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Chiral symmetry breaking and heavy ion collisions Pisarski, Wilczek

µ

T

Broken chiral symmetry

QGP with chiral symmetry

quarks
and gluons

hadrons

For two massless quarks the
chiral symmetry group is

This is broken, and the transition
is 2nd order. 

The mass smooths the transition
to a crossover, like a magnetic

field in the Ising model

B

Chiral symmetry plays no role in the hydro model . . .
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Our cold world:   T< Tcritical

The hot world:   T> Tcritical

This talk will describe pion propagation during the O(4) phase transition
which is a model for the real world
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Real world lattice QCD and the O(4) critical point: Hot QCD, PRL 2019

Fluctuations of order parameter, σ ∝ ūu+ d̄d, vs temperature and mq
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Figure 3. Quark mass dependence of the chiral susceptibility on lattices with temporal extent N⌧ = 8 for several
values of the light quark masses. The spatial lattices extent N� is increased as the light quark mass decreases:
N� = 32 (H�1 = 20, 27), 40 (H�1 = 40), 56 (H�1 = 80, 160). Black symbols mark the points
corresponding to 60% of the peak height. Figure is taken from13.
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Figure 4. Volume dependence of the chiral susceptibility on lattices with temporal extent N⌧ = 8 for three
different spatial lattice sizes at H = 1/80. Black symbols mark the points corresponding to 60% of the peak
height. Figure is taken from13.

2.2 Results

We show results for �M in Fig. 3, on lattices with temporal extent N⌧ = 8 for 5 different
values of the quark mass ratio, H = ml/ms, and the largest lattice available for each H .
The increase of the peak height, �max

M , with decreasing H is consistent with the expected
behavior, �max

M ⇠ H1/��1 + const., with � ' 4.8 within rather large uncertainty which
restricts a precise determination of �.

In Fig. 4 we show the volume dependence of �M for H = 1/80 on lattices with tem-

5

O(4) Scaling predictions

The QCD lattice knows about the O(4) critical point!



Static Universality and the Chiral Phase Transition

• The O(4) order parameter fluctuates in amplitude and phase:

φa = (φ0, φ1, φ2, φ3) = (σ, ~π)

The quark condensate scales as

q̄RqL ∼ σei~τ ·~ϕ ' σ + i~τ · ~π

• The Landau Ginzburg function for the O(4) order parameter is:
φ2 ≡ φaφa

H =

∫
d3x

1

2
∇φa · ∇φa +

1

2
m2

0(T )φ2 +
λ

4
φ4 − H︸︷︷︸

∝ mq

σ

• The model has a critical mass, m0 −mc ∝ (T − Tc)

The critical model makes a definite prediction for the susceptibility:
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Scaling predictions from the O(4) model

Simulations at different magnetic field are related to each other

χM = h1/δ−1fχ(z) z = z0 trh
−1/βδ

Here h ∝ H and tr ∝ (T − TC) are the reduced field and temperature
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Scaling predictions and QCD Hot QCD, 2019

χM =
〈
σ2
〉
− 〈σ〉2
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Figure 3. Quark mass dependence of the chiral susceptibility on lattices with temporal extent N⌧ = 8 for several
values of the light quark masses. The spatial lattices extent N� is increased as the light quark mass decreases:
N� = 32 (H�1 = 20, 27), 40 (H�1 = 40), 56 (H�1 = 80, 160). Black symbols mark the points
corresponding to 60% of the peak height. Figure is taken from13.
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2.2 Results

We show results for �M in Fig. 3, on lattices with temporal extent N⌧ = 8 for 5 different
values of the quark mass ratio, H = ml/ms, and the largest lattice available for each H .
The increase of the peak height, �max

M , with decreasing H is consistent with the expected
behavior, �max

M ⇠ H1/��1 + const., with � ' 4.8 within rather large uncertainty which
restricts a precise determination of �.

In Fig. 4 we show the volume dependence of �M for H = 1/80 on lattices with tem-

5

Scaling predictions reasonably describe how the peak rises and shifts.

χM ∝ m1/δ−1
q fχ(z) z = z0

(
T − TC
TC

)
m−1/βδq
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From Thermodynamics to Hydrodynamics
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Hydrodynamics of the O(4) transition:
Rajagopal and Wilczek ’92, Son ’99, Son and Stephanov ’01, and finally us, arxiv:2101.10847.

1. The order parameter
φa = (σ, ~π)

2. The approximately conserved charges quantities:

~nV = ψ̄γ0~τψ︸ ︷︷ ︸
isovect chrg

and ~nA = ψ̄γ0γ5~τψ︸ ︷︷ ︸
isoaxial-vect chrg

which are combined into an anti-symmetric O(4) tensor nab

nab = (~nA, ~nV )

The charge nab generates O(4) rotations, φ→ φc + i
~θab[nab, φc],

implying a Poisson bracket between the hydrodynamic fields:

{nab(x), φc(y)} = εabcd φd(x) δ(x− y)
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The Landau-Ginzburg Hamiltonian for the O(4) transition:

The Hamiltonian is tuned to the crit. point with m2
0(T ) < 0 and H ∝ mq:

H =

∫
d3x

1

2
∇φa · ∇φa +

1

2
m2

0(T )φ2 +
λ

4
φ4 −Hσ +

n2ab
4χ0

and gives the equilibrium distribution with the correct critical EOS:

Z =

∫
DφDne−H[φ,n]/Tc

The hydro equations of motion take the form

∂φ

∂t
+ {φ,H} =0 + visc. corrections + noise

∂nab
∂t

+ {nab,H} =0 + visc. corrections + noise
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The Landau-Ginzburg Hamiltonian for the O(4) transition:

The Hamiltonian is tuned to the crit. point with m2
0(T ) < 0 and H ∝ mq:

H =

∫
d3x

1

2
∇φa · ∇φa +

1

2
m2

0(T )φ2 +
λ

4
φ4 −Hσ +

n2ab
4χ0

and gives the equilibrium distribution with the correct critical EOS:

Z =

∫
DφDne−H[φ,n]/Tc

The hydro equations of motion take the form

∂φ

∂t
+ {φ,H} =− Γ

δH
δφa

+ ξa

∂nab
∂t

+ {nab,H} = σ0∇2 δH
δnab︸ ︷︷ ︸

dissipation

+∇ · ξab
︸ ︷︷ ︸
noise
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The equations and the simulations: see also Schlichting, Smekal

We have a charge diffusion equation coupled to order parameter:

∂tnab + ∇ · (∇φ[aφb])︸ ︷︷ ︸
poisson bracket

+H[aφb] = D0∇2nab︸ ︷︷ ︸
diffusion

+∇ · ξab︸ ︷︷ ︸
noise

and a rotation of the order parameter induced by the charge:

∂tφa +
nab
χ0

φb
︸ ︷︷ ︸

poisson bracket

= Γ0
δH

δφa︸ ︷︷ ︸
dissipation

+ ξa
︸︷︷︸

noise

Numerical scheme based operator splitting:

1. Evolve the Hamiltonian evolution with a position Verlet type stepper

2. Treat the dissipative Langevin steps as Metropolis-Hastings updates

Teaney/Soloviev 12 / 23



Scan the phase transition: Engels, Fromme, Seniuch, Karsch; Hasenbuch

After measuring order parameter, susceptibility, etc

σ̄ = h1/δfG(z) z = trh
−1/βδ

we have fixed the scaling parameters, h = H/H0, and tr = (m2
0 −m2

c)/m
2
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Features of the phase transition in the axial charge correlations:

GAA(ω) =

∫
dtd3x eiωt 〈~nA(t,x) · ~nA(0,0)〉
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Can see the transition from diffusion of quarks to propagation of pions!
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The Pion EFT for T � Tc Son and Stephanov ’01+us

• Below TC the condensate is frozen up to phase fluctuations

• The ideal equations of motion the phase is (with µA = nA/χ0):

∂tϕ = µA

+O(Γ∇2ϕ)

Josephson Constraint

while the axial charge EOM is:

∂tnA +∇ · JA = f2m2 ϕ

+O(D∇2nA)

Axial Current

where the current is the gradient of the phase: JA = f2∇ϕ
• The pion EFT is written with f2 ' σ̄2 and f2m2 = Hσ̄

We can use the EFT to find the dispersion curve of soft pions,
including dissipative corrections
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The Pion EFT for T � Tc Son and Stephanov ’01+us

• Below TC the condensate is frozen up to phase fluctuations

• The ideal equations of motion the phase is (with µA = nA/χ0):

∂tϕ = µA +O(Γ∇2ϕ) Josephson Constraint

while the axial charge EOM is:

∂tnA +∇ · JA = f2m2 ϕ+O(D∇2nA) Axial Current

where the current is the gradient of the phase: JA = f2∇ϕ
• The pion EFT is written with f2 ' σ̄2 and f2m2 = Hσ̄

We can use the EFT to find the dispersion curve of soft pions,
including dissipative corrections
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Quantitative analysis of a pion EFT well below Tc, z = −2.2:
The predicted pole position m2

p of pion waves is given by static quantities:

m2
p = v2m2 =

Hσ̄

χ0

This is the finite temperature Gell-Mann Oakes Rener relation:
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FIG. 7. Statistical correlators for the ⇡ and axial channels together with the result of a global fit

to the functional form from the chiral hydrodynamic theory (see text). The fitted parameters are

mp = (1.4387 ± 0.0005 (stat.)) · 10�2 and �p = (5.088 ± 0.005 (stat.)) · 10�3, with a �2/dof of 1.93.

Here m2
p is the pole mass of the pion excitation, m is the transverse static screening mass,

� is a dissipative coe�cient correcting the Josephson constraint, and finally �0 and �? are
the appropriate static susceptibilities, which are required to normalize these expressions

Z
d!

2⇡
G⇡⇡(!) = �? , (39)

Z
d!

2⇡
GAA(!) = �0 . (40)

The fact that the pions are pseudo-Goldstone bosons, and correspondingly that the axial
current is partially conserved (PCAC), leads to the well-known and remarkable property that
the dynamical pole mass mp can purely be computed from the static properties discussed
in Sect. III B. In particular, at low-enough temperatures, we have a finite temperature Gell-
Mann-Oakes-Renner (GOR) relation [29, 30, 39]

m2
p = v2m2 =

H�̄

�0

, (41)

where v2 ⌘ f 2/�0 is the pion velocity.
Already in Fig. 5 we saw the appearance of pion excitations. We will now try to assess

the validity of the pion EFT. To do so, we attempt to fit expressions (37)-(38) from our
statistical correlators. To perform these fits, we first fix the normalizations by extracting
from our data the susceptibilities, �0 and �?. We then use a two parameter model, involving
mp and �p = �m2, and simultaneously fit the statistical correlators in the ⇡ and axial
channels.

Results of these fits are shown in Fig. 7, yielding parameters

mp = (1.4387 ± 0.0005 (stat.)) · 10�2 , (42)

�p = (5.088 ± 0.005 (stat.)) · 10�3 , (43)

�2/dof = 1.93 . (44)

16

These are static inputs to fit:
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Scaling of simulations at Tc:

At T = Tc, we varied the magnetic field, finding the response functions:
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FIG. 8. Left: Time dependent axial charge correlation functions for di↵erent magnetic fields on

the critical line, z = 0. Right: Corresponding statistical correlator in frequency space.
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H1/H2 (see text). On the critical line, we expect this ratio to be described by a universal critical

exponent tmin(H2)/tmin(H1) = (H1/H2)
⇣⌫c . Our best fit gives ⇣ = 1.47 ± 0.01. Right: Time

dependent axial correlation functions as a function of an appropriately rescaled time variable.

We show this ratio as a function of H1/H2 in the left panel of Fig. 9. The data are well
described by the power law form, and we obtain a nominal value for the dynamical exponent
of

⇣fit = 1.47 ± 0.01 , (51)

taking ⌫c = 0.4024 from [6].

With an estimate of the critical exponent in hand, we can verify the ansatz (49). Indeed
by appropriately rescaling times and frequencies, we expect to see our correlators GAA(t, H)

18

See a scaling behavior of the real time correlations, with quark mass,
which tunes the correlation length
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Dynamical critical exponent of the O(4) transition: Rajagopal, Wilczek

The relaxation time and correlations scale with the correlation length ξ:

ωGAA(ω, ξ) = f(ω τR)︸ ︷︷ ︸
universal fcn

with τR ∝ ξζ︸ ︷︷ ︸
relaxation time

The correlation length scales as ξ ∝ H−νc and the time as τR ∝ H−ζνc :
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Summary and Outlook:

1. We are simulating the real-time dynamics of the chiral critical point

I The numerical method may be useful for stochastic hydro generally

2. We reproduced the expected dynamical scaling laws:

τR ∝ ξζ ζ =
d

2
' 1.47± 0.01

3. The pion waves are well calibrated.

4. The next step is to study the expanding case:

I This will predict soft pions and their correlations with expansion for
heavy ion collisions

The hadronization of the pion is the (only) hadronization process that can
be studied rigorously, and only with hydrodynamics!
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Backup



Comparison of π and σ

Gσσ(ω) =

∫
dtd3x eiωt 〈σ(t,x) · σ(0,0)〉

Gππ(ω) =

∫
dtd3x eiωt 〈~π(t,x) · ~π(0,0)〉
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FIG. 6. Left: The Fourier transform of the ⇡⇡ correlator with z spanning the phase transition.

Right: The corresponding �� correlators. Note the di↵erent scales used in the two panels. In

particular, the gray curves in the left and right panels are almost identical, as shown in Fig. 4.

peak is already quite deformed, which reflects the nascent formation of the two quasiparticle
peaks.

In the left and right panels of Fig. 6, we show the corresponding statistical correlators for
the ⇡ and � fields as a functions of frequency, with z spanning the phase transition. In the
deeply unbroken phase the two channels are mostly indistinguishable (the grey bands), as
pointed out before. Lowering the temperature to the pseudocritical point, the pseudoscalar
channel acquires a double peak structure, while the scalar channel remains purely dissipative.
Going further down in temperature, the quasi-particle peaks in the pseudoscalar channel
separate. Interestingly at zpc, the pion correlator already has a quasiparticle peak, while
the axial charge correlator is still dissipative (Fig. 5); only past the pseudocritical point do
their correlation functions become closely related.

C. Broken phase: pion EFT

Deep in the broken phase, the fluctuations of the order parameter are dominated by
the phase fluctuations ⇡s(t, x) ' �̄'s(t, x), which are tightly correlated to the axial charge
fluctuations through the Josephson constraint, @t~' ' ~µA. The dissipative hydrodynamic
theory for the phase fluctuations has been worked out in [16, 17, 29], and provides a real
time analog of the static Gaussian e↵ective theory described in Sect. III B.

The linear response of hydrodynamic theory has been analyzed in [18, 29], and the hy-
drodynamic prediction for the dynamical correlators in the k = 0 case is

G⇡⇡(!) =
2�?�m2!2

(�!2 + m2
p)

2 + !2(�m2)2
, (37)

GAA(!) =
2�0�m2m2

p

(�!2 + m2
p)

2 + !2(�m2)2
. (38)

15

The grey curves are essentially the same in both figures
but with different scales.

Teaney/Soloviev 22 / 23



Dynamical scaling of σ correlation functions:

Gσσ(ω) =

∫
dt d3x eiωt 〈σ(t,x) · σ(0,0)〉
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FIG. 11. Left: Statistical correlator in the �� channel, on the critical line. Right: Corresponding

spectral function as a function of rescaled frequencies. The estimated critical exponent used for

the rescaling is determined from the axial channel. The dynamical scaling hypothesis is satisfied

and we observe a collapse of the di↵erent curves.

a scan in temperature across the phase transition. We qualitatively confirmed that the
dynamics takes place as expected, by studying the real-time correlation functions in the ��,
⇡⇡ and axial-axial channels. At high temperature, the � and ⇡ are degenerate and the axial
charge is almost conserved. In the broken phase, the � remains purely dissipative, while
the ⇡ propagates and carries axial charge. In particular, we were able to observe that the
coupling of the ⇡ to the axial charge precisely happens in the vicinity of the pseudocritical
point, zpc, defined as the line in the phase diagram where the static susceptibility peaks.
This observation is yet another link between the static and dynamical properties of this
critical model.

We also performed a quantitative study of the pion properties in the broken phase. We
were able to fit the dynamical correlator to a particle resonance ansatz predicted by the chiral
hydrodynamic e↵ective theory, and extract the pole mass and decay width. Furthermore, we
verified that the Gell-Mann-Oakes-Renner relation, which relates the dynamical pole mass
of the pions to their static screening mass, holds at the sub-percent level. Last but not least,
we performed a set of simulations along the critical line and extracted the dynamical critical
exponent ⇣ = 1.47 ± 0.01 (stat), very close to the critical scaling prediction ⇣ = 1.5 [2].

The numerical determination of ⇣ can be considered as a first step towards a complete
quantitative characterization of the dynamics of the O(4) antiferromagnet. Such a char-
acterization would include additional studies at finite spatial momentum as in [27], and a
more complete investigation of the dynamics in the chiral limit at finite volume with an
appropriate real-time EFT. (The corresponding finite volume static EFT was written down
long ago [37], and was helpful in the thermodynamic analysis in Sect. B 3). In order to
use the model to analyze heavy-ion data as discussed in [17, 18], it will be important to
analyze the critical O(4) dynamics for an expanding fluid, which introduces a rich hierarchy
of scales. Finally, it will be interesting to apply the algorithm presented in App. A to other
stochastic and critical systems.

20
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Preliminaries: Statics

Ma(t) ≡
1

V

∑

x

φa(t,x) ≡ Order parameter

with time average:

σ̄ = 〈M0(t)〉 and Σ = lim
H→0

lim
V→∞

σ̄
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FIG. 1. Left: � on the critical line for L = 32 and L = 64 together with a finite volume fit to

the data, which determines the non-universal parameters H0, L0 and CH . The fit form is taken

from Engels and Karsch [6] (see text surrounding eq. (B6)). Also shown is the results of the fit

at L = 1. Right: Extracted infinite volume expectation value, ⌃ ⌘ limH!0+ limL!1 �, as a

function tr ⌘ (m2
0 � m2

c)/|m2
c |. The fits and extraction procedure are discussed in the text. Also

shown is the fit result without the subleading correction.

Extracting the magnetization ⌃ is di�cult as, in any finite volume,

lim
H!0

�̄|L fixed = 0 . (28)

This is because when H⌃V ⇠ 1, the orientation of magnetization vector Ma begins to
wander on the group manifold, averaging to zero in the limit of zero external magnetic field.
One way to extract ⌃ is to look at the fluctuations of Ma, evaluating hM2i = hMaMai,
which is approximately ⌃2 at large volume. The leading deviation of hM2i and ⌃2 at finite
volume comes from the fluctuations of long wavelength Goldstone modes, and can be neatly
analyzed with a Euclidean pion EFT [37]. We detail these corrections in App. B 3, which
were essential to a reliable extraction of ⌃(T ).

Our results for ⌃(T ) are shown in the right panel of Fig. 1, and are fit with the functional
form

⌃ = b1(�tr)
� (1 + (�tr)

!⌫CT ) . (29)

with critical exponents � and � from [6] and ! from [36]. Here we are using

tr ⌘
m2

0 � m2
c

|mc|2
, (30)

instead of t̄r, and we defined b1 ⌘ (|m2
c |/m2)�. The second term in (29) captures the first

subleading correction to scaling.
Our fit to ⌃(T ) is shown in the right panel of Fig. 1 and yields b1 = 0.544(4) and

CT = 0.20(2) with a �2/dof = 1.4. We have excluded the largest value of (�tr) from the fit.
For comparison, we also show the fit results for the first term b1(�tr)

�. Clearly, for precision
work the subleading corrections are important in the temperature range we are considering.
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