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Objective

e QCD decribes the strong interactions remarkably well, from the smallest distances probed so far to
hadronic scales where quarks and gluons confine to hadrons. Yet it faces a problem. The theory allows for
a CP-violating term Sy in the action. In Euclidean space-time it reads

S=Sacp+Si: Si=i0Q, Q=o— [daFLE, €2,

3272
where (Q is the toplogical charge, and 6 is an arbitrary phase with values —7 < 6 < 7. A nonvanishing
value of 8 would result in an electric dipole moment (EDM) d,, of the neutron. The current experimental
upper limit is |d,| < 1.8 x 10 'e fm, which suggests that 6 is anomalously small. This feature is
referred to as the strong CP problem, which is considered as one of the major unsolved problems in the
elementary particles field

e The prevailing paradigm is that QCD is in a single confinement phase for |@| < 7. The Peccei-Quinn
solution of the strong CP problem, for example, is realized by the shift symmetry e’ 9 5 046,
trading the theta term Sy for the hitherto undetected axion



e However, it is known from the case of the massive Schwinger model that a 6 term may change the phase
of the system. Callan, Dashen and Gross have claimed that a similar phenomenon will occur in QCD.
The statement is that the color fields produced by quarks and gluons will be screened by instantons for
|60] > 0. 't Hooft has argued that the relevant degrees of freedoom responsible for confinement are
color-magnetic monopoles. Confinement occurs when the monopoles condense in the vacuum, by analogy
to superconductivity. In the 6 vacuum the monopoles acquire a color-electric charge proportional to 6.
Due to the joint presence of gluons and monopoles a rich phase structure is expected to emerge

m m ldea: Isolate the relevant dynamical
variables at the hadronic scale by
— 0 gauge fixing SU(3) — U(1)xU(1)

. o ¢ . o« ¢ For |@] > 0 quarks and gluons will
be screened by forming bound states

e gluon X quark e monopole with the monopo|eS

e In this talk | will investigate the long-distance properties of the theory in the presence of the 6 term, Sy,
and show that CP is naturally conserved in the confining phase



Gradient Flow

QCD exhibits a striking change in behavior over different length scales. To reveal the macroscopic properties
of the theory, we are faced with a multi-scale problem, involving the passage from the short-distance
perturbative regime to the long-distance confining regime. Such multi-scale behavior is typically addressed by
renormalization group (RG) techniques bridging the different regimes

A promising framework is provided by the gradient flow (GF), which evolves the gauge field along the gradient
of the action. The flow of SU(3) gauge fields is defined by the diffusion equation

0.B,(t,x) = DG, (t,x), Gu =0,B,—0,B,+ B, B/ B,(t=0,z) = A,(x)

The scale is set by | u = 1/+/8t v 8t = smoothing range over which B, is averaged Liischer
Formally, GF is an infinitesimal realization of the coarse-graining step of Lischer
momentum space RG transformations (3 la Wilson, Polchinski, Wetterich) Makino, Morikawa, Suzuki

and, as such, keeps the long-distance physics unchanged Carosso, Hasenfratz, Neil



GF defines a running coupling agr Number one choice for studying physical
system over several length scales

The expectation value (E(t)) of the energy density
1 a a
E(t,x) = 1 G, (tz)G,,(tT)

has the perturbative expansion

3
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= Art? aGr (1)
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For a start we may restrict our investigations to the Yang-Mills (YM) theory. If the strong CP problem is
resolved in the YM theory, then it is expected to be resolved in QCD as well. We use the plaquette action to
generate representative ensembles of fundamental gauge fields on three different volumes
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In the YM theory quantities that can be computed precisely are limited. Two examples:

e Topological susceptibility l NIy ‘
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Both quantities, x+ and x p, are independent of the flow time ¢, as expected

1
Vo Xt = 0.162(3)

Literature:

1
Vioxi = 0.161(4)

The Polyakov loop (nonlocal operator) requires
normalization, to be interpreted as free energy of
static quarks

XP — 0.289(7)

2D Gaussian distribution:

arXiv:1506.06052 xp=4/m—1=0.273



Running Coupling and Confinement

Confinement is intimately connected with the IR behavior (# — 0) of the running coupling agr ()
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To make contact with phenomenology, it is desirable to transform the GF coupling avzp to a common scheme.
A preferred scheme in the YM theory is the V' scheme: V(q) = —4nCray (1) /q

jj\—cz/F - {_/oaGF BGF(Oé) +/

IR behavior universal

The linear growth of ay (u) with 1/u?
infrared slavery.  The static quark-antiquark potential can be
described by the exchange of a single dressed gluon

1 3
Vi(r) = —(zﬁ)g/dqe

2

where o = gA%/, giving the string tension v/o = 445(19) MeV

5V(Oé)

is commonly dubbed

. 4 av(q)
3q2—|—’l,0 7“>>1/AV

By (ay) < Ty —2ay(p)

A
av (k) 4< 1GeV ?

Av

—1.60, —M5 — 0.534
A5 GF

Vo Arrs = 0.217(7)

Literature:
Vto Aqs = 0.220(3)

arXiv:1905.05147



It is interesting to compare the nonperturbative GF beta function with the perturbative beta function known
up to twenty loops
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As was to be expected, the perturbative beta function gradually approaches the nonperturbative beta function
with increasing order



Vacuum Structure at Finite 0

With increasing flow time the initial gauge field ensemble splits into effectively disconnected topological sectors
of charge @), at ever smaller flow time as 3 is increased

Z(6) = /DAM g ST

c;% 100 = ZG’LPQ/ DAU e_S

s | Q @

$ =" P@)

10 | N
T e e e VIE(Q, 1) /87 = Sq =~ |Q], while the
a2 ensemble average vanishes like 1/t
4 2 =

Q = /d x Oyw, , Ow, = (1/87")D,G.,,G .. ~ 5,0 =0

gauge invariant



Running coupling acys

If the general expectation is correct and the color fields are screened for |@| > 0, we should, in the first
place, find that the running coupling constant is screened in the infrared

From (E(Q,t)) we obtain ay (Q, ) in the individual topological sectors |Q| from bottom to top
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represented by |Q| ~ 1/2(Q?)/x



The transformation of ay (Q, p) from the ‘Q vacua' to the 8 vacuum is achieved by the discrete Fourier
transform

v (0,1) = —— 3" "P(Q) av(Q ), Z(0) =3 e ’P(Q)
Z(0) <5 2

weighted by the charge density P(Q), i.e. the probability of finding a configuration with charge Q

A few remarks are in order

e Here the parameter 6 is the bare vacuum angle that labels the superselection sectors. It is the parameter
that appears in the (lattice) action and determines the topological properties of the vacuum

e P(Q) is determined by the real part of the action, Sqcp, which increases proportionally to |@Q] and
suppresses configurations which hold a large number of (anti-)instantons. It thus becomes increasingly
difficult to determine P(Q) precisely for large values of |Q|. This circumstance is completely independent
of whether we simulate at & = 0 or any other value |#| > 0. This is to say, the situation would not
improve if we could simulate the complex action

® As we shall see, we need to know the Fourier sum for small values of |8| only, which is rather insensitive
to fluctuations at large values of |Q|
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At a first glance: The color charge gets totally screened for @] > 0 in the infrared, while it becomes gradually

ay(8,p)/rt
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independent of 6 as we approach the perturbative regime

Analytically

av (0, p) = av(p)[l — ay(p)(D/X)6°])

ay(6,u)/T
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with D =~ 0.12 and A = 0.75, leading to the screening length of the color charge

Ae = 0.5/6 [fm]




Pictorially ['t Hooft, Witten]

dm = —

0=0 040
pm ~ pm °

The Debye screening length in a plasma is given by Ap = \/Ep/élp q?, where E'r is the Fermi energy, p

the density and g the charge. For the model of 't Hooft and Witten this leads to Ap = \/(7‘(‘ Er/pm)/0
in perfect agreement with our findings, i.e. Ao o< Ap



This implies that & — 0 () is renormalized. From ay (0, ) derive coupled RG equations, which for larger
values of t decouple and take the form

o(m/a s 00 1
(r/ V>2———|—7TD02, ~ ——0
Olnt oy Olnt 2
Solution (full) for various initial values of 6(u)
e e O(w) appears in the effective
- Lagrangian
0.50 - ]
e () — 0 as ay(0,u) — oo
<
S Confinement = CP Invariance
E 0.10— =
0.05— . e Bar any loops, properties can be
- - directly read off from fixed point
3 g values (universality class)

e CP trivially conserved at the upper
IR fixed point (7) (perturbative) end
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Polyakov loop

The Polyakov loop P describes the propagation of a single static quark travelling around the periodic lattice
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(P) = 0 in each sector. That implies center symmetry throughout. P rapidly populates the entire
theoretically allowed region for small values of |@Q|, while it stays small for larger values of | Q|



The transformation of the Polyakov loop expectation values to the € vacuum is again achieved by the discrete
Fourier transform

1 : The connected part of (|P|?)g is described by the
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The Polyakov loop gets totally screened for |#] = 0. The normalized Polyakov loop susceptibility is
independent of flow time ¢ (even for 8 # 0!)




Mass gap
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The operators P and E overlap in correlators x p and (EQ) spatially and temporally

Pictorially ['t Hooft, Witten]
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For the operators P and E' to be totally screened, the screening length must be smaller than the hadron
radius. This appears to be the case for |@] = 0.4. At this value A, ~ 1 fm

Hadron masses are obtained from the exponential decay at large Euclidean separations. Thus, there is
no hadron spectrum for |6] > 0




3(0) Chiral condensate
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Chiral symmetry breaking closely linked
confinement

with

Preliminary [with Hinnerk Stiiben]
2(Q) o< |Q] Diakonov
Schafer & Shuryak

Follana et al

1 i0Q
3(0) = %z@:e P(Q)%(Q)

Thus, predictions of nonvanishing electric dipole
moment d,, for |6] > 0 from ChPT not valid
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[Leutwyler, Gockeler et al ]



Errors

Source of errors

1.27\\\\\\\\
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0.6
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e Convergence of the (discrete) Fourier series > 5 exp{i0Q} P(Q) - - -

e Statistics

e Topological charge generally limited to |Q| < |Q|max, |Q|max <X V'V

——————
discrete fourier

fit

Z(0),ay(0),xp(0),- - are positive functions of 8

After the quantities | showed have dropped to ‘zero’
at |8 = 0, they start to oscillate around zero with
frequency v & |Q|max due to the truncated Fourier
series

Various techniques to filter unphysical high-frequency
modes are discussed in the literature. We fit the tail
of the distributions to a smooth function. Alternatively,
one can employ a low-pass filter, which practically gives
the same result



Conclusions

% The gradient flow proved a powerful tool for tracing the gauge field over successive length scales and
showed its potential for extracting low-energy quantities. A key point is that the path integral splits into
disconnected topological sectors for ¢ = 0, which is expected to occur at ever smaller flow times with

decreasing lattice spacing. Comparing results on different volumes enabled us to control the accuracy of the
calculation

% The novel result is that color charges are screened, and confinement is lost, for |#] > 0 due to
nonperturbative effects, limiting the vacuum angle to & = 0 at macroscopic distances, which rules out any
strong CP violation at the hadronic level

% Screening process is in qualitative agreement with the dual superconductor model of confinement. A full
understanding goes hand in hand with the understanding of the confinement mechanism

% The nontrivial phase structure of QCD has far-reaching consequences for anomalous chiral transformations.
In particular, the confining QCD vacuum will be unstable under the anomalous Peccei-Quinn transformation,
Upq(l) = e?95  resulting in the shift symmetry & — 0 + &, which thwarts the axion conjecture

It is surprising that the seminal work of Schwinger, Coleman, Callan, Dashen, Gross, 't Hooft and on QHE,
etc. has been completely ignored



