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Neutron 𝛽-decay
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Why neutron 𝛽-decay?
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The axial coupling
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Radiative corrections and hadronic physics
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Radiative correction from lQCD at LANL

● Have calculated 𝛾𝑊-box diagram for pion decay 2.819(28)×10−3   [J. Yoo, et al., in prep] 
consistent with Xu Feng, et al,  PRL124, (2020) 192002

● Simulations of 𝛾𝑊-box diagram for neutron decay are in progress

PRELIMINARY



The “beam” and “bottle” techniques
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“It sounds hard, and it is hard”
Geoff Greene

“It sounds easy, and it is hard”
Geoff Greene



A problem
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More problems
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Tackling the problem
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Where do we stand (rhetorically)?
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Where do we stand (rhetorically)?

“Recent neutron decay experiments broke the Standard Model – this, of course, is bad.”  I said.
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Where do we stand (rhetorically)?

“Recent neutron decay experiments broke the Standard Model – this, of course, is bad…”  I said.

“...but,” I continued, “advancements in the assessment of electroweak radiative corrections and 
diverse experimental efforts promise to resolve the problem and probe BSM physics.”
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Where do we stand (geographically)?
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Where do we stand (geographically)?
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Where do we stand (geographically)?



The UCN𝜏 experiment
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Blinded data:
● Holding time is modified
● blinded by up to ±15 s

Unblinding Criteria:
● Three complete (statistical and systematic) analyses
● After cross-checking analyses, take unweighted average, use largest uncertainties

Three analyses
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Frank Gonzalez
(IU)

Eric Fries
(Caltech)

Chris Morris
(LANL)



877.75 seconds
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UCN𝜏+ and UCNA+

20

UCN guide

elevator

● New Loading Mechanisms to maximize 
statistics

● Anticipate 10× counts
● New detectors to count UCN faster and 

mitigate rate dependent effects
● Faster scintillator (LYSO, plastic)
● Segmented SiPM-based detector

Bring UCN𝜏+ to a lifetime sensitivity of Δ𝜏<0.15s



The BL2 experiment at NIST
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● Data taking with Mark II trap 
complete
○ Mark III trap was installed right 

before unplanned NCNR outage
● Cold Source Upgrade timeline limits 

remaining data taking

● Neutron flux monitor efficiency – 2.7s
○ Alpha-Gamma technique (0.5s)

● Neutron absorption by 6Li – .8s
○ Measured neutron spectrum, thinner 

foils (0.6s)
● Neutron beam halo – 1.0s

○ Larger proton detector, simulation, 
better imaging methods (0.2s)

● Electrode trap nonuniformity – 0.8s
○ Use 9 electrodes, Mark 3 trap (0.2s)

● Proton counting statistics – 1.2s
○ Larger neutron flux, longer run time, 

more stable detection system (TBD)

from Nadia Fomin



The BL3 experiment
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● Increased neutron beam diameter
○ 7 mm to 35 mm

● Uniformity requirements:
○ ΔB/B <10-3 (in proton trap)

● 50x increase in trapping volume

Successful project review at NSF completed – recommended for full funding!

from Nadia Fomin



The JPARC TPC
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● beam optics upgrade (5x stats)
● low-P operation, improved amps
● solenoid for background 

suppression

from Naoyuki Sumi



The gravitrap at the ILL
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● Only remaining material bottle experiment
● lifetime of 881.5(0.7)stat(0.6)syst s (3.2𝜎 higher than 2008)
● Plans to cool to 10 K, repeat measurement



The ILL magneto-gravitational trap

25

● Permanent magnet Halbach array, 
regular conducting coils

● Novel “elevator” loading system
● 3.7 s extrapolation to final result from 

known UCN losses due to spin flips. 
Monitored in situ with the detector

○ lifetime of 878.3(1.6)(1.0) s
● A new trap with increased volume has 

been proposed



τSPECT in Mainz
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● 10L octupole trap using former 
aSPECT solenoids

● Novel spin-flip loading scheme
● Moveable in situ detector
● First results forthcoming, need to 

address quasi-stable neutron 
trajectories

from Kim Ulrike Ross



HOPE at the ILL
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● Permanent magnet octupole, 
superconducting end coils

● Preliminary storage time 
measurements of 899(19) s 
and 882(17) s

● Expect sub-second stat error 
per reactor cycle

● Changing to horizontal 
configuration with regular 
conducting coils, larger trap 
volume and reduced vibration

Loris Babin, PhD dissertation (2019)



UCNProBe at LANL
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● 4𝜋 scintillator UCN volume
● Normalize number of 𝛽s to absolute 

measurement of UCN using 3He gas
● Absolute measurement requires knowledge 

of scintillator dead layer, other inefficiencies
● Requires considerable background mitigation
● Currently procuring scintillator, electronics for 

feasibility demonstration with 𝛼/𝛽/𝛾 sources

from Zhaowen Tang



Neutrons
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● Compare MCNP model of neutron flux 
from moon’s surface as detected by 
the Lunar Prospector as a function of 
altitude

● Treat neutron lifetime as a free 
parameter in comparing the model

○   
● Considering venusian or terrestrial 

orbit experiment, lunar surface 
experiment

IN SPAAACEIN SPAAACEIN SPAAACE
from Jack Wilson



So where do we stand, really?

30

● Neutron lifetime measurements promise to test the standard model due to improved 
experiments and theory free from nuclear structure effects

● Neutron decay fits within the broader landscape of understanding the weak 
response of the nucleon, addressing timely investigations of BSM physics

● Calculations of gA on the lattice have improved substantially, allowing for probes of 
BSM physics approaching that from the LHC

● UCN𝜏 is to date the most precise measurement, and promises to improve by 
mitigating rate dependent effects and increasing statistical sensitivity

● The “problem” persists, but new experiments can provide a resolution
● EW radiative corrections are crucial for the interpretation of experiments



Backup 
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from M. Cadeddu



Big bang nucleosynthesis
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(880 s)⨉ln2 ~ 10.2 minutes



Ultracold neutrons
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LANSCE Area B
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The UCN𝜏 “Halbach” array
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50 cmBrem≈ 1 T
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The “dagger” detector
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Permits UCN detection in the trap!
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Cabibbo-Kobayashi-Maskawa Matrix Unitarity



The UCN𝜏 collaboration
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● Argonne National Laboratory
○ N Callahan

● California Institute of Technology
○ M Blatnik, B Filippone, E M Fries, K P Hickerson, S Slutsky, V Su, X Sun, C Swank, W Wei

● DePauw University
○ A Komives

● East Tennessee State University
○ R W Pattie, Jr

● Indiana University and CEEM
○ M Dawid, W Fox, C-Y Liu, F Gonzalez, D J Salvat, J Vanderwerp, G Visser

● Institut Laue-Langevin
○ P Geltenbort

● Joint Institute for Nuclear Research
○ E I Sharapov

● Los Alamos National Laboratory
○ S M Clayton, S A Curry, M A Hoffbauer, T M Ito, M Makela, C L Morris, C O’Shaughnessy, Z Tang, P L Walstrom, Z Wang

● North Carolina State University
○ T Bailey, J Choi, C Cude-Woods, L Hayen, R Musedinovic, A R Young

● Oak Ridge National Laboratory
○ L J Broussard, J Ramsey, A Saunders

● Tennessee Technological University
○ R Colon, D Dinger, J Ginder, A T Holley, M Kemp, C Swindell



How to “clean” UCN
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What do data look like?
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The dagger probes systematic effects

44



The dagger probes systematic effects
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The dagger probes systematic effects
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Analyzing data...
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Single p.e. 
dagger counts

“Monitor” detector 
counts

UCN events 
passing cuts

“Monitor” 
normalization

Background 
measurements

Dagger unload 
counts



2015-2016 results
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IU PhD Nathan Callahan (2018)



2015-2016 results
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IU PhD Nathan Callahan (2018)

statistically driven!



Improved stability
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ZnS/10B
Active cleaner

ZnS/10B
Monitor

● Buffer volume serves as “capacitor” to smooth out fluctuations
● Pre-cleaner built in



Making a UCN out of photons
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Suppress backgrounds by forming “coincidences”
● “Initial Window” 50 ns (must trigger on both PMTs)
● Require ≥ 8 photons in first 1000 ns
● “Telescoping Window” 1000 ns

 Need constant counting efficiency
● Peak neutron counting rate ~1 kHz
● ZnS:Ag scintillator has ~10-5 s “glow”

 Correct rate dependent effects on per-event basis
● Monte Carlo studies resampling data
● Contributes to ΔτRDE=±0.13 s systematic uncertainty



Normalization
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 Want to find a lifetime using:
● Y(ti )=Yi exp(-ti/ τmeas )
● Intermediate step: Find Yi, the initial number of 

neutrons in the trap

Have ~4000 runs to fit
● Reconstructed detector counts Di
● Measure backgrounds Bi at end of run + 

dedicated runs

 Incorporate normalization monitors with f(Mi)
● Exact form of f(Mi) can differ by analyzer
● Example: f(Mi)=α mmain+βs mspec
● Need to fit (likelihood or least squares) for α, βs



“Paired” & “global” analyses
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 Finally time to solve for 𝜏meas

Method 1: pair together short and long holding cycles
● 𝜏meas=(tL-tS)/ln (YS/YL)

 Method 2: Maximum Likelihood analysis to get a 
“global” lifetime
● Simultaneously fit 𝜏meas and additional parameters 

from f(Mi)



“Heating” and “cleaning” effects
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Overthreshold UCN above cleaning height
● “Heated” UCN (long times): Δτheat=0+0.08 s
● “Uncleaned” UCN (short times): 

Δτunc=0+0.11 s

Overthreshold neutrons <2×10-5!

Require constant detection efficiency
● Phase space couples to counting time
● Use mean arrival time during unload
● ΔτPSE=0.02±0.01 s

 



The error budget
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from M. Cadeddu



A cross check
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from M. Cadeddu



Monitor detectors and UCN spectrum
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from M. Cadeddu



 
▪ 
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Magnetic Fields of Trap
▪ 

BONUS JA.00003 59



Inside of the Array
▪ 

60JA.00003BONUS



Signals From the Dagger
▪ 

2017

Unload

2018

61BONUS JA.00003



How Do We Reconstruct UCN Events?
▪ 

62BONUS JA.00003



Accounting For Rate 
Dependent Effects
▪ 

63BONUS



Deadtime and Pileup 
Correction
▪ 

BONUS 64JA.00003



High and Low Threshold 
▪Two channels from the 
discriminator fed into datastream
– One has low threshold, one has 

high threshold

▪This analysis purely uses low 
threshold
– High threshold shows evidence 

of gain shifts
– Does not seem to be caused by 

rate-dependent gain shifts!

BONUS JA.00003 65



Backgrounds During 
Production
▪Various sources of backgrounds

– PMT Dark Noise or Electronic 
effects

– Cosmic rays
– Other radiation in experimental area

▪Must account for backgrounds on a 
run-by-run basis

– At end of run, open trap to guides 
and count background rate

– Dedicated background runs to 
understand position/time 
dependence

▪Coincidence significantly improves 
stability of background!
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Background

JA.00003



Dedicated Background 
Runs
▪ 

49 cm
38 cm
25 cm
 1 cm

 1 cm49 cm 25 cm38 cm
(heights not to scale)

BONUS JA.00003 67



Types of Background Events
▪ 

BONUS JA.00003 68



Backgrounds Temperature 
Dependence
▪Temperature dependence:

– Have temperature monitoring for 
last couple hundred runs

– Extracted Beam-off Rate 
Averages 

▪Temperature (cooling) not enough 
to account for height dependence
– Not enough data to accurately fit
– Point of improvement for future 

running
▪Does not have a correlation with 
coincidence counting

BONUS JA.00003 69



Filling With the 
Roundhouse
▪Can’t directly count the initial numbers of 
neutrons in the trap

– Spallation source, so UCN output can vary
– Utilize monitor detectors to see trappable 

neutrons from the source

▪Between 2017 and 2018 introduced 
roundhouse buffer volume

– Smooths the beam
– Includes monitor detectors
– New cleaner to precondition the spectrum
– Filled for longer in 2018 to reach saturation

70BONUS JA.00003



Run Selection
▪ 

71BONUS JA.00003



Fitting the Spectral Parameters
▪ 

72BONUS JA.00003



Looking for 
Overthreshold UCN
▪ 

Dagger Counting

BONUS JA.00003 73



Depolarization

A. Steyerl, et. al., Spin flip loss in 
magnetic confinement of ultracold 
neutrons for neutron lifetime 
experiments. Phys. Rev. C Nucl. 
Phys. 95, 035502 (2017).

Mapped magnetic field

Holley, A.T. 
Personal 
Communication 
10/2/2019 

 

Magnetic Field Mapper

BONUS

▪ 

JA.00003 74



Residual gas interactions
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Seestrom, S. J., et 
al., Total cross 
sections for 
ultracold neutrons 
scattered from 
gases. Phys. Rev. 
C Nucl. Phys. 95, 
015501 (2017).

Range of Pressures During Holds
Transmission Measurements 

Through a Gas-Filled Neutron Guide

BONUS

▪ 

JA.00003



Quantifying an Accidental 
New Systematic
▪ 

76JA.00003BONUS



Simulations to Tackle Systematics
▪Use neutron trajectory simulations 
on IU’s Big Red 3 supercomputer
– Symplectic integrator
– Idealized magnetic field
▪Fit Monte Carlo to 9-dip unload 
data
– Tune Monte Carlo initial neutron 

energy, initial angular distribution, 
and detector parameters

– Optimized fit works with 3-dip 
data as well

▪ 
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Callahan, N. et al. Monte 
Carlo Simulations of 
Trapped Ultracold Neutron 
Trajectories in the UCNτ 
Experiment. Physical 
Review C. 100, 015501 
(2019) 

77BONUS JA.00003



Overthreshold Simulations
▪ 
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BONUS JA.00003


