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non—perturbative calculations of radiative corrections in weak decays
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why radiative corrections on the lattice?
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why radiative corrections on the lattice?
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why radiative corrections on the lattice?
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why radiative corrections on the lattice?
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why radiative corrections on the lattice?

QCD lattice results for Ko, myo and K3 decays are extremely precise

QED (that necessarily means also isospin breaking) radiative corrections are phenomenologically

relevant at this level of precision

we clearly see this in the nuclear 3-decays V,, 4 saga

radiative corrections are non—perturbative!

lattice calculations are therefore needed to confirm and/or to
this talk xpt)

complement EFT calculations (in

0.2% form LQCD!

QED(+IB)
corrections do
matter!

QED(+1B)
corrections are
non-perturbative!




how?



QED radiative corrections on the lattice

extracting QED radiative corrections from a non-perturbative lattice

simulation is a challenging problem!
a a
® QED is a long-range unconfined interaction that needs to be consistently ) 1) > Q@ @ @
defined on a finite volume (see backup) > = S
a g
® finite-volume effects are potentially very large, e.g. of O(Lfl) in the oo o») ’ J} Oo o
case of the masses of stable hadrons
99 Ehadif R
® in the case of decay rates the problem is much more involved because of
the appearance of infrared divergences, O(log(L)), at intermediate
stages of the calculation: the infrared problem! 2 *) [ 2 S-0.Q
i +
® an alternative approach is to calculate the relevant convolution integrals, Q‘J : ‘)o Ye
of the product of the non—local QCD matrix elements with the QED
analytical kernels, by estimating the long distance tails of the QCD > >
biect o 2 L) Q Q d
objects 3 o 3 Q OQ, Q o
a

® from the numerical point of view, it is difficult to disentangle QED
radiative corrections from the leading QCD contributions
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lattice calculation of the O () QED radiative corrections to Py, decays

eS|

® in order to perform this calculation one has to cope, on the lattice, with the well known infrared problem

f.bloch, a.nordsieck, Phys.Rev. 52 (1937)
t.d.lee, m.nauenberg, Phys.Rev. 133 (1964)
p.p.kulish, I.d.faddeev, Theor.Math.Phys. 4 (1970)

® infrared divergences appear at intermediate stages of the calculation and cancel in physical observables by summing virtual and real photon contributions



the RM1234+SOTON method

RM123+SOTON, PRD 91 (2015)

® |et's consider the infrared-safe observable: at O () this is obtained by considering the real contributions with a single photon in the final state

I(E) =Tg + €2 Jim {Ty (L) + Tr(L, B)}

® the finite-volume calculation of the real contribution is an issue: momenta are quantized!



the RM1234+SOTON method

RM123+SOTON, PRD 91 (2015)

let's consider the infrared-safe observable: at O(«) this is obtained by considering the real contributions with a single photon in the final state

I'(E) =To+e* lim {I'v(L)+ (L, E)}
L— oo
the finite-volume calculation of the real contribution is an issue: momenta are quantized!

for this reason, by relying on the universality of infrared divergences, it is convenient to rewrite the previous formula as

=0

I(E) =Tg+ €2 Jim {7y (L) —IPH(L) + T2H(L) + T (L, E) — % (L, E) +T (L, E)

where F")/tR are evaluated in the point-like effective theory: these have the same infrared behaviour of 'y



the RM1234+SOTON method

RM123+SOTON, PRD 91 (2015)

let’s consider the infrared-safe observable: at O(«) this is obtained by considering the real contributions with a single photon in the final state

I(E)=Tg+e? lim {I'y(L)+Tr(L,E)}
L— oo

the finite-volume calculation of the real contribution is an issue: momenta are quantized!

for this reason, by relying on the universality of infrared divergences, it is convenient to rewrite the previous formula as

SD

_ 2 . 2 . pt pt 2 .. SD
I'(E)=Tg+e ng);cl"v (L) +e ml;rgo{l"v (my) + T, (m,y,E)}+e mlj/rgOFR (m~, E)

where F")/tR are evaluated in the point-like effective theory: these have the same infrared behaviour of 'y



the RM1234+-SOTON method

Real SD Virtual SD

2 . t t 2 . SD 2 . SD
T(E)=Tg+e ml;rgo{l"‘p} (m7)+l"% (m.y,E)}+e ml;rgol"R (m~,E) +e Lh—>mooFV (L)

® the RM1234+-SOTON master formula is a sum of three contributions



the RM1234+-SOTON method

Real SD Virtual SD

2 . t t 2 . SD 2 . SD
T(E)=Tg+e ml;rgo{l"‘p} (m7)+l"% (m.y,E)}+e ml;rgol"R (m~,E) +e Lh—>mooFV (L)

® the RM1234+-SOTON master formula is a sum of three contributions

® the calculation started in RM123+SOTON, PRD 91 (2015) with a generalization of the infinite-~volume point-like contribution l"pt(E), originally obtained by
berman 58 and kinoshita 59 (see backup)



the RM1234+SOTON method

Real SD Virtual SD

2 . t t 2 . SD 2 . SD
T(E)=Tg+e mI;EO{F€ (m7)+l"% (m.y,E)}+e m,I;IE)OFR (m~,E) +e Lh—>mooFV (L)

® the RM1234+-SOTON master formula is a sum of three contributions

® the calculation started in RM123+SOTON, PRD 91 (2015) with a generalization of the infinite-~volume point-like contribution l"pt(E), originally obtained by
berman 58 and kinoshita 59 (see backup)

® the analytical calculation of Fz"/[’(L), up to and including 1/ L terms, allows to turn a log(L) into a 1/L? finite volume effect: this is possible thanks to
the universality of soft—photon contributions (Low's theorem)

established in RM123+SOTON, PRD 95 (2017)

checked in RBC-UKQCD PRD 105 (2022)



the RM1234+SOTON method

Real SD Virtual SD

2 . t t 2 . SD 2 . SD
T(E)=Tg+e mI;EO{F€ (m7)+l"% (m.y,E)}+e m,I;IE)OFR (m~,E) +e Lh—>mooFV (L)

the RM123+SOTON master formula is a sum of three contributions

the calculation started in RM123+SOTON, PRD 91 (2015) with a generalization of the infinite—volume point-like contribution l"pt(E), originally obtained by
berman 58 and kinoshita 59 (see backup)

the analytical calculation of Fz"/[’(L), up to and including 1/ L terms, allows to turn a log(L) into a 1/L? finite volume effect: this is possible thanks to

the universality of soft—photon contributions (Low's theorem)
established in RM123+SOTON, PRD 95 (2017)
checked in RBC-UKQCD PRD 105 (2022)

the observation that (universality again) F%D(E) is negligible in the limit of very small photon energies, together with the challenging numerical

calculation of an, allowed to obtain. ..



results for T[K ™ — uw, (v)] and D[~ — vy, ()]

RM123+SOTON, PRL 120 (2018), PRD 100 (2019)
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some more details ...
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RM1234+SOTON, PRL 120 (2018), PRD 100 (2019)
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e lattice calculation performed by using the RM123 method, i.e. by expanding the lattice path-integral with respect

to a and the up-down quark mass difference

e renormalization constants computed non—perturbatively in the R'-MOM scheme and matched perturbatively with
the so-called W-scheme (ausiriin, NPB 196 (1982); e.braaten and c.s.li PRD 42 (1990)) in which G is defined

20



RM123+SOTON, PRL 120 (2018), PRD 100 (2019)
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e contributions corresponding to charged sea-quarks estimated by using xpt but not computed: this is the so called
electroquenched approximation, there is certainly room for improvement here. ..



RM123+SOTON PRD.100.2019
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RM123+SOTON PRD.100.2019
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RBC-UKQCD, m.dicarlo talk (here and edinburgh)
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RM123+SOTON PRD.100.2019
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o the key point in this game is the universality of FVE
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RM123+SOTON PRD.100.2019
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e one has to look at the singularities in k after performing the k°
integral: these are the pinched singularities coming from on—shell

internal particles

ptk
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e in this case the only pinched singularity is the infrared one

kuTH(p,k) = A" (p+ k) — A7 (p)
T#(p, k) = 2p* + k* + O(k?)

(7x-/

&Pk
(2m)3

)

dk0 1

2 WP

o

1

LA=B

0.0030

)

(6]

w
P P
(0)
—(W
P =

(9)



ORk

0001 Son --—- RM123+Soton ’
¢ 1/L subtracted @
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the analysis has been repeated and extended to the non-universal
1/L? FVE RBC-UKQCD PRD.105.2022, m.dicarlo talk » Pk »



results for T[K ™ — uw, (v)] and D[~ — vy, ()]

RM123+SOTON, PRL 120 (2018), PRD 100 (2019)
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results for D[P~ — luy~y]

RM1234+SOTON, PRD 103 (2021)
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® on the one hand, these confirmed the assumptions on r 1
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results for D[P~ — luy~y]

RM1234+SOTON, PRD 103 (2021)
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results for D[P~ — luy~y]

® first—principles lattice results for the radiative decays
K~ — Lwgy and m1~ — Ly have then been
obtained
see also kane et al., PoS LATTICE2021.162
PoS LATTICE2019.134

® on the one hand, these confirmed the assumptions on
rEP(B)

® on the other, by looking at the form—factors at fixed
photon energy, a global SM fit of the existing
measurements (KLOE, E787, ISTRA+, OKA)
highlights a tension between theory and experiments
(mostly among experiments) in the muon channel

RM1234+SOTON, PRD 103 (2021)

0.20 T T 0.35 - T T ]
2 lattice E [0 fattice 1
018 kaon |1l gtobal fit ] |1]] global fit kaon ]
2 ]
"/ ChPT O(e’p*) e ChPT O(e%p") E

Fi(x)

%

A
'/‘///‘/‘/‘/‘/‘////////////// iy

J R 1} R U R RS R ooo L vt v v vt v v

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0



3(~
- !



what about RM123+SOTON for semileptonic decays?

the problem is more challenging in the case of semileptonic decays because, for
generic kinematical configurations, the physical observable cannot be extracted
from euclidean correlators by the leading exponential contributions

nevertheless, the RM1234+SOTON method can be extended to the case of
semileptonic decays _

the infrared divergence is again proportional to the leading order decay rate

(obvious) and the O(Lfl) infrared corrections are again universal although, as L
expected from Low'’s theorem, their evaluation requires the knowledge of the

derivatives of the form-factors f (q2) with respect to q2 = (pg — p-,r)z

there are other finite—volume corrections though, analogous to the ones studied
by Llellouch, m.liischer CMP 219 (2001) in the case of K + 7 decays, that appear
because of the problem of analytical continuation: the pinched singularities
associated with on—shell lepton—hadrons internal states

a detailed analysis of these contributions is currently underway



the xlatt approach to K3 decays

c-y.seng et al. JHEP 179 (2020)
p-x.ma et al. PRD 103 (2021)

a more pragmatic approach to the calculation of radiative corrections to K3
decays has been developed and successfully implemented recently

the idea is that of extracting from lattice simulations in the flavour SU (3) limit
the relevant low—energy constants that enter the xpt calculation of the radiative
corrections

14 €

> |

the unphysical py = 0, m g = my kinematics avoids the problem of analytical
continuation

the use of sirlin decomposition, originally developed for n — pli(v),

5R = il 31 1 a
= — (9 +3log — +log —— +ag
Ke 2m ) Hi }if

mp myy
QED va
+dgo +2H5w

allows to isolate the poorly known non—perturbative contributions into the so
called vW-box diagram

this contribution is both ultraviolet and infrared finite



the xlatt results for K3 decays

p-x.ma et al. PRD 103 (2021), c-y seng et al. JHEP.07.2022
B e R AR

® the vW-box contribution is explicitly given by

641 i \ ]
32D-fine \
32D 300 \ 4

Hy () = T{x| TS (2)J) (0)|K) 00

24D

/O2
Mg (Q%) = —% /d4ww(m,QQ)GW"OMH,W(W)

Cont. Limit, DSDR
2 2 Cont. Limit, Iwasaki

ova — 3o ﬂmiw]\[ c(Q% 4 PT (n=4 match with n=3)

W an Q2 m,%v + Q2 K PT (n=4 down 0 1 GeV)

Y P B I P PP e s s s
0 1 R 2 R 3 4 0 1 , 2 . 3 4
where w(x, Q2) is known analytically Q1Gev Q1Gev
° JVIK(Q2) has been matched to perturbation theory in the high Q2 region and sxlatt _ 16(3)% §X  — 0.99(22)%
integrated numerically K9 ’ ) K9 — (22)%
§XIt = 0.21(5)% §X , =0.10(25)%
® the matching with xpt formulae allows the extraction of the relevant low—energy Ke Ke
constants latt x
sxlatt - ) _
G = 154(0)% 650 = 1.40(22)%
o I
® in this approach, QED is treated in infinite volume. . . it requires a separation of X
latt 0; = 0. 5
scales and a parametrization/modelling of the QCD kernels at long distances 51; = 0.05(5)% 6;(3 0.02(25)%
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weak decays with intermediate virtual photons have also been studied

also here, with physical meson masses and for generic kinematics, one
might have problems of analytical continuation

to date, kaon decays have been studied with m, ~ 350 MeV where

these problems don't arise

RM123+SOTON, PRD 105 (2022)
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RM123+SOTON, PRD 105 (2022)

® the decay rates can be computed by extracting the four different form—factors that
parametrize the hadronic tensor

2= 028
T T

4 ik X X < [
H"*(k,p) = / d*y e"™ Y (0|53 (0)5E,, ()| P(p)) Polynomial it == Polynomial it —
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enl Lattice data e 4wl Lt dataca 1
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el ChPT prediction — a af~ ChPT prediction — =
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® or the problem can be addressed by using infinite—~volume QED

19 (k,p) = [ dby eV Ao ()

= [ atvet v
+ [ atyet v {mre ) - mpe )

[ et w)

x-y.tuo et al., PRD 105 (2022)
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summarizing. . .




conclusions & outlooks

RM123+SOTON PRL.120.2018 PRD.100.2019 PRD.103.2021
lattice QCD calculations of 75, Kyo and K3 decay rates reached the ¢ 5 C T T
. N . KLOE
impressive precision of 0.2%

O cretoe’p’)

at this level QED radiative corrections are relevant and must be computed with
the required non—perturbative accuracy

AR *10°

K>evy

ar éj
first—principle lattice results for T2(~) KZ2(7) are now available from different g
groups

a new method to extract from the lattice the low energy constant entering
Km(,y) decays has been recently developed and successfully implemented

p-x.ma et al. PRD.103.2021

400 T T T T T

new techniques to calculate radiative decay rates with both real and virtual

photons have been developed and interesting first—principles results are already o
available )

1
81
32D-fine \
2D a0 \ 4

— 2D

200 200 B

very likely i had to skip many of the things i wanted to say. .. for sure i have not
touched heavy-light and heavy—heavy meson decays and many other things. ..

M (@) x (m/Q%)

100

ok
100 Cont. Limit, DSDR
Cont. Limit,Iwasski

from the lattice point of view, nowadays precision means 0.1% and QCD+QED: PT (o= match vith n=3)

_ — PT (=4 downto 1 GeV)
much more to come in the near future. .. o | | I T T T
o T ) T % 1 p T

Q' 16V’ Q'16ev’]




backup material




what is QCD?

in order to compare results for QED radiative corrections we must first
agree on what we call QCD. ..

indeed, when electromagnetic interactions are taken into account the
physical theory is QCD+QED

the QCD action is no longer expected to reproduce physics and,
consequently, its renormalization becomes prescription dependent

a natural matching prescription is to use again physical experimental
inputs to set the QCD parameters

another prescription (j.gasser, a.rusetsky and i.scimemi, EPJ C32 (2003))
consists in imposing the condition that the renormalized couplings of the
full theory and QCD are the same, say in the M S scheme at 1 = 2 GeV

in RM123+SOTON, PRL 120 (2018), PRD 100 (2019) we have compared the
two approaches and found that the difference, nowadays, is smaller than
the statistical uncertainties

this will rapidly became an important issue

Experimental
Inputs

Prescription

QCD+QED

(e,gm)

Qcb

(0,g0,m0)

Physical Decay Rate

LECE T
Corrections

Leading Order
Decay Rate




power-law finite volume effects

® power-law finite volume effects arise when internal states can go on-shell, e.g.

2ntn + 6

k=2

AO(p, L) = O(p, L) — O(p, o0)

1 a3k dk°
= (ﬁ%*/@ﬂs)/;“’(”*“




power-law finite volume effects

power-law finite volume effects arise when internal states can go on-shell, e.g.

2t + 6
L

AO(p, L) = O(p, L) — O(p, o0) a e

dk®
B <L3 2 - / (27r)3> / 2n Jo
_ go(p) + O(k)
- <L5Z /(2ﬂ)3>{ (k- p)® }

s a>0,




power-law finite volume effects

® power-law finite volume effects arise when internal states can go on-shell, e.g.

2 + 6
L

AO(p, L) = O(p, L) — O(p, o0) 0. °
= L3 Z /(27r)3 / fo(p, )

go(p) + O(k)
_< 32 /<2w>3>{ (k- )™ }

_ 90()E(p, 0) +o( 1 ) 7

L3—« L4—«a

s a >0,




power-law finite volume effects

® power-law finite volume effects arise when internal states can go on-shell, e.g.

2ntn + 6
k= ——, a>0,
' (® 9

AO(p, L) = O(p, L) — O(p, o0)

dk®
- <L3Z /(%)3)/?’[@(?’@
go(p) + O(k) a °
(L3 Z /(27\')3> { }

(k- p)~

_ go@)éEp, 6) +o< 1 ) ’

- L3—« Li—«a

~dk0 1
<L32 /m)s) Pl

} 1 ~o ()

(2t -p+6-p)™

&(p, 9)7{2 /(Zw)j



universality of infrared divergences

: X :
~ 1
2p-k+k2

® the key point of our method is the universality of infrared divergences

® to see how this works, let's consider the contribution to the decay rate coming from the diagrams shown in the figure

H (k, p)

F”:/ d*k 1 Lau(k)
v (2m)4 k2 2pp -k + k2

® infrared divergences (and power-law finite volume effects) come from the singularity at k2 = 0 of the integrand

® the tensor L, is a regular function, it contains the numerator of the lepton propagator and the appropriate normalization factors

L',Q#(k) = Lau(kvpuapé) =0(1)



universality of infrared divergences

® the hadronic tensor is a QCD quantity

HO (e, p) = i /d%e“"’ T(0] 7% (0) 5 () | P)

® it satisfies the WIs coming from QED gauge invariance, e.g.

ky H*"(k,p) = —fp p% ,

® and, given the kinematics of the process, it is singular only at the single-meson pole



universality of infrared divergences

® the hadronic tensor is a QCD quantity

HO (e, p) = i /d%e“"’ T(0] 7% (0) 5 () | P)

® it satisfies the WIs coming from QED gauge invariance, e.g.

ky H*"(k,p) = —fp p% ,

® and, given the kinematics of the process, it is singular only at the single-meson pole

® the singularity can be isolated by considering the point-like tensor, built in such a way to satisfy the same WIs of the full theory

Haz,“(k p) = fp {duu o (p+ k)Y (2p + k)* }
pt (ks — 5 (>

2p - k 4+ k2

HEY (k,p) = H* (k,p) — Hyl'(k,p) ,  ku Hpf'(k,p) = —fpp®, Kk Hgl(k,p) =0



universality of infrared divergences

® the hadronic tensor is a QCD quantity

HO (e, p) = i /d%e“"’ T(0] 7% (0) 5 () | P)

® it satisfies the WIs coming from QED gauge invariance, e.g.

ky H*"(k,p) = —fp p% ,

® and, given the kinematics of the process, it is singular only at the single-meson pole

® the singularity can be isolated by considering the point-like tensor, built in such a way to satisfy the same WIs of the full theory

HM (k,p) = fp {mm (et R @Cp+ R }
pralCH —,

2p - k 4+ k2
HEY (k,p) = H* (k,p) — Hyl'(k,p) ,  ku Hpf'(k,p) = —fpp®, Kk Hgl(k,p) =0

® the structure dependent contributions are regular and, since there is no constant two-index tensor orthogonal to k,

Hgh (k,p) = (p- k& —k¥pl) Fa + e*MP7pokg Fy 4 -+ = O(k)



universality of leading finite volume effects

® at O(ez) with massive charged particles, singularities arise only at
. (a)
k2 = (LilkD)? + k2 =0 ‘

® the blobs on the right are QCD vertexes, e.g.

A(p 4 k)T (p, k)A(p) =

z‘N(p)/d%d‘*ye*i”*i“T(NP(y)j“(x)P*<o>\o> ,

Aw) = N) [ dye P TOPWPT O)0)

N7 (p) = (P@®)IPT(0)0)?, !
(d) (e)

® gauge WIs constrain the first two terms in the expansion, e.g.
kD (0, k) = A7 (p+ k) = A7 (p)

T (p, k) = 2p* + k" + O(K7)

(9)



euclidean correlators vs analytical continuation

it is always a good idea to address the issue of analytical continuation by
starting from correlators, it is usually more cumbersome to locate
singularities in the amplitudes

the reason is that correlators (Schwinger’s functions) can always be Wick
rotated without any problem

euclidean reduction formulae work straightforwardly only for the lightest
states, i.e. the leading exponentials appearing in the correlators, because
the corresponding integrals are convergent

problems arise when one is interested in processes corresponding to
non-leading exponentials (notice that at finite L the spectrum of H is
discrete)

the first step in a lattice calculation of a new observable is to understand
if the leading exponentials correspond to the external states for the
process of interest

the lightest state appearing in a correlator is readily found by using the
quantum numbers of the theory (in p.t. by using the quantum numbers of
the full theory)

in minkowsky time:

C(t) =1(0] --- O(t) O(0)|0)

= (0] ---

o —it(H—ie) 0|0) + o.t.o.

0 had ipQt
A(E) = 2B(G° — E)/ dt et C(t) + oto.
0

in euclidean time:

Cp(r) = (0] --- ¢ "7 0/0) + ot

A(E)

oo 0
72iE(p0 - E)/ dreP T Cg(r) +oto.
0



QED radiative corrections from euclidean correlators

from the spectral decomposition of correlators at O () one gets expressions
that are rather involved but their structure is easy to understand and
somehow illuminating

Ct) = e tE®) /(2 )4Azul<1)

+/ d*q areal (g) o~ tB(P=a)+ B (@)]
@n)?

+ .-

when the spatial momentum g of the photon goes to zero we have
lgl — 0
E(p—q)+ Ey(q) = E(p)

AP @) e e tog

real la|

Areal +crgr log —
m

(q) = c

for each charged particle emitting a photon one has the exponential
corresponding to the charged particle itself as an external state (the
virtual photon contribution)

but also the exponential corresponding to the external states with the
photon on-shell (the real photon contribution)

since

lgl +4/ M2 + |p — q|? \/ M2+ |p|?

with an infrared regulator the blue exponentials are sub-leading and, if
one is interested in the virtual contribution, there is no problem of
analytical continuation



QED radiative corrections from euclidean correlators

in the case of the O(ez) QED radiative corrections to the leptonic decays of pseudoscalar mesons

since as we have seen

at fixed total momentum and with an infrared regulator the pseudoscalar
lq| + \/A12 +|p—-ql2 > \/M2 + |p|? meson is the lightest state in QED+QCD with the given quantum numbers

therefore, no problems of analytical continuation arise in the self-energy
here there is a problem of analytical continuation! but this diagram can be diagrams and in the diagram in which the real photon is emitted from the
factorized and the leptonic part can be computed analytically meson!

notice that this is true for a pion but also in the case of flavoured
pseudoscalar mesons such as K, B, D!



QED radiative corrections from euclidean correlators

problems of analytical continuation do arise in the case of semileptonic decays
because of electromagnetic final state interactions

the internal meson-lepton pair, and eventually multi-hadrons-lepton internal B
states, can be lighter than the external meson-lepton state

this is a big issue, particularly in the case of B decays because of the presence of
many kinematically-allowed multi-hadron states




form-factors for real decays

® the starting point is the hadronic tensor (102 = m%)

H (k, p) = /d“ye““'yT<0\j5‘v<0)jg‘m<y)|P<p)>

® this can be conveniently decomposed in terms of form-factors as follows

H** (k,p) =H§T (k,p) + HE (K, p)

HE (k,p) =Hy [K2g"* — kFk®| + Hy [(0 -k = K2R — k2 (p = "] (= B)*

F
_ i—ve‘“’ﬂ’ﬁk.ypﬁ +

Fyu {
mp m

(p-k—kg"™ — (p— k)”ka]

o o, @p—RF@m-K*
H:t (k,p) =fp |:g# + W}

® the choice of the basis is of course not unique and, moreover, the separation of the point-like contribution can also depend upon the conventions: our

definition of H;;ta(k, p) is consistent with the point-like effective lagrangian and it is what we used to compute F%t(E); notice that

k H*(k,p) = fpp®,  kuHJ (k,p) = fpp®,  kuHgh(k,p) =0

ie. H:f:ta (k, p) satisfies the same ward identity of the full-theory tensor



form-factors for real decays

® in the case of real photons, k2 =0, the previous expressions simplify as follows

H"(k,p) =H§}, (k, p) + Hp (k, p)

HEY (k,p) =k" {—H1 k% + Hap - k(p — k)*}
 Fy

Fa
— it b+ 2 [p kMY — (p — B)E?]
mp mp

(2p — k)" (p — k)
H"™(k,p) = poy 7 2 - 7
pt (k,p) =fp |9 2p K

® the form factors Hj 2 do not enter into the physical decay rate for P + £0~ and can be conveniently separated by considering the projector onto the
transverse (and therefore physical) degrees of freedom of the photon that is attached to the vector current

[E* —n - knH] [kY —n - kn]

n = (1,0) , PHY(k,n) = —gM" + ntn” +
(1,0) (k,n) = —g T




form-factors for real decays

® the projector P*¥ (k, n) is such that

P*(k,n)ky = P*Y (k,n)ny, =0,  P*(k,n)Pf (k,n) = P*(k,n) ,
" _ prp 00 _ p0i _
PMY (k,n) = P""(k,n) PPk, n) = P (k,n) =0,

PY(k,n)=196 o2

® in fact P*¥ (k,n) is nothing but the numerator of the photon propagator in the Coulomb’s gauge that forbids the propagation of unphysical degrees of
freedom; we have

 Fy Fa
Pyy(k,n) HES (k, p) =Py, (k, n) {_T B pg + 2 [p ke — (0~ k)“k“}}
P P

® by introducing the polarization vectors as follows (that depend upon n and k)

eg =n=(1,0), e1,2 = (0,€1,2), ez = (0,k/|k]) ,



form-factors for real decays

® the projector P*¥ (k, n) can be rewritten in terms of the transverse polarization vectors €1 2 as follows

Z elerl = P"(k,n), er,u PHY (k,n) = —er r=1,2
r=1,2

® explicit expressions for the transverse polarization vectors are given below

/12 1 K2
u o —kiks —kaks ki + k3

51(""): B B s
Ik|\/k2 + k3 |k|\/Kk3 + K3 k|

)

ey (k) =

0, 22 il 0
k2 + k3 (k2 + k3



form-factors for real decays

® in light of the previous discussion, one can either use the (formally) covariant expressions given above for P*¥ (k, n) or the explicit expressions for the
transverse polarizations €1 g in order to isolate the physical contributions appearing into H* (k, p)

® in particular, since the axial and vector part of the weak current can be computed separately, we have

p-kel —er-pk® mpfp fp
er,u HY (k,p) = Tmir FA+p7k +p” P
P .
. Fy
er,p HY (kyp) = Zmipfauﬂgekuk'vpﬁ ’

r=1,2



infrared-safe measurable observables

the infrared problem has been analyzed by many authors over the
years

electrically-charged asymptotic states are not eigenstates of the
photon-number operator

the perturbative expansion of decay-rates and cross-sections with
respect to v is cumbersome because of the infinitely many
degenerate states

the block & nordsieck approach consists in lifting the
degeneracies by introducing an infrared regulator, say m.~, and in
computing infrared-safe observables

at any fixed order in «, infrared-safe observables are obtained by
adding the appropriate number of photons in the final states and
by integrating over their energy in a finite range, say [0, E]

in this framework, infrared divergences appear at intermediate
stages of the calculations and cancel in the sum of the so-called
virtual and real contributions

f.bloch, a.nordsieck, Phys.Rev. 52 (1937)
t.d.lee, m.nauenberg, Phys.Rev. 133 (1964)
p.p.kulish, I.d.faddeev, Theor.Math.Phys. 4 (1970)
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the point-like effective theory

RM123+SOTON, PRD 91 (2015), PRD 95 (2017), arXiv:1612.00199

® infrared divergences can be computed in the so called point-like effective theory

Lpt = oh {—Di + mi,} bp + fp {ZiGFVCKM Dol tvtv + h.c.} . Dy =0, —icA,

® properly matched effective field theories have, by definition, the same infrared behaviour of the fundamental theory: at leading order the matching is
obtained by using T'g

2 2 02
Gr |VexkMm|“fp
= m

ret =g
0 87

3 2 2)2 mye
Py (1 - T[) » Te= Dy — 0y
mp



the point-like effective theory

RM123+SOTON, PRD 91 (2015), PRD 95 (2017), arXiv:1612.00199

® infrared divergences can be computed in the so called point-like effective theory

Lpt = oh {—Di + mi,} bp + fp {ZiGFVCKM Dol tvtv + h.c.} . Dy =0, —icA,

® properly matched effective field theories have, by definition, the same infrared behaviour of the fundamental theory: at leading order the matching is
obtained by using T'g

G2 |V, 1252 2 m

t FIYCKM P 3 2 2 4

Fg =lg=——"—"""""—""mpry (1—7"[) s ry = —, Dy, +— Oy
81 mp

® structure-dependent terms can also be understood in the effective field theory language, e.g.

= E
Oy (z) = Fy e""P D, ¢p Fuplyov, Fup,=0,A, —0,A, , subleading in 7

Moy

® by exploiting the full set of constraints coming from the WIls and from the e.o.m one can rigorously show that in the expansion around vanishing photon
energies both the leading (infrared divergent) and the next-to-leading terms are universal: this implies that O(L’l) finite volume effects are universal



the point-like result: TPt (E)

RM123+SOTON, PRD 91 (2015)

concerning the perturbative point-like calculation in infinite volume, we have generalized the results obtained in the early days of quantum field theory by

berman 58, kinoshita 59

pt 2 . pt pt
rPY(E) = e m’%{lgoo{r‘v(m’y)ﬁ»FR(m.y,E)}

2 2
[e3 m 2 — 107
=Ty om 3log 2P + log('r?) — 410g(r2E) + 72[ log(r?)
miy 1 —ry
1472 1472
—2 £ log('rzE)log(r?) —4 L Lig (1 — 'rg) -3
1 77“% . lfr%
3412 —6r7 +4rg(—1+1r2) rg(d—rg —4r?)
T v £ log(1 —rp) + =5
(1_Tg) (1_75)
rp(—22 + 3rg + 28r2) 1472
- —4 Liz(rg) ¢,
2(1 —r2)2 1—r2
where
2E my
TE = Te =

log(r?)



non-perturbative renormalization

® notice that 'y, (L) and FIC}(L) are ultraviolet divergent in the Fermi theory
® the divergence can be reabsorbed into a renormalization of G i, both in the full theory and in the point-like effective theory

® we have analyzed the renormalization of the four-fermion weak operator on the lattice in details and calculated non-perturbatively the renormalization
constants in the RI-MOM scheme

® we have then matched the non-perturbative results to the so-called W-regularization at O () (a.sirlin, NPB 196 (1982); e.braaten and c.s.li PRD 42 (1990))

1 1 1 GrVok M o mz W-reg
— = — — ———, Hy=—"=+—"""{14 —log—— 30 s
k2 k2 k2 +m%v w V2 T e myy 1

5
W-re latt
07 "% =3 21,0,"

i=1

® indeed, this is the scheme conventionally used to extract G i from the muon decay

1 Gim? 8m? a /25
LGl 2 (2o
T 1927 mg, 27 4




analytical calculation of l"pt (L)

© we performed an analytical calculation of T2/ (L) RM123+SOTON, PRD 95 (2017), arXiv:1612.00199
i) — r’f(L) c 1
A% V 1
v VT e plog(LPmE) g+ —— + O (—)
T 1R log( )+ co mpL) T2
where
1 14r2)1 2
cIR = ( z) 08(7”() +1 ,
8mw2 (1— r%)
_ mp (2 —6r])log(rf) + (AL +r7)log?(r]) 5\ | ¢c(0) — 260 (Be)
co = 2log — + 5} o i
1672 m3y, 1—r] 2 2
2(1+r )
e1 = 177‘34 © + 1 7¢n (B0

and we have shown that ¢y, co and c1 are universal, i.e. they are the same in the point-like and in the full theories! this means that in

FgD (L) =Ty (L) — FIC,T’(L) we subtract exactly, together with the infrared divergence, the leading O(1/L) terms and we have O(l/L2) finite
size effects

® notice: the lepton wave-function contribution, I‘g(L), does not contribute to
SD
Ly (L) x



QED on a finite volume: how?

® it is impossible to have a net electric charge in a periodic box

® this is a consequence of gauss’s law

4 f1 - 7
S = e G FuvFuv + ¥y ('YHDM+mf)1,/;f

Oy For(w) — ieqpdpyop(x) =0
D N e

By (z)

1
Q:/L3 d3:cp(ac) = E/Lk” dsxakEk(ac)=0

ep(x)

o

o

o

o

o

o

® one may think to overcome this problem by gauge fixing but large gauge transformations survive a local gauge fixing procedure (n € Z4)
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quenching the zero modes

® in order to study charged particles in a periodic box it has been suggested long ago (duncan et al. 96) to
quench (a set of) the zero momentum modes of the gauge field, for example

0y = DYDY DA sif d4/:AL~} S0
(o) /pbcinspace vPy ul;[ {/TL3 v Aulz)ge

® by using this procedure one is also quenching large gauge transformations that are no longer a symmetry
and charged particles can propagate

® the assumption is that the induced modifications on the infrared dynamics of the theory should disappear
once the infinite volume limit is taken

® the point to note is that the resulting finite volume theory, although it may admit an hamiltonian description, is non-local
m.hayakawa, s.uno Prog.Theor.Phys. 120 (2008)
BMW, Science 347 (2015), Phys.Lett. B755 (2016)
z.davoudi, m.j.savage PRD90 (2014)

g - . 4
QEDy, : H&{/ dg;uAH(t,:v)} — / Daﬂ(t)e_jL3d @ oy (t) Ay (t,®)
it L3 pbc in space



gauge-invariant local theory on the finite volume

b.lucini, a.patella, a.ramos, n.t, JHEP 1602(2016)

® consider C* boundary conditions (first suggested by wise and polley 91)

Vy(x+ Lk) = C~'9F (x)

Py (x+ Lk) = —4 ] (2)C

Au(z + Lk) = —Au(z),  Upn(z+ Lk) = Uj(a) ,

® the gauge field is anti-periodic (|p| > 7/L): no zero modes by construction!

® this means no large gauge transformations and

[ 3 1 o3
Q= [ d%p@) = ;/Lgd @ O Ex () # 0

® a fully gauge invariant formulation is possible: technically this is a consequence of the fact that the electrostatic potential is unique with anti-periodic
boundary conditions (see backup)



gauge—invariant charged states

® electrically charged states can be probed by considering (Dirac’s factor)

3 P
Tp(t,m) = T TVIOTRIOARGY) ), 0;,0,8(x) = 8% (x)
o(t,x)

® these interpolating operators are invariant under U(1) local gauge transformations

Gp(@) s T @), Au(e) o Ap(e) + Opala)

ot @) — e 'S J a3y @ (y—=)0, 0, a(t,y) o(t, z) = e tafalt,a) o(t, x)
® the gauge factor is not unique, for example one can consider

— 1 .
Tp(t@) = e iqyp [T o dy Aq1(t,y,z2,23) Wit @)

® for any consistent gauge-fixing condition one can build the Dirac factor that provides the unique gauge-invariant extension of matter fields in that gauge

® notice though: interpolating operators can be non—local in space but must be localized in time!



QED on a finite volume: many different approaches

® QEDo: at any fixed order in o radiative corrections can be represented
as the convolution of hadronic correlators with QED kernels, e.g.
x.feng et al PRD 100 (2019), LATTICE19

® QEDy,: very attractive for its formal simplicity; generally, at O(a) the
systematics associated with non—localities can be understood

o(L) = /L3 d*e 0S¢ p(2) DX (2)

— /d4x Hoop () Dy ()
® QED,,: formally, the simplest way to solve the problem in a local
framework is to give a mass to the photon; the L + oo limit must be
taken before restoring gauge invariance (m~ — 0)

m.endres et al. PRL 117 (2016)

the subtle issue here is the parametrization of the long-distance tails of
the hadronic part;

in fact the proposal is an extension of the spectacular applications of the
convolution approach to the g, — 2,

® QED( a local and fully gauge invariant solution, formally a bit
cumbersome, flavour symmetries reduced to discrete subgroups (no
spurious operator mixings though) and fully recovered in the infinite
volume limit

.., n.asmussen et al. arXiv:1911.05573



QED on a finite volume: many different approaches

® QEDo: at any fixed order in o radiative corrections can be represented
as the convolution of hadronic correlators with QED kernels, e.g.
x.feng et al PRD 100 (2019), LATTICE19

® QEDy,: very attractive for its formal simplicity; generally, at O(a) the
systematics associated with non—localities can be understood

o(L) = /L3 d*e 0S¢ p(2) DX (2)

— /d4x Hoop () Dy ()
® QED,,: formally, the simplest way to solve the problem in a local
framework is to give a mass to the photon; the L + oo limit must be
taken before restoring gauge invariance (m~ — 0)

m.endres et al. PRL 117 (2016)

the subtle issue here is the parametrization of the long-distance tails of
the hadronic part;

in fact the proposal is an extension of the spectacular applications of the
convolution approach to the g, — 2,

® QED( a local and fully gauge invariant solution, formally a bit
cumbersome, flavour symmetries reduced to discrete subgroups (no
spurious operator mixings though) and fully recovered in the infinite
volume limit

.., n.asmussen et al. arXiv:1911.05573
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® QED,,: formally, the simplest way to solve the problem in a local
framework is to give a mass to the photon; the L + oo limit must be
taken before restoring gauge invariance (m~ — 0)

m.endres et al. PRL 117 (2016)

® QED( a local and fully gauge invariant solution, formally a bit
cumbersome, flavour symmetries reduced to discrete subgroups (no
spurious operator mixings though) and fully recovered in the infinite
volume limit

® which is the best approach?

® QEDo: at any fixed order in o radiative corrections can be represented
as the convolution of hadronic correlators with QED kernels, e.g.

x.feng et al PRD 100 (2019), LATTICE19

o) = /L3 d*e 0S¢ p(2) DX (2)
— /d4x Hoop () Dy ()

the subtle issue here is the parametrization of the long-distance tails of
the hadronic part;

in fact the proposal is an extension of the spectacular applications of the
convolution approach to the g, — 2,

.., n.asmussen et al. arXiv:1911.05573

® in my opinion this is not the relevant point: what really matters is that one must be able to estimate reliably the systematic uncertainties associated

with the chosen approach!



