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Introduction
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Transverse momentum broadening (TMB) in QCD

@ Physical system: a highly energetic parton propagating through a dense QCD medium.

@ We compute the transverse momentum distribution P(k, ) of the outgoing parton.

E>>k‘J_ E ki

Study the TMB distribution P(k_) including leading radiative corrections.
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Introduction
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Why is TMB interesting?

Jet quenching

@ "Hot QCD”: Dijet azimuthal angular distributions in heavy-ion collisions: access to the
TMB and the medium properties.

@ Ex: studies by &

Dijet Angular Correlation at RHIC

O STAH gp
O STAR A4 0-10%

6 — GL =0GeV?
--- gL = 8GeV?
---- GL = 20GeV?

24 2.6 28 a0

@ See also recent measurements of hadron-jet acoplanarity by ALICE and STAR in Jaime

Norman's talk.
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Introduction
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Why is TMB interesting?

Initial condition to the BK equation in small-x physics

@ "Cold QCD": fast probe of gluon distribution in large nuclei L oc A3 >> 1 at small-x.

@ Beyond LO, the non-local small-x evolution couples fluctuations with t; > A'/3 and
tr K AL/3,

@ Understanding TMB in large nuclei including effects of gluon fluctuations inside the target
can provide improved initial conditions compared to the McLerran-Venugopalan model.
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Introduction
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TMB at "tree level”

@ Forward scattering amplitude of an effective dipole with size x|,

S(XL):NL<TIVT(XL)V(OJ_)>, with  V(x,) = Pe# /o &A (K x0)

ol
L . |
L I3

@ Assuming independent multiple interactions,

1Cr,
S(x1) =exp (—4NRq(1/xi)Lxﬁ_>

See Andrey Sadofyev’s talk

beyond the homogeneous

"brick” model.

= LO g given by 6(0)(1/xi) =goln ﬁ p~ mp and §o = asN.m3 T 020



Introduction
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TMB at "tree level” and saturation scale Qs(L)

= Fourier transform of the dipole S-matrix

P(O)(kj_) = /dlee_’.klxi- e—%ﬁ(l/xi)in

tree level

@ Qs emergent momentum scale

@ Transition between the unitarity bound S ~ 1
and the dilute regime S <« 1.

— e KH/Q3(L)
-3L = e T/ ¥s
~< 10 Go = 05GeV?/fm, L = 6 fm

@ At tree-level, o L
2 ~ A 105 L H k‘l‘
Qs (L) ~ GoL 101 100 107
kr [GeV]

102 10°

See also talk by Jodo Barata.
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TMB in DLA
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TMB at one loop in a dense QCD medium

@ Computation at one-loop in as < 1, but to all-orders in asn.

5‘? T ] 5«? T

@ Typical order of magnitude of the NLO correction to §:

1/x 2
(L 1/XJ_ ash /dT/ Ldk % o

QZ(7) J_

@ Double log enhancement: Q?(L) = GoL (1 + % In?(L/70) + ...) at NLO.

@ NB: we ignore classical O(g) corrections from soft modes in the plasma.
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TMB in DLA
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Resummation of the leading radiative corrections

@ Resummation to all orders via the evolution equation

04(r, k%) /ki dk?_ o
AASA RS A LAk k
or @) kf « ( J_) Q(T J_)

with Q2(7) = §(r, Q2(7))r.

@ Initial "tree-level” condition at some 7 = 7y (can include non-perturbative input and classical
O(g) corrections)

@ Exponentiation of the double logarithmic corrections.

’P(kj_):/d2xj_ e kL X exp _Le §(L,1/x7) Lx%

Cr
4N,
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Extended geometric scaling and Levy flights
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Asymptotic limit of TMB at fixed coupling

o Large system size limit of (L, k7 )

(L)L kb) if kK3 < Q2(L)
QR(L) Lo eﬁln(QZ(L)> [1"‘\/0‘»5'“(02@ )] else

with

— geometric scaling for k% < Q*/u>

@ Similar to geometric scaling for gluon distribution at small x: In(1/x) <> In(L/70).
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Extended geometric scaling and Levy flights
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Lévy flights

@ At large time L > 79, near the peak

S(xL,L) ~exp ( (|xJ_|QS(L))2—4\/5Ts>

_1
4

@ — the TMB distribution satisfies a fractional Fokker-Planck equation

vy=2—-4Vas

OP(L ki) _ OP(L ky)
oL~ "ok

Brownian motion Levy flight

@ Equation for the prob. density of a Lévy walker, e.g.
o v=—puv+n(t)

e 7)7(t) Lévy stable noise (y = 2 is the standard white Gaussian noise).
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Extended geometric scaling and Levy flights
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Superdiffusion in momentum space

° QA1) =doL (L
@ The median of the distribution scales like
M~ [V/2HVE

@ = super-diffusive behaviour.

NLO corrections yield super-diffusion
in momentum space.

a1
(=]

N
(=}
T

Qa1
T

median k1 [GeV]
IS

T T
[ — treelevel
— resummed - numeric
== resummed - analytic

- s = 02, 4o = 0.1 GeV3, 1y = 0.34 fm
2 5 10 20 50 100
L [fm]
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Extended geometric scaling and Levy flights
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Heavy-tailed distribution

0 §r~ eVENKL/Q) 5t large k7.

@ Fourier transform of the "stretched”
exponential exp(—[...]x7 ) with
N2 42 /Es > 2

@ Heavy tailed distribution

1

T

101

100_

xP(x)

10—2_

1073_

Broadening distribution - scaling property

10—1_

\.

— scaling limit
--- Levy distrib. 28

—- heavy-tail

101 100 10! 102
x=kr/Qs
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Sub-asymptotic behaviour: traveling waves
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Beyond the asymptotic limit

@ We have determined the limit L — oo of the TMB distribution.

@ What about the sub-asymptotic corrections?

@ Are they universal = independent of the initial conditions?

@ Can they be used down to realistic values of L?
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Sub-asymptotic behaviour: traveling waves
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Wave front propagation into unstable state

@ Non-linear evolution equation in the same
universality class as FKPP equation

(reaction-diffusion processes): 1.50
12 front interior
O = 2o+ ¢ — ¢ 25 o~ polY) ~ Y
1.00 1

@ Traveling wave interpretation (similar to the
BK case)

leading edge
p—ps(Y) ~Y*

1-5(Y,p)
o
o

0.25 1
@ Location of the wave front <

ps = In(Q2/u?), time & Y = In(L/70). 0.00 1

@ Universality of the wave-front velocity ps:

dIn(QZ(L)) g 0

dinl Y T yan 18/20



Sub-asymptotic behaviour: traveling waves
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Leading edge expansion

Diffusive deviation from the asymptotic limit, with we consider.

°
4(Y = In(L/70), p = In(K% /42)) = Goer M=V e[ oG (%) +.]
ps(y) =c+ 5/')5(\/)
@ Diffusion power characteristics of the universality class of the evolution equation.

@ Homogeneity conditions fix the power «.

@ « = 1/2 for fixed coupling, « = 1/6 for running coupling (cf last slide).
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Sub-asymptotic behaviour: traveling waves
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Results for fixed coupling

@ For fixed coupling, we find the pre-asymptotic behaviour

LKL few (- i) [Hﬁx 111) (1429) 4o (&)] x>0

with

3f‘1/ 1

i% +0(Y™h

IN(Q2(L)/1?) = (1+ 2V/@) Y2 (1 + V) In(¥) +

@ x=In(k%/Q(L)), Y = In(L/70).
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Sub-asymptotic behaviour: traveling waves
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Some plots
3.0 1021
1]
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by
& 10° 5
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@ Sub-asymptotic corrections enable one to have a good agreement with the numeric.

@ Analytic results can be systematically improved.
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Sub-asymptotic behaviour: traveling waves
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Beyond the double logarithmic approximation

@ Our study relies on two pillars:

o The evolution of Qs is dominated by the double log regime of QCD since ps ~ Y
= one can use BFKL or DGLAP with a non-linear saturation boundary to get the
universal behaviour of Q.

o Universal terms of the asymptotic series of In(Q2(L)/u?) at large L are mainly
controlled by the linear behaviour of the evolution equation.

@ Using NLO, N2LO BFKL equation one can systematically compute the as expansion of c,
01, 0.
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Sub-asymptotic behaviour: traveling waves
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Example: saturation scale in weakly-coupled N' = 4 SYM plasma

@ BK/BFKL equation known at three loops in planar A" = 4 SYM theory.

@ One can get the coefficients ¢, §; and d, up to order a§/2. Ex:

2
c =1+ 2Va, +2as + (1 - 7;) a¥? + 0(a?)

2.5

..... O(A’]‘/Z)
1.0 - Olas)
— 0@
Tp uncertainty
0.5 T T T T
0 10 20 30 40 50
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Sub-asymptotic behaviour: traveling waves
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Running coupling and single logarithmic corrections in the L — oo limit

@ Final result, exact to all orders in pQCD (but for Y = In(L/7) — o0...)
@ All universal terms in the asymptotic expansion of Q2(L)

dIn(Q2(L)) 4by 2¢1 by ST
_1 1 — 8bo+4byBy) ~ — TEVTe
dinL T @by )2 T @by yyrs T (T8 TANE) 5y = 75 by vy
Gby 1 > In(Y) L
— (5+1944bg) > ———— — by (2 — 16bp+8hyB;) ——5 + O [ o5
( + bO) 81 (4boY)4/3 0( o-+3Dbo g) (4boY)3/2 + Y'3/2
@ In agreement with for the linearized equation.
33 - double log, O(Y~1)
3.0 -~ singlelog, O(Y1)
25 — double log, O(Y3/2In(Y))
— single log, O(Y~3/2In(Y))
d‘.‘>2.0
T
1.0 7
05
0.0 ’

10 20 30 0 50
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Conclusion
°

Summary

@ Study of the effect of radiative corrections on transverse momentum broadening in a
dense QCD medium for large system sizes.

@ TMB satisfies extended geometric scaling.

@ Radiative corrections yield super-diffusive behaviour in momentum space, and a heavy tail
with power index smaller than the typical Rutherford behaviour.

@ The DLA non-linear evolution equations share similar mathematical properties as
equations for wave front propagation into unstable states.

@ Enable to compute the universal behaviour of the TMB distribution in pQCD,
independent of non-perturbative aspects.
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