The Non-perturbative Quark-Gluon Interaction and its Implications

A.Kizilersu, J.Skullerud, O.Oliveira, A.Sternbeck, P. Silva

XVth Quark Confinement and the Hadron spectrum

1-6 August 2022

MASS is a MYSTERIOUS CONCEPT!

Quarka

~ 1% of proton mass

Mass = 1,78×10⁻²⁶ g

Proton

Mass = 168×10⁻²⁶ g

~ 99% of proton mass

Existence of our Universe:

Proton (uud) : massive and stable

Proton mass ~ 940 MeV (~1 GeV)

Quark Propagator (MATTER SECTOR of QCD)

O. Oliveira, A. Kizilersu, P. J. Silva, J.-I. Skullerud, A.Sternbeck, and A. G. Williams, APPB Proc.Sup. Vol9 (2016) 63 (LATTICE)

A. K. Cyrol, M. Mitter, J. M. Pawlowski, N. Strodthoff, Phys. Rev. D97 (5) (2018) 054006 (FRG)

O. Oliveira, A. Kizilersu, P. J. Silva, J.-I. Skullerud, A.Sternbeck, and A. G. Williams, APPB Proc.Sup. Vol9 (2016) 63 (LATTICE)

A. Cucchieri, A. Maas, T. Mendes, Phys.Rev. D 77 (2008) 094510

K. Cyrol, L. Fister, M. Mitter, J. M. Pawlowski, N. Strodthoff, Phys. Rev. D 94 (5) (2016) 054005(FRG)

QUARK-GLUON VERTEX

We study the quark-gluon vertex in the limit of vanishing gluon momentum using lattice QCD with two flavors for several lattice spacings, volumes and quark masses

A. Kızılersü, O. Oliveira, P. J. Silva, J.-I. Skullerud, A. Sternbeck, Phys. Rev. D 103 (11) (2021) 114515

Non-Perturbative Quark-Gluon Vertex:

$$\begin{split} \left(\Delta_{\mu}^{a}\right)_{\beta\rho}^{ij} &= t_{ij}^{a} \left(\Delta_{\mu}\right)_{\beta\rho} = \int_{q=k,p}^{q=k,p} \int_{p}^{\mu} \int_{q=k,p}^{q} \int_{p}^{q} \int_{q}^{q} \int_{q}^{q}$$

Non-Perturbative Quark-Gluon Vertex:

$$\left(\Delta_{\mu}^{a}\right)_{\beta\rho}^{ij} = t_{ij}^{a} \left(\Delta_{\mu}\right)_{\beta\rho} = \int_{q=k-p}^{\infty} \int_{p}^{\mu} \int_{q=k-p}^{\mu} \int_{p}^{\mu} \int_{q=k-p}^{\mu} \int_{p}^{\mu} \int_{q=k-p}^{\mu} \int_{q=k-p}^{\mu}$$

Normal STI

$$q_{\mu}\Lambda^{\mu}(p,q,k) = G_{h}(q^{2}) \left[\bar{H}(k,-p,-q)S^{-1}(k) - S^{-1}(p)H(-p,k,-q)\right]$$

Transverse STI

$$iq^{\mu}\Gamma_{V}^{\nu}(p_{1},p_{2}) - iq^{\nu}\Gamma_{V}^{\mu}(p_{1},p_{2}) = S_{F}^{-1}(p_{1})\sigma^{\mu\nu} + \sigma^{\mu\nu}S_{F}^{-1}(p_{2}) + 2m\Gamma_{T}^{\mu\nu}(p_{1},p_{2}) + (p_{1\lambda} + p_{2\lambda})\epsilon^{\lambda\mu\nu\rho}\Gamma_{A\rho}(p_{1},p_{2}) - \int \frac{d^{4}k}{(2\pi)^{4}}2k_{\lambda}\epsilon^{\lambda\mu\nu\rho}\Gamma_{A\rho}(p_{1},p_{2};k)$$

Quark-Gluon Vertex

Slavnov-Taylor Identity:

- Free of kinematic singularity
- Multiplicatively Renormalisable
- Reduce tree level form in the free field limit
- Make sure local gauge covariance of the SDE's (LKT)
- Must have the same transformation properties as the bare vertex under charge conjugation and Lorenz transformation (P,T)
- Must satisfy STI's
- Must satisfy TSTI's

Non-Perturbative Vertex (from LATTICE)

Quark-gluon vertex on the lattice :

$$oldsymbol{\Lambda}^{\mathbf{a},\mathbf{lat.}}_{\mu}(\mathbf{p},\mathbf{q}) = \mathbf{S}_{\mathbf{R}}(\mathbf{p})^{-1} \mathbf{V}^{\mathbf{a}}_{
u}(\mathbf{p},\mathbf{q}) \mathbf{S}_{\mathbf{R}}(\mathbf{p}+\mathbf{q})^{-1} \mathbf{D}(\mathbf{q})^{-1}_{
u\mu}$$

Unamputated vertex

Gauge dependent quantity

Transverse Projection

(Sheikholeslami-Wohlert) clover fermion action
 O(α) improved rotated propagator

 $V^{a}_{\mu}(p,q) = << S_{R}(p;U)A^{a}_{\mu}(q) >>$

Wilson gauge action

 $D_{\mu\nu}^{-1}$ does not exist, so we will be looking at transverse projection

$$\tilde{\Lambda}^T_{\mu}(p,k,q) = P^T_{\mu\nu}(q)\Lambda_{\nu} = \left(\delta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}\right)\Lambda_{\nu}(p,k,q)$$

Some of the Form Factors in Special Kinematics in Landau gauge are calculated in quenched QCD

J.Skullerud, A.Kizilersu, JHEP09(2002)013 J. Skullerud, P. Bowman, A.Kizilersu, D.Leinweber, A.Williams, JHEP04(2003)047

Lattice Parameters of Gauge Ensembles in this Study (N_f=2)

Lattice action

- Wilson gauge action
- (Sheikholeslami-Wohlert) clover fermion action
- $\mathcal{O}(\alpha)$ improved rotated propagator
- Landau gauge $(\xi = 0)$

Name	β	κ	$a [{ m fm}]$	V	$m_{\pi} \; [{ m MeV}]$	$m_q [{ m MeV}]$	$N_{ m cfg}$	$N_{ m src}$
L08	5.20	0.13596	0.081	$32^3 \times 64$	280	6.2	900	4
H07	5.29	0.13620	0.071	$32^3 \times 64$	422	17.0	900	4
L07	5.29	0.13632	0.071	$32^3 \times 64$	295	8.0	908	4
L07-64	5.29	0.13632	0.071	$64^3 \times 64$	290	8.0	750	2
H06	5.40	0.13647	0.060	$32^3 \times 64$	426	18.4	900	2
Q07	6.16	0.13400	0.071	$32^3 \times 64$	1000	130	998	4
			-					

Acknowledgements

N_f = 2 gauge ensambles are provided by RQCD collaboration (Regensburg), S. Bali et all, Phys Rev D91, 054501 (2014)

A. Kizilersu, O. Oliveira, P.J. Silva, J. Skullerud and A. Sternbeck, Phys.Rev.D103 (2021)114515

Form Factor Extraction

Soft Gluon Kinematics :
$$(q_{\mu} = 0, k_{\mu} = p_{\mu})$$

$$(\overline{\Lambda}^a_{\mu}) = -ig_0 \left(\lambda_1 \left[\gamma_{\mu}\right] + \lambda_2 \left[-4 \not p p_{\mu}\right] + \lambda_3 \left[-2ip_{\mu}\right]\right)$$

Covariant Non-Transverse Form factors:

•
$$\lambda_1 = \frac{1}{(-ig_0)} \left\{ \frac{1}{3} \left[\operatorname{Tr}_4(\gamma_\mu \overline{\Lambda}_\mu) - \frac{p_\mu p_\nu}{p^2} \operatorname{Tr}_4(\gamma_\nu \overline{\Lambda}_\mu) \right] \right\}$$

• $\lambda_2 = \frac{1}{(-ig_0)} \left\{ \frac{1}{3p^2} \left[\operatorname{Tr}_4(\gamma_\mu \overline{\Lambda}_\mu) - 4 \frac{p_\mu p_\nu}{p^2} \operatorname{Tr}_4(\gamma_\nu \overline{\Lambda}_\mu) \right] \right\}$
• $\lambda_3 = \frac{1}{(-ig_0)} \left\{ \frac{i}{2} \frac{p_\mu}{p^2} \operatorname{Tr}_4(I \overline{\Lambda}_\mu) \right\}$

Form Factor Extraction

Soft Gluon Kinematics :
$$~(q_{\mu}=0,k_{\mu}=p_{\mu})$$

$$(\overline{\Lambda}^{a}_{\mu}) = -ig_0 \left(\lambda_1 \left[\gamma_{\mu}\right] + \lambda_2 \left[-4 \not p p_{\mu}\right] + \lambda_3 \left[-2ip_{\mu}\right]\right)$$

Covariant Form factors in Continuum:

Non-covariant Form factors in Continuum :

$$\lambda_{1} = \frac{1}{(-ig_{0})} \left\{ \frac{1}{3} \left[\operatorname{Tr}_{4}(\gamma_{\mu}\overline{\Lambda}_{\mu}) - \frac{p_{\mu}p_{\nu}}{p^{2}} \operatorname{Tr}_{4}(\gamma_{\nu}\overline{\Lambda}_{\mu}) \right] \right\}$$

$$\lambda_{2} = \frac{1}{(-ig_{0})} \left\{ \frac{1}{3p^{2}} \left[\operatorname{Tr}_{4}(\gamma_{\mu}\overline{\Lambda}_{\mu}) - 4\frac{p_{\mu}p_{\nu}}{p^{2}} \operatorname{Tr}_{4}(\gamma_{\nu}\overline{\Lambda}_{\mu}) \right] \right\}$$

$$\lambda_{3} = \frac{1}{(-ig_{0})} \left\{ \frac{i}{2} \frac{p_{\mu}}{p^{2}} \operatorname{Tr}_{4}(I\overline{\Lambda}_{\mu}) \right\}$$

$$\lambda_{3} = \frac{1}{(-ig_{0})} \left\{ \frac{i}{2} \frac{p_{\mu}}{p^{2}} \operatorname{Tr}_{4}(I\overline{\Lambda}_{\mu}) \right\}$$

 $\lambda_1^R(\mu^2, 0, \mu^2) = 1$ $\Gamma_{\mu}^{\text{lat}}(p, k, q) = Z_1 \Gamma_{\mu}^R(p, k, q)$

MOM Renormalisation:

Lattice form factors and Tree-Level Corrections

Lattice tree-level corrected form factors

$$\lambda_{1}^{(0)} = F(p) \left(1 + c_{q}^{2} a^{2} K^{2}(p) \right)^{2}$$

$$\lambda_{2}^{(0)} + \overline{\lambda}_{2(\mu)}^{(0)} = a^{2} F(p) \left[-c_{q} \left(1 - c_{q}^{2} a^{2} K^{2}(p) \right) + 2c_{q}^{2} a C_{\mu}(p) \right]$$

$$\lambda_{3}^{(0)} + \overline{\lambda}_{3,(\mu)}^{(0)} = \frac{a}{2} F(p) \left[\left(1 - c_{q}^{2} a^{2} K^{2}(p) \right)^{2} - 4c_{q}^{2} a^{2} K^{2}(p) - 4c_{q} \left(1 - c_{q}^{2} a^{2} K^{2}(p) \right) C_{\mu}(p) \right]$$

Tree Level Corrected vs Uncorrected Form Factors

Quenched vs Dynamical

$$N_{\rm f} = 0 \ {\rm vs} \ N_{\rm f} = 2$$
 (a=0.07 fm

Quark Mass Dependence

$$S_F(p) = \frac{F(p^2)}{\not p - M(p^2)} = \frac{1}{A(p^2) \not p - B(p^2)}$$

discret./Volume Dependence

(a=0.07 fm)

Lattice Spacing

Dimensionless Form Factors

 $K_{\mu}(p) = \frac{1}{a}\sin(p_{\mu}a)$

眒

0

-0.5

-1

m

m =295MeV,

a = 0.07

2

p [GeV]

3

Covariant Form Factor

CONCLUSION

First ever study of Quark-Gluon Vertex in Soft Gluon Kinematics for Landau Gauge with N_f=2 dynamical fermions

Soft Gluon Kinematics : $(q_{\mu}=0,k_{\mu}=p_{\mu})$

$$\lambda_1, \lambda_2, \lambda_3, \lambda_4 = \mathbf{0}$$

 λ_I is significantly enhanced in the IR that is stronger than in the quenched approximation and increases as the chiral limit is approached. No significant finite-volume effects

- λ_2 exhibits an infrared strength smaller than $\lambda_{1,}$ the enhancement increases as the continuum, infinite-volume, and chiral limits are approached
- λ_3 shows considerably infrared strength larger than in the quenched approximation, increases as the continuum limit is approach. No significant volume effect

Orthogonal Kinematics : $q \cdot P = 0$ $k^2 = p^2$ $\Lambda_1, \Lambda_2, \Lambda_3, \Lambda_4, \tau_6, \tau_5, \tau_7$