Left panel: comparison of the KLOE experimental data �Rexp,i [9] (red circles) with the theoret-

ical predictions �Rth,i, (blue squares) evaluated with the vector and axial form factors of Ref. [8] given in

Eqs. (13) - (17), for the 5 bins (see Table IV). The green diamonds correspond to the prediction of ChPT at

order O(e2p4), based on the vector and axial form factors given in Eq. (53). Right panel: Comparison of

the form-factor F+(x�) extracted by the KLOE collaboration in Ref. [9] and the theoretical prediction from

Eqs. (13) - (17). The shaded areas represent uncertainties at the level of 1 standard deviation.

where we compare the form-factor F+(x�) extracted by the KLOE collaboration in Ref. [9] with

4

relators described in Ref. [6]. Their numerical determi-
nation is illustrated briefly in Refs. [25, 26] and in detail

in Ref. [27]. The quality of the extraction of �A`=µ
P /�A

(0)
P

is illustrated in the supplemental material.

IV. FINITE VOLUME EFFECTS AT O(↵EM)

The subtraction �0(L)��pt
0 (L) makes the rate IR finite

and cancels the structure-independent FVEs. The point-
like decay rate �pt

0 (L) is given by

�pt
0 (L) = 2

↵em

4⇡
YP (L) �tree

P , (10)

where the factor YP (L) is explicitly given by Eq. (98) of
Ref. [10]. Eq. (8) is therefore replaced by

�AP = �AQCD
P +

X

i

�Ai
P +�A`

P �↵em

4⇡
YP (L) A

(0)
P , (11)

where YP (L) has the form

YP (L) = bIR log(MP L) + b0 +
b1

MP L

+
b2

(MP L)2
+

b3

(MP L)3
+ O(e�MP L) (12)

with the coe�cients bj (j = IR, 0, 1, 2, 3) depending
on the dimensionless ratio m`/MP [10]. The important
point is that the SD FVEs start only at order O(1/L2),
i.e. all the terms up to O(1/L) in Eq. (12) are “univer-
sal” [10]. Being independent of the structure they can be
computed for a point-like charged meson.

The FVE subtraction (11) up to order O(1/L) is il-
lustrated in Fig. 5 for �RK , �R⇡ and �RK⇡ in the inclu-
sive case �E� = �Emax,P

� = MP (1�m2
µ/M2

P )/2, which

corresponds to �Emax,K
� ' 235 MeV and �Emax,⇡

� '
29 MeV, respectively. It can be seen that after subtrac-
tion of the universal terms the residual FVEs are almost
linear in 1/L2 and ⇡ 3 times smaller in the case of �RK⇡.

V. RESULTS FOR THE RATIO �(K`2)/�(⇡`2)

The (inclusive) data for �RK⇡, obtained using Eqs. (7)
and (11-12), are shown in Fig. 6. The “universal” FVEs
are subtracted from the data and the combined chiral,
continuum and infinite volume extrapolations are per-
formed using the following Ansatz:

�RK⇡ = R0 + R�log(mud) + R1mud + R2m
2
ud + Da2

+
K2

L2


1

M2
K

� 1

M2
⇡

�
+

K`
2

L2


1

(EK
` )2

� 1

(E⇡
` )2

�

+ ��pt(�Emax,K
� ) � ��pt(�Emax,⇡

� ) , (13)

where mud is the renormalized u/d quark mass, EP
` =

MP (1 + m2
`/M

2
P )/2 is the lepton energy in the P-meson
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FIG. 5: Results for the corrections �R⇡, �RK and �RK⇡ for the
gauge ensembles A40.20, A40.24, A40.32 and A40.40 sharing the
same lattice spacing, pion and kaon masses, but di↵erent lattice
sizes (see the supplemental material). The universal FVEs, i.e. the
terms up to order O(1/L) in Eq. (12), are subtracted for each
quantity. The lines are linear fits in 1/L2. The maximum photon

energy �E� corresponds to the inclusive case �E� = �Emax,P
� =

MP (1 � m2
µ/M2

P )/2.
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FIG. 6: Results for the correction �RK⇡ (Eqs. (7) and (11))
after the subtraction of both the universal FVEs in Eq. (12) and
the residual FVEs obtained from the fitting function (13). The
dashed lines are the (central) results at each �, while the shaded
area identifies the continuum limit at 1-sigma level. The cross is

the extrapolated value at mphys
ud (MS, 2GeV) = 3.70(17)MeV [18].

The blue dotted lines correspond to the value �0.0112(21) from
Refs. [15, 16] adopted by the PDG [17]. Errors are statistical only.

rest frame, and R0,1,2, D, K2 and K`
2 are free parameters.

In Eq. (13) the chiral coe�cient R� is known [11] and
given by R� = ↵em(2Z/9 � 3)/4⇡ in qQED, where Z is
obtained from the chiral limit of the O(↵em) correction
to M2

⇡± (i.e. �M2
⇡± = 4⇡↵emZf2

0 + O(mud)). In Ref. [5]
we found Z = 0.658 (40).

Using Eq. (13) we have fitted the data for �RK⇡ us-
ing a �2-minimization procedure with an uncorrelated
�2, obtaining values of �2/d.o.f. always around 1.2. The
uncertainties on the fitting parameters do not depend on
the �2-value, because they are obtained using the boot-
strap samplings of Ref. [18] (see section II). This guaran-
tees that all the correlations among the data points and
among the fitting parameters are properly taken into ac-
count. The quality of our fits is illustrated in Fig. 6.

At the physical pion mass in the continuum and
infinite-volume limits we obtain

�Rphys
K⇡ = �0.0122 (10)stat (2)input (8)chir (5)FV E

(4)disc (6)qQED

= �0.0122 (16) , (14)

p-x.ma et al. PRD.103.2021

be safely neglected. We use local vector and axial-vector
currents in the calculation. These currents are matched to the
conserved ones by multiplying the renormalization factors
ZV=A, whose value are quoted from Ref. [69]. The correlation
functions are constructed using the field sparsening technique
[70,71] with a significant reduction in the propagator storage.
For the locations of two current insertions Jemμ and JW;A

ν , we
treat one as the source of the propagator and the other as the
sink. In this way the hadronic function HVA

μν ðt; x⃗Þ, which
depends on the coordinate-space variable x can be obtained.
Such technique has also been used in the computation of
three-point correction function to extract the pion charge
radius [72]. The flavor SU(3) limit is achieved by tuning
down the strange quark mass to be the same as the light
quark mass.

InsertingHVA
μν ðt; x⃗Þ into the integral (14), we calculate the

scalar function MKðQ2Þ. The lattice results for MKðQ2Þ ×
ðm2

W=Q
2Þ as a function of Q2 are shown in the left panel of

Fig. 3. At large Q2 (Q2 ≳ 1 GeV2), the lattice results from
different gauge ensembles start to disagree, suggesting the
obvious lattice discretization effects. In the right panel of
Fig. 3, a continuum extrapolation is performed to obtain the
results in the continuum limit for Iwasaki and DSDR
ensembles separately. To reduce the systematic uncertainties
contained in the lattice data at large Q2, we calculate the
MKðQ2Þ in PQCD using the RunDec package [73]. At lowQ2

the perturbative results suffer from large PQCD truncation
effects due to the lack of higher-loop and higher-twist
contributions.We observe an expected discrepancy between
the orange and magenta curves at lowQ2, where the former

0 1 2 3 4
Q2 [GeV2]

0

100

200

300

400

M
K(Q

2 )
 (m

2 W
/Q

2 )

64I
48I
32D-fine
32D
24D

0 1 2 3 4
Q2 [GeV2]

0

100

200

300

400

Cont. Limit, DSDR
Cont. Limit, Iwasaki
PT (nf=4 match with nf=3)
PT (nf=4 down to 1 GeV)

FIG. 3. MKðQ2Þ × ðm2
W=Q

2Þ as a function ofQ2. In the left panel, the lattice results for all five ensembles are given. In the right panel,
we have extrapolated the Iwasaki and DSDR results to their continuum limit. The remaining orange and magenta curves are the results
from perturbation theory.

TABLE II. For each ensemble, given three choices of Q2
cut, the lattice results of □VA;≤

γW jK0;SUð3Þ are shown.

□

VA;≤
γW jK0;SUð3Þ

Ensemble

Q2
cut 1 GeV2 2 GeV2 3 GeV2

24D 0.160ð6Þ × 10−3 0.274ð7Þ × 10−3 0.346ð7Þ × 10−3

DSDR 32D 0.160ð5Þ × 10−3 0.275ð5Þ × 10−3 0.347ð6Þ × 10−3

32D-fine 0.145ð6Þ × 10−3 0.260ð6Þ × 10−3 0.337ð7Þ × 10−3

Iwasaki 48I 0.149ð8Þ × 10−3 0.268ð8Þ × 10−3 0.350ð9Þ × 10−3

64I 0.149ð7Þ × 10−3 0.273ð8Þ × 10−3 0.360ð9Þ × 10−3
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what is QCD?

• in order to compare results for QED radiative corrections we must first
agree on what we call QCD. . .

• indeed, when electromagnetic interactions are taken into account the
physical theory is QCD+QED

• the QCD action is no longer expected to reproduce physics and,
consequently, its renormalization becomes prescription dependent

• a natural matching prescription is to use again physical experimental
inputs to set the QCD parameters

• another prescription (j.gasser, a.rusetsky and i.scimemi, EPJ C32 (2003))
consists in imposing the condition that the renormalized couplings of the
full theory and QCD are the same, say in the M̄S scheme at µ = 2 GeV

• in RM123+SOTON, PRL 120 (2018), PRD 100 (2019) we have compared the
two approaches and found that the difference, nowadays, is smaller than
the statistical uncertainties

• this will rapidly became an important issue

Experimental
Inputs

QCD+QED

(e,g,m)
Physical Decay Rate

QCD

(0,g0,m0)
Prescription Leading Order 

Decay Rate

Radiative 
Corrections



power-law finite volume effects

• power-law finite volume effects arise when internal states can go on-shell, e.g.

k =
2πn + θ

L
,

∆O(p, L) = O(p, L)−O(p,∞)

=


 1

L3

∑

k

−
∫

d3k

(2π)3



∫
dk0

2π
fO(p, k)

A P

A P
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dk0

2π
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power-law finite volume effects
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(2π)3
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(2πn · p + θ · p)α

A P

A P
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∫
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∫
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1

kβ

∼ O
(

1

L4−β

)



universality of infrared divergences

∼ 1
2p·k+k2

×

• the key point of our method is the universality of infrared divergences

• to see how this works, let’s consider the contribution to the decay rate coming from the diagrams shown in the figure

Γ
P`
V =

∫
d4k

(2π)4
H
αµ

(k, p)
1

k2

Lαµ(k)

2p` · k + k2

• infrared divergences (and power-law finite volume effects) come from the singularity at k2 = 0 of the integrand

• the tensor Lαµ is a regular function, it contains the numerator of the lepton propagator and the appropriate normalization factors

Lαµ(k) ≡ Lαµ(k, pν , p`) = O(1)



universality of infrared divergences

• the hadronic tensor is a QCD quantity

H
αµ

(k, p) = i

∫
d
4
x e
ik·x

T 〈0| JαW (0) j
µ

(x) |P 〉

• it satisfies the WIs coming from QED gauge invariance, e.g.

kµH
αµ

(k, p) = −fP pα ,

• and, given the kinematics of the process, it is singular only at the single-meson pole

P, · · ·
〈0|JαW jµ|P 〉

PP, · · ·
〈0|jµ JαW |P 〉

• the singularity can be isolated by considering the point-like tensor, built in such a way to satisfy the same WIs of the full theory

H
αµ
pt (k, p) = fP

{
δ
αµ −

(p + k)α (2p + k)µ

2p · k + k2

}
,

H
αµ
SD

(k, p) = H
αµ

(k, p)−Hαµpt (k, p) , kµH
αµ
pt (k, p) = −fP pα , kµH

αµ
SD

(k, p) = 0

• the structure dependent contributions are regular and, since there is no constant two-index tensor orthogonal to k,

H
αµ
SD

(k, p) =
(
p · k δαµ − kαpµ

)
FA + ε

αµρσ
pρkσFV + · · · = O(k)
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universality of leading finite volume effects

• at O(e2) with massive charged particles, singularities arise only at

k
2

= (±i|k|)2 + k
2

= 0

• the blobs on the right are QCD vertexes, e.g.

∆(p + k)Γ
µ

(p, k)∆(p) =

iN(p)

∫
d
4
xd

4
ye
−ipy−ikx

T 〈0|P (y)j
µ

(x)P
†
(0)|0〉 ,

∆(p) = N(p)

∫
d
4
ye
−ipy

T 〈0|P (y)P
†
(0)|0〉 ,

N
−1

(p) = |〈P (p)|P†(0)|0〉|2 ,

• gauge WIs constrain the first two terms in the expansion, e.g.

kµΓ
µ

(p, k) = ∆
−1

(p + k)−∆
−1

(p) ,

Γ
µ

(p, k) = 2p
µ

+ k
µ

+ O(k
2
)
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Figure 1: Skeleton expansion of the P� ! `⌫̄� amplitude at O(e2)

FIG. 3: Skeleton diagrams contributing at O(↵) to �0 for the decay P� ! `�⌫̄l. The thick black

line represents the pseudoscalar meson and the broken green line represents the leptons. The

photon is represented by the wavy line. The vertices marked � and W represent the coupling

of the photon(s) to the meson or weak Hamiltonian respectively. Their definitions are given in

Appendix A.

meson, we will always work in the Feynman gauge although the results are valid in any

gauge.

A. FV corrections for the self-energy diagram

In order to set the context for our calculation of the FV corrections to the decay amplitude

we start with a discussion of the electromagnetic e↵ects in the mass mP given by the diagrams

in Figs. 3(b) and Fig. 3(c) using the Feynman rules from the Lagrangian in Eq. (20). In



euclidean correlators vs analytical continuation

• it is always a good idea to address the issue of analytical continuation by
starting from correlators, it is usually more cumbersome to locate
singularities in the amplitudes

• the reason is that correlators (Schwinger’s functions) can always be Wick
rotated without any problem

• euclidean reduction formulae work straightforwardly only for the lightest
states, i.e. the leading exponentials appearing in the correlators, because
the corresponding integrals are convergent

• problems arise when one is interested in processes corresponding to
non-leading exponentials (notice that at finite L the spectrum of H is
discrete)

• the first step in a lattice calculation of a new observable is to understand
if the leading exponentials correspond to the external states for the
process of interest

• the lightest state appearing in a correlator is readily found by using the
quantum numbers of the theory (in p.t. by using the quantum numbers of
the full theory)

in minkowsky time:

C(t) = T〈0| · · · Ō(t)O(0)|0〉

= 〈0| · · · e−it(H−iε) O|0〉 + o.t.o.

A(E) = 2E(p
0 − E)

∫ ∞
0

dt e
ip0t

C(t) + o.t.o.

in euclidean time:

CE(τ) = 〈0| · · · e−τH O|0〉 + o.t.o.

A(E) = −2iE(p
0 − E)

∫ ∞
0

dτ e
p0τ

CE(τ) + o.t.o.



QED radiative corrections from euclidean correlators

from the spectral decomposition of correlators at O(α) one gets expressions
that are rather involved but their structure is easy to understand and
somehow illuminating

C(t) = e
−tE(p)

∫
d4q

(2π)4
A
virt

(q)

+

∫
d3q

(2π)3
A
real

(q) e
−t[E(p−q)+Eγ (q)]

+ · · ·

when the spatial momentum q of the photon goes to zero we have

|q| 7→ 0

E(p− q) + Eγ(q) 7→ E(p)

A
virt

(q) 7→ c
virt − cIR log

|q|
m

A
real

(q) 7→ c
real

+ cIR log
|q|
m

for each charged particle emitting a photon one has the exponential
corresponding to the charged particle itself as an external state (the
virtual photon contribution)

but also the exponential corresponding to the external states with the
photon on-shell (the real photon contribution)

since

|q| +
√
M2 + |p− q|2 ≥

√
M2 + |p|2

with an infrared regulator the blue exponentials are sub-leading and, if
one is interested in the virtual contribution, there is no problem of
analytical continuation



QED radiative corrections from euclidean correlators

in the case of the O(e2) QED radiative corrections to the leptonic decays of pseudoscalar mesons

since as we have seen

|q| +
√
M2 + |p− q|2 ≥

√
M2 + |p|2

here there is a problem of analytical continuation! but this diagram can be
factorized and the leptonic part can be computed analytically

at fixed total momentum and with an infrared regulator the pseudoscalar
meson is the lightest state in QED+QCD with the given quantum numbers

therefore, no problems of analytical continuation arise in the self-energy
diagrams and in the diagram in which the real photon is emitted from the
meson!

notice that this is true for a pion but also in the case of flavoured
pseudoscalar mesons such as K,B,D!



QED radiative corrections from euclidean correlators

• problems of analytical continuation do arise in the case of semileptonic decays
because of electromagnetic final state interactions

• the internal meson-lepton pair, and eventually multi-hadrons-lepton internal
states, can be lighter than the external meson-lepton state

• this is a big issue, particularly in the case of B decays because of the presence of
many kinematically-allowed multi-hadron states

B0

D+

�−

ν̄�



form-factors for real decays

• the starting point is the hadronic tensor (p2 = m2
P )

H
µα

(k, p) =

∫
d
4
y e
ik·y

T〈0|jαW (0)j
µ
em(y)|P (p)〉

• this can be conveniently decomposed in terms of form-factors as follows

H
µα

(k, p) =H
µα
SD

(k, p) +H
µα
pt (k, p)

H
µα
SD

(k, p) =H1

[
k

2
g
µα − kµkα

]
+H2

[
(p · k − k2

)k
µ − k2

(p− k)
µ
]

(p− k)
α

− i
FV

mP
ε
µαγβ

kγpβ +
FA

mP

[
(p · k − k2

)g
µα − (p− k)

µ
k
α
]

H
µα
pt (k, p) =fP

[
g
µα

+
(2p− k)µ(p− k)α

2p · k − k2

]

• the choice of the basis is of course not unique and, moreover, the separation of the point-like contribution can also depend upon the conventions: our

definition of H
µα
pt (k, p) is consistent with the point-like effective lagrangian and it is what we used to compute Γ

pt
R

(E); notice that

kµH
µα

(k, p) = fP p
α
, kµH

µα
pt (k, p) = fP p

α
, kµH

µα
SD

(k, p) = 0

i.e. H
µα
pt (k, p) satisfies the same ward identity of the full-theory tensor



form-factors for real decays

• in the case of real photons, k2 = 0, the previous expressions simplify as follows

H
µα

(k, p) =H
µα
SD

(k, p) +H
µα
pt (k, p)

H
µα
SD

(k, p) =k
µ {−H1 k

α
+H2 p · k(p− k)

α}

− i
FV

mP
ε
µαγβ

kγpβ +
FA

mP

[
p · kgµα − (p− k)

µ
k
α]

H
µα
pt (k, p) =fP

[
g
µα

+
(2p− k)µ(p− k)α

2p · k

]

• the form factors H1,2 do not enter into the physical decay rate for P 7→ `ν̄γ and can be conveniently separated by considering the projector onto the
transverse (and therefore physical) degrees of freedom of the photon that is attached to the vector current

n = (1, 0) , P
µν

(k, n) = −gµν + n
µ
n
ν

+
[kµ − n · knµ] [kν − n · knν ]

k2 − (n · k)2



form-factors for real decays

• the projector Pµν(k, n) is such that

P
µν

(k, n)kν = P
µν

(k, n)nν = 0 , P
µβ

(k, n)P
ν
β (k, n) = P

µν
(k, n) ,

P
µν

(k, n) = P
νµ

(k, n) , P
00

(k, n) = P
0i

(k, n) = 0 ,

P
ij

(k, n) = δ
ij −

kikj

k2

• in fact Pµν(k, n) is nothing but the numerator of the photon propagator in the Coulomb’s gauge that forbids the propagation of unphysical degrees of
freedom; we have

Pνµ(k, n)H
µα
SD

(k, p) =Pνµ(k, n)

{
−i

FV

mP
ε
µαγβ

kγpβ +
FA

mP

[
p · kgµα − (p− k)

µ
k
α]
}

• by introducing the polarization vectors as follows (that depend upon n and k)

ε0 = n = (1, 0) , ε1,2 = (0, ε1,2) , ε3 = (0,k/|k|) ,

εr · εs = grs , g
rs
ε
µ
r ε
ν
s = g

µν



form-factors for real decays

• the projector Pµν(k, n) can be rewritten in terms of the transverse polarization vectors ε1,2 as follows

∑

r=1,2

ε
µ
r ε
ν
r = P

µν
(k, n) , εr,µ P

µν
(k, n) = −ενr , r = 1, 2

• explicit expressions for the transverse polarization vectors are given below

ε
µ
1 (k) =


0,

−k1k3

|k|
√
k2
1 + k2

2

,
−k2k3

|k|
√
k2
1 + k2

2

,

√
k2
1 + k2

2

|k|


 ,

ε
µ
2 (k) =


0,

k2√
k2
1 + k2

2

,−
k1√

k2
1 + k2

2

, 0






form-factors for real decays

• in light of the previous discussion, one can either use the (formally) covariant expressions given above for Pµν(k, n) or the explicit expressions for the
transverse polarizations ε1,2 in order to isolate the physical contributions appearing into Hµα(k, p)

• in particular, since the axial and vector part of the weak current can be computed separately, we have

εr,µH
µα
A

(k, p) =
p · k εαr − εr · p kα

mP

{
FA +

mP fP

p · k

}
+ p

α
εr · p

fP

p · k
,

εr,µH
µα
V

(k, p) = i
FV

mP
ε
αµγβ

εr,µkγpβ ,

r = 1, 2



infrared-safe measurable observables

f.bloch, a.nordsieck, Phys.Rev. 52 (1937)

t.d.lee, m.nauenberg, Phys.Rev. 133 (1964)

p.p.kulish, l.d.faddeev, Theor.Math.Phys. 4 (1970)

• the infrared problem has been analyzed by many authors over the
years

• electrically-charged asymptotic states are not eigenstates of the
photon-number operator

• the perturbative expansion of decay-rates and cross-sections with
respect to α is cumbersome because of the infinitely many
degenerate states

• the block & nordsieck approach consists in lifting the
degeneracies by introducing an infrared regulator, say mγ , and in
computing infrared-safe observables

• at any fixed order in α, infrared-safe observables are obtained by
adding the appropriate number of photons in the final states and
by integrating over their energy in a finite range, say [0, E]

• in this framework, infrared divergences appear at intermediate
stages of the calculations and cancel in the sum of the so-called
virtual and real contributions

∫
2 b.p.s

×

∫
3 b.p.s

×

(p + k)
2

+m
2
P = 2p · k + k

2 ∼ 2p · k ,

∫
d4k

(2π)4

1

(k2 +m2
γ) (2p · k) (2p` · k)

∼ cIR log

(
mP

mγ

)
,

cIR

{
log

(
mP

mγ

)
+ log

(
mγ

E

)}
= cIR log

(
mP

E

)



the point-like effective theory

RM123+SOTON, PRD 91 (2015), PRD 95 (2017), arXiv:1612.00199

• infrared divergences can be computed in the so called point-like effective theory

Lpt = φ
†
P

{
−D2

µ +m
2
P

}
φP + fP

{
2iGF VCKM Dµφ

†
P

¯̀γ
µ
ν + h.c.

}
, Dµ = ∂µ − ieAµ

• properly matched effective field theories have, by definition, the same infrared behaviour of the fundamental theory: at leading order the matching is
obtained by using Γ0

Γ
pt
0 = Γ0 =

G2
F |VCKM |2f2

P

8π
m

3
P r

2
`

(
1− r2`

)2
, r` =

m`

mP
, Dµ 7→ ∂µ

• structure-dependent terms can also be understood in the effective field theory language, e.g.

OV (x) = FV ε
µνρσ

DµφP Fνρ ¯̀γσν , Fνρ = ∂νAρ − ∂ρAν , subleading in
Eγ

mπ

• by exploiting the full set of constraints coming from the WIs and from the e.o.m one can rigorously show that in the expansion around vanishing photon

energies both the leading (infrared divergent) and the next-to-leading terms are universal: this implies that O(L−1) finite volume effects are universal
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the point-like result: Γpt(E)

RM123+SOTON, PRD 91 (2015)

• concerning the perturbative point-like calculation in infinite volume, we have generalized the results obtained in the early days of quantum field theory by
berman 58, kinoshita 59

Γ
pt

(E) = e
2

lim
mγ→∞

{
Γ
pt
V

(mγ) + Γ
pt
R

(mγ , E)
}

= Γ0
αem

4π

{
3 log

(
m2
P

m2
W

)
+ log(r

2
` )− 4 log(r

2
E) +

2− 10r2`

1− r2
`

log(r
2
` )

−2
1 + r2`

1− r2
`

log(r
2
E) log(r

2
` )− 4

1 + r2`

1− r2
`

Li2(1− r2` )− 3

+
3 + r2E − 6r2` + 4rE(−1 + r2` )

(1− r2
`
)2

log(1− rE) +
rE(4− rE − 4r2` )

(1− r2
`
)2

log(r
2
` )

−
rE(−22 + 3rE + 28r2` )

2(1− r2
`
)2

− 4
1 + r2`

1− r2
`

Li2(rE)

}
,

where

rE =
2E

mP
, r` =

m`

mP
.



non-perturbative renormalization

• notice that ΓV (L) and Γ
pt
V

(L) are ultraviolet divergent in the Fermi theory

• the divergence can be reabsorbed into a renormalization of GF , both in the full theory and in the point-like effective theory

• we have analyzed the renormalization of the four-fermion weak operator on the lattice in details and calculated non-perturbatively the renormalization
constants in the RI-MOM scheme

• we have then matched the non-perturbative results to the so-called W-regularization at O(α) (a.sirlin, NPB 196 (1982); e.braaten and c.s.li PRD 42 (1990))

1

k2
7→

1

k2
−

1

k2 +m2
W

, HW =
GF VCKM√

2

{
1 +

α

π
log

mZ

mW

}
O

W-reg
1 ,

O
W-reg
1 =

5∑

i=1

Z1iO
latt
i (a)

• indeed, this is the scheme conventionally used to extract GF from the muon decay

1

τµ
=
G2
Fm

5
µ

192π3

[
1−

8m2
e

m2
µ

] [
1 +

α

2π

(
25

4
− π2

)]



analytical calculation of Γ
pt
V

(L)

RM123+SOTON, PRD 95 (2017), arXiv:1612.00199• we performed an analytical calculation of Γ
pt
V

(L)

Γ
pt
V

(L)− Γ``V (L)

Γ0

= cIR log(L
2
m

2
P ) + c0 +

c1

(mPL)
+ O

(
1

L2

)

where

cIR =
1

8π2

{
(1 + r2` ) log(r2` )

(1− r2
`
)

+ 1

}
,

c0 =
1

16π2

{
2 log

(
m2
P

m2
W

)
+

(2− 6r2` ) log(r2` ) + (1 + r2` ) log2(r2` )

1− r2
`

−
5

2

}
+
ζC(0)− 2ζC(β`)

2
,

c1 = −
2(1 + r2` )

1− r2
`

ζB(0) +
8r2`

1− r4
`

ζB(β`)

and we have shown that cIR, c0 and c1 are universal, i.e. they are the same in the point-like and in the full theories! this means that in

ΓSDV (L) = ΓV (L)− Γ
pt
V

(L) we subtract exactly, together with the infrared divergence, the leading O(1/L) terms and we have O(1/L2) finite
size effects

• notice: the lepton wave-function contribution, Γ``V (L), does not contribute to

ΓSDV (L) ×



QED on a finite volume: how?

• it is impossible to have a net electric charge in a periodic box

• this is a consequence of gauss’s law

S =

∫

L3
d
4
x

{
1

4
FµνFµν + ψ̄f

(
γµD

f
µ +mf

)
ψf

}

∂k F0k(x)︸ ︷︷ ︸
Ek(x)

− ieqf ψ̄fγ0ψf (x)
︸ ︷︷ ︸

eρ(x)

= 0

Q =

∫

L3
d
3
x ρ(x) =

1

e

∫

L3
d
3
x ∂kEk(x) = 0 ψ̄ψ

ψ̄ψ

ψ̄ψ

ψ̄ψ

ψ̄ψ

ψ̄ψ

• one may think to overcome this problem by gauge fixing but large gauge transformations survive a local gauge fixing procedure (n ∈ Z4)

ψ(x) 7→ e
2πi

∑
µ
xµnµ
Lµ ψ(x) , Aµ(x) 7→ Aµ(x) +

2πnµ

Lµ

ψ(x) ψ̄(0) 7→ e
2πi

∑
µ
xµnµ
Lµ ψ(x) ψ̄(0) , 〈ψ(x) ψ̄(0)〉 = 0 , x 6= 0



quenching the zero modes

• in order to study charged particles in a periodic box it has been suggested long ago (duncan et al. 96) to
quench (a set of) the zero momentum modes of the gauge field, for example

〈O〉 =

∫

pbc in space
DψDψ̄DAµ

∏

µ

δ

{∫

TL3
d
4
xAµ(x)

}
e
−S O

• by using this procedure one is also quenching large gauge transformations that are no longer a symmetry
and charged particles can propagate

• the assumption is that the induced modifications on the infrared dynamics of the theory should disappear
once the infinite volume limit is taken

• the point to note is that the resulting finite volume theory, although it may admit an hamiltonian description, is non-local
m.hayakawa, s.uno Prog.Theor.Phys. 120 (2008)

BMW, Science 347 (2015), Phys.Lett. B755 (2016)

z.davoudi, m.j.savage PRD90 (2014)

QEDL :
∏

µ,t

δ

{∫

L3
d
3
xAµ(t,x)

}
7→

∫

pbc in space
Dαµ(t) e

−
∫
L3 d

4xαµ(t)Aµ(t,x)



gauge-invariant local theory on the finite volume

b.lucini, a.patella, a.ramos, n.t, JHEP 1602(2016)

• consider C? boundary conditions (first suggested by wise and polley 91)

ψf (x + Lk) = C
−1
ψ̄
T
f (x)

ψ̄f (x + Lk) = −ψTf (x)C

Aµ(x + Lk) = −Aµ(x) , Uµ(x + Lk) = U
∗
µ(x) ,

• the gauge field is anti-periodic (|p| ≥ π/L): no zero modes by construction!

• this means no large gauge transformations and

Q =

∫

L3
d
3
x ρ(x) =

1

e

∫

L3
d
3
x ∂kEk(x) 6= 0

• a fully gauge invariant formulation is possible: technically this is a consequence of the fact that the electrostatic potential is unique with anti-periodic
boundary conditions (see backup)

∂k∂kΦ(x) = δ
3
(x) , Φ(x + Lk) = −Φ(x)



gauge–invariant charged states

• electrically charged states can be probed by considering (Dirac’s factor)

Ψf (t,x) = e
−iqf

∫
d3yΦ(y−x)∂kAk(t,y)

︸ ︷︷ ︸
Θ(t,x)

ψf (t,x) , ∂k∂kΦ(x) = δ
3
(x)

• these interpolating operators are invariant under U(1) local gauge transformations

ψf (x) 7→ e
iqfα(x)

ψf (x) , Aµ(x) 7→ Aµ(x) + ∂µα(x) ,

Θ(t,x) 7→ e
−iqf

∫
d3yΦ(y−x)∂k∂kα(t,y)

Θ(t,x) = e
−iqfα(t,x)

Θ(t,x)

• the gauge factor is not unique, for example one can consider

Ψf (t,x) = e
−iqf

∫x1
−∞ dy A1(t,y,x2,x3)

ψf (t,x) ,

• for any consistent gauge-fixing condition one can build the Dirac factor that provides the unique gauge-invariant extension of matter fields in that gauge

• notice though: interpolating operators can be non–local in space but must be localized in time!



QED on a finite volume: many different approaches

• QEDL: very attractive for its formal simplicity; generally, at O(α) the
systematics associated with non–localities can be understood

• QEDm: formally, the simplest way to solve the problem in a local
framework is to give a mass to the photon; the L 7→ ∞ limit must be
taken before restoring gauge invariance (mγ 7→ 0)

m.endres et al. PRL 117 (2016)

• QEDC a local and fully gauge invariant solution, formally a bit
cumbersome, flavour symmetries reduced to discrete subgroups (no
spurious operator mixings though) and fully recovered in the infinite
volume limit

• QED∞: at any fixed order in α radiative corrections can be represented
as the convolution of hadronic correlators with QED kernels, e.g.

x.feng et al PRD 100 (2019), LATTICE19

O(L) =

∫

L3
d
4
xH

L
QCD(x)D

L
γ (x)

7→
∫
d
4
xHQCD(x)Dγ(x)

the subtle issue here is the parametrization of the long-distance tails of
the hadronic part;

in fact the proposal is an extension of the spectacular applications of the
convolution approach to the gµ − 2,

Strategy : exact QED kernel in infinite volume

• Try the same approach for the HLbL as for the HVP

[J. Green et al. ’16] [N. Asmussen et al. ’16 ’17]

• Master formula :

aHLbL
µ =

me6

3

Z
d4y

Z
d4x L[⇢,�];µ⌫�(x, y) ib⇧⇢,µ⌫��(x, y)

ib⇧⇢,µ⌫��(x, y) = �
Z

d4z z⇢ hJµ(x)J⌫(y)J�(z)J�(0)i

! b⇧⇢,µ⌫��(x, y) is the four-point correlation function computed on the lattice

! L[⇢,�];µ⌫�(x, y) is the QED kernel, computed semi-analytically (infra-red finite)

! To compute L[⇢,�];µ⌫�(x, y) is a challenging task

! Avoid 1/L2 finite-volume effects from the massless photons

Antoine Gérardin 10 The hadronic light-by-light scattering contribution to the muon g � 2 from lattice QCD

. . . , n.asmussen et al. arXiv:1911.05573

• which is the best approach?

• in my opinion this is not the relevant point: what really matters is that one must be able to estimate reliably the systematic uncertainties associated
with the chosen approach!
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