//B in DLA

Extended geometric scaling and Levy flights $_{\rm OOOO}$

Sub-asymptotic behaviour: traveling waves

Conclusion 0

Anomalous diffusion in dense QCD matter

Paul Caucal

Brookhaven National Laboratory

 $XV^{\rm th}$ Quark Confinement- August $4^{\rm th}$

In collaboration with Yacine Mehtar-Tani Ref: 2109.12041, 2203.09407 Introduction Extended geometric scaling and Levy flights 00000

Sub-asymptotic behaviour: traveling waves

Transverse momentum broadening (TMB) in QCD

- Physical system: a highly energetic parton propagating through a dense QCD medium.
- We compute the transverse momentum distribution $\mathcal{P}(k_{\perp})$ of the outgoing parton.

This talk

Study the TMB distribution $\mathcal{P}(\mathbf{k}_{\perp})$ including leading radiative corrections.

Introduction 0●000	TMB in DLA 00	Extended geometric scaling and Levy flights 0000	Sub-asymptotic behaviour: traveling waves	Conclusion O
Why is Jet guenchin	ГМВ intere	esting?		

- "Hot QCD": Dijet azimuthal angular distributions in heavy-ion collisions: access to the TMB and the medium properties.
- Ex: studies by Mueller, Wu, Xiao, Yuan 1604.04250 & Chen, Qin, Wei, Xiao, Zhang 1607.01932.

• See also recent measurements of hadron-jet acoplanarity by ALICE and STAR in Jaime Norman's talk.

Introduction 00●00	TMB in DLA oo	Extended geometric scaling and Levy flights 0000	Sub-asymptotic behaviour: traveling waves	Conclusion O
Why is T Initial condition	MB interes	sting? nation in small-x physics		

- "Cold QCD": fast probe of gluon distribution in large nuclei $L \propto A^{1/3} \gg 1$ at small-x.
- Beyond LO, the non-local small-x evolution couples fluctuations with $t_f \gg A^{1/3}$ and $t_f \ll A^{1/3}$.

Cf discussion in Ducloué, Iancu, Mueller, Soyez, Triantafyllopoulos 1902.06637

• Understanding TMB in large nuclei including effects of gluon fluctuations inside the target can provide improved initial conditions compared to the McLerran-Venugopalan model.

McLerran, Venugopalan, 9311205 & 9309289

Introduction 00000	TMB in DLA 00	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Conclusion O
TMB at '	'tree level'			

• Forward scattering amplitude of an effective dipole with size x_{\perp} ,

$$\mathcal{S}(\mathbf{x}_{\perp}) = \frac{1}{N_c} \langle \operatorname{Tr} V^{\dagger}(\mathbf{x}_{\perp}) V(\mathbf{0}_{\perp}) \rangle, \quad \text{with} \quad V(\mathbf{x}_{\perp}) = \mathcal{P} e^{ig \int_{-\infty}^{\infty} dx^+ A^-(x^+, \mathbf{x}_{\perp})^2}$$

See Andrey Sadofyev's talk beyond the homogeneous "brick" model.

• Assuming independent multiple interactions,

$$\mathcal{S}(\mathbf{x}_{\perp}) = \exp\left(-\frac{1}{4}\frac{C_R}{N_c}\hat{q}(1/\mathbf{x}_{\perp}^2)L\mathbf{x}_{\perp}^2\right)$$

 \Rightarrow LO \hat{q} given by $\hat{q}^{(0)}(1/\mathbf{x}_{\perp}^2) = \hat{q}_0 \ln \frac{1}{\mathbf{x}_{\perp}^2 \mu^2}$, $\mu \sim m_D$ and $\hat{q}_0 = \alpha_s N_c m_D^2 T$

TMB in DLA oo Extended geometric scaling and Levy flights

Sub-asymptotic behaviour: traveling waves

Conclusion 0

TMB at "tree level" and saturation scale $Q_s(L)$

 \Rightarrow Fourier transform of the dipole S-matrix

$$\mathcal{P}^{(0)}(m{k}_{\perp}) = \int d^2 m{x}_{\perp} e^{-im{k}_{\perp}m{x}_{\perp}} e^{-rac{1}{4}\hat{q}(1/m{x}_{\perp}^2)Lm{x}_{\perp}^2}$$

- Q_s emergent momentum scale
- Transition between the unitarity bound $\mathcal{S}\sim 1$ and the dilute regime $\mathcal{S}\ll 1.$
- At tree-level,

$$Q_s^2(L)\simeq \hat{q}_0 L$$

See also talk by João Barata.

TMB in DLA Extended geometric scaling and Levy flights Sub-asymptotic behaviour: traveling waves Introduction •0

TMB at one loop in a dense QCD medium

• Computation at one-loop in $\alpha_s \ll 1$, but to all-orders in $\alpha_s n$.

• Typical order of magnitude of the NLO correction to \hat{q} : Liou, Mueller, Wu, 1304,7677

$$\hat{q}^{(1)}(L, 1/\boldsymbol{x}_{\perp}^2) \sim rac{lpha_s \mathcal{N}_c}{\pi} \int_{ au_0}^L rac{d au'}{ au'} \int_{\mathcal{Q}_s^2(au)}^{1/\boldsymbol{x}_{\perp}^2} rac{doldsymbol{k}_{\perp}'^2}{oldsymbol{k}_{\perp}'^2} imes \hat{q}_0$$

- Double log enhancement: $Q_{\epsilon}^{2}(L) = \hat{q}_{0}L \left(1 + \frac{\bar{\alpha}_{\epsilon}}{2}\ln^{2}(L/\tau_{0}) + ...\right)$ at NLO.
- NB: we ignore classical $\mathcal{O}(g)$ corrections from soft modes in the plasma. Caron-Huot, 0811.1603 See recent discussions in Ghiglieri, Weitz, 2207.08842

00000	00		0000			0000000	0
00000	00		0000			0000000	0
Introduction	TMB in DLA	Exten	Extended geometric scaling and Levy flights	ts Sub-asymptotic behaviour: traveling wave	es Conclusion		

Resummation of the leading radiative corrections

• Resummation to all orders via the evolution equation

$$\frac{\partial \hat{q}(\tau, \boldsymbol{k}_{\perp}^2)}{\partial \tau} = \int_{Q_s^2(\tau)}^{\boldsymbol{k}_{\perp}^2} \frac{d\boldsymbol{k}_{\perp}'^2}{\boldsymbol{k}_{\perp}'^2} \bar{\alpha}_s(\boldsymbol{k}_{\perp}'^2) \,\, \hat{q}(\tau, \boldsymbol{k}_{\perp}'^2)$$

with $Q_s^2(au)\equiv \hat{q}(au,Q_s^2(au)) au.$

- Initial "tree-level" condition at some $\tau = \tau_0$ (can include non-perturbative input and classical O(g) corrections)
- Exponentiation of the double logarithmic corrections.

$$\mathcal{P}(\boldsymbol{k}_{\perp}) = \int \mathrm{d}^2 \boldsymbol{x}_{\perp} \; \mathrm{e}^{-i \boldsymbol{k}_{\perp} \cdot \boldsymbol{x}_{\perp}} \; \exp\left[-rac{1}{4} rac{C_R}{N_c} \hat{q}(L, 1/\boldsymbol{x}_{\perp}^2) \, L \, \boldsymbol{x}_{\perp}^2
ight]$$

cf Liou, Mueller, Wu, 1304.7677, Blaizot, Mehtar-Tani, 1403.2323, Iancu 1403.1996

troduction TM

Extended geometric scaling and Levy flights ●000 Sub-asymptotic behaviour: traveling waves

Conclusion 0

Asymptotic limit of TMB at fixed coupling

• Large system size limit of $\hat{q}(L, \mathbf{k}_{\perp}^2)$

$$\frac{\hat{q}(L, \boldsymbol{k}_{\perp}^{2})L}{Q_{s}^{2}(L)} \stackrel{=}{\underset{L \to \infty}{=}} \begin{cases} e^{2\sqrt{\bar{\alpha}_{s}} \ln\left(\frac{\boldsymbol{k}_{\perp}^{2}}{Q_{s}^{2}(L)}\right)} & \text{if } \boldsymbol{k}_{\perp}^{2} \leq Q_{s}^{2}(L) \\ e^{\sqrt{\bar{\alpha}_{s}} \ln\left(\frac{\boldsymbol{k}_{\perp}^{2}}{Q_{s}^{2}(L)}\right)} \left[1 + \sqrt{\bar{\alpha}_{s}} \ln\left(\frac{\boldsymbol{k}_{\perp}^{2}}{Q_{s}^{2}(L)}\right)\right] & \text{else} \end{cases}$$

with

$$Q_s^2(L) = \hat{q}_0 L \left(\frac{L}{\tau_0}\right)^{2\sqrt{\bar{\alpha}_s}}$$

 \implies geometric scaling for $k_{\perp}^2 \ll Q_s^4/\mu^2$ PC, Mehtar-Tani 2109.12041

• Similar to geometric scaling for gluon distribution at small x: $\ln(1/x) \leftrightarrow \ln(L/\tau_0)$.

Introduction	TMB in DLA	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Conclusion
00000	00	0000		O
Lévy flig	nts			

• At large time $L \gg \tau_0$, near the peak

$$\mathcal{S}(m{x}_{\perp},L)pprox \exp\left(-rac{1}{4}(|m{x}_{\perp}|Q_s(L))^{2-4\sqrt{ar{lpha}_s}}
ight)$$

 $\bullet \implies \mathsf{the TMB} \ \mathsf{distribution} \ \mathsf{satisfies} \ \mathsf{a} \ \mathsf{fractional} \ \mathsf{Fokker-Planck} \ \mathsf{equation}$

$$rac{\partial \mathcal{P}(\boldsymbol{L}, \boldsymbol{k}_{\perp})}{\partial \boldsymbol{L}} =
u rac{\partial^{\gamma} \mathcal{P}(\boldsymbol{L}, \boldsymbol{k}_{\perp})}{\partial |\boldsymbol{k}_{\perp}|^{\gamma}}, \qquad \gamma = 2 - 4\sqrt{ar{lpha}_{s}}$$

Brownian motion

Levy flight

- Equation for the prob. density of a Lévy walker, e.g.
 - $\dot{\mathbf{v}} = -\mu\mathbf{v} + \eta^{\gamma}(t)$
 - $\eta^{\gamma}(t)$ Lévy stable noise ($\gamma=2$ is the standard white Gaussian noise).

ntroduction	TME

Extended geometric scaling and Levy flights

Sub-asymptotic behaviour: traveling waves

Conclusion O

Superdiffusion in momentum space

•
$$Q_s^2(L) = \hat{q}_0 L \left(\frac{L}{\tau_0}\right)^{2\sqrt{\bar{\alpha}_s}}$$

• The median of the distribution scales like

 $\mathcal{M} \sim L^{1/2 + \sqrt{ar{lpha}_{s}}}$

• \Rightarrow super-diffusive behaviour.

NLO corrections yield super-diffusion in momentum space.

Introduction 00000	TMB in DLA 00	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Conclusion O
11	21.5.1.5.1.5.1.5.1.1.	1.		

• $\hat{q} \simeq e^{\sqrt{\bar{\alpha}_s} \ln(k_\perp^2/Q_s^2)}$ at large k_T .

- Fourier transform of the "stretched" exponential $\exp(-[...]\mathbf{x}_{\perp}^{\gamma})$ with $\gamma \simeq 2 + 2\sqrt{\bar{\alpha}_s} > 2$
- Heavy tailed distribution

$$\mathcal{P}(\pmb{k}_{\perp}) \propto rac{1}{k_{T}^{4-2\sqrt{ar{lpha}_{s}}}}$$

Broadening distribution - scaling property 10^{1} 10^{0} $\overset{(x)}{\mathcal{C}_{x}} 10^{-1}$ 10^{-2} scaling limit Levy distrib. 2β heavy-tail 10^{-3} 10^{0} 10^{-} 10^{1} 10^{2} $x = k_T / Q_s$

PC, Mehtar-Tani 2109.12041

Introduction	TMB in DLA	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Conclusion
00000	00		●0000000	O
Beyond tl	he asympto	otic limit		

- We have determined the limit $L \to \infty$ of the TMB distribution.
- What about the sub-asymptotic corrections?
- Are they universal = independent of the initial conditions?
- Can they be used down to realistic values of *L*?

MB in DLA

Extended geometric scaling and Levy flights

Sub-asymptotic behaviour: traveling waves $0 \bullet 000000$

Conclusion 0

Wave front propagation into unstable state

• Non-linear evolution equation in the same universality class as FKPP equation (reaction-diffusion processes):

$$\partial_t \phi = \partial_x^2 \phi + \phi - \phi^k$$

Ebert, van Saarloos, 0003181, Brunet, Derrida, 0005362

• Traveling wave interpretation (similar to the BK case)

Munier, Peschanski, 0310357 - Beuf, 1008.0498

- Location of the wave front \Leftrightarrow $\rho_s = \ln(Q_s^2/\mu^2)$, time $\Leftrightarrow Y = \ln(L/\tau_0)$.
- Universality of the wave-front velocity $\dot{\rho}_s$:

$$\frac{d\ln(Q_s^2(L))}{d\ln L} = c + \frac{\delta_1}{Y} + \frac{\delta_2}{Y^{3/2}}$$

Introduction 00000	TMB in DLA 00	Extended geometric scaling and Levy flights 0000	Sub-asymptotic behaviour: traveling waves	Conclusion O
Leading e	edøe exna	nsion		

• Diffusive deviation from the asymptotic limit, with we consider.

$$\hat{q}(Y = \ln(L/\tau_0), \rho = \ln(\boldsymbol{k}_{\perp}^2/\mu^2)) = \hat{q}_0 e^{\rho_s(Y) - Y} e^{\beta x} \left[Y^{\alpha} G\left(\frac{x}{Y^{\alpha}}\right) + \dots \right]$$
$$\dot{\rho}_s(Y) = c + \delta \dot{\rho}_s(Y)$$

- Diffusion power characteristics of the universality class of the evolution equation.
- Homogeneity conditions fix the power α .
- $\alpha = 1/2$ for fixed coupling, $\alpha = 1/6$ for running coupling (cf last slide).

Introduction 00000	TMB in DLA oo	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Conclusion O
Results for	or fixed cou	ıpling		

• For fixed coupling, we find the pre-asymptotic behaviour

$$\frac{\hat{q}(L, \boldsymbol{k}_{\perp}^{2})L}{Q_{s}^{2}(L)} = \begin{cases} \exp\left(\beta x - \frac{\beta x^{2}}{4cY}\right) \left[1 + \beta x - \frac{3x}{c(1+c)Y}\left(1 + \frac{\beta(c+4)x}{6}\right) + \mathcal{O}\left(\frac{1}{Y^{2}}\right)\right] & \text{if } x \geq 0\\ \exp\left(2\beta x - \frac{3}{c(1+c)}\frac{x}{Y} + \mathcal{O}\left(\frac{1}{Y^{2}}\right)\right) & \text{if } x < 0 \,. \end{cases}$$

with

$$\ln(Q_s^2(L)/\mu^2) = \frac{(1+2\sqrt{\bar{\alpha}_s})Y - \frac{3}{2}(1+\sqrt{\bar{\alpha}_s})\ln(Y) + \frac{3\sqrt{\pi}\bar{\alpha}_s^{-1/4}}{2}\frac{1}{\sqrt{Y}} + \mathcal{O}(Y^{-1})$$

PC, Mehtar-Tani 2109.12041

•
$$x = \ln(k_{\perp}^2/Q_s^2(L)), Y = \ln(L/\tau_0).$$

Introduction 00000	TMB in DLA oo	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Conclusion 0

Some plots

• Sub-asymptotic corrections enable one to have a good agreement with the numeric.

• Analytic results can be systematically improved.

Beyond the double logarithmic approximation

- Our study relies on two pillars:
 - The evolution of Q_s is dominated by the double log regime of QCD since $\rho_s \sim Y \Rightarrow$ one can use BFKL or DGLAP with a non-linear saturation boundary to get the universal behaviour of Q_s .
 - Universal terms of the asymptotic series of $\ln(Q_s^2(L)/\mu^2)$ at large L are mainly controlled by the linear behaviour of the evolution equation.
- Using NLO, N²LO BFKL equation one can systematically compute the α_s expansion of c, δ_1 , δ_2 .

1B in DLA

Extended geometric scaling and Levy flights $_{\rm OOOO}$

Sub-asymptotic behaviour: traveling waves 00000000

Example: saturation scale in weakly-coupled $\mathcal{N} = 4$ SYM plasma

 $\bullet~$ BK/BFKL equation known at three loops in planar $\mathcal{N}=4$ SYM theory.

Velizhanin 1508.02857, Caron-Huot, Herranen 1604.07417

• One can get the coefficients c, δ_1 and δ_2 up to order $\alpha_s^{3/2}$. Ex:

$$c = 1 + 2\sqrt{\bar{lpha}_s} + 2\bar{lpha}_s + \left(1 - rac{\pi^2}{6}\right) ar{lpha}_s^{3/2} + \mathcal{O}(lpha_s^2)$$

 Introduction
 TMB in DLA
 Extended geometric scaling and Levy flights
 Sub-asymptotic behaviour: traveling waves
 Conclus

 00000
 00
 0000
 0000000●
 0

Running coupling and single logarithmic corrections in the $L \rightarrow \infty$ limit

- Final result, exact to all orders in pQCD (but for $Y = \ln(L/\tau_0) \rightarrow \infty...)$
- All universal terms in the asymptotic expansion of $Q_s^2(L)$

$$\frac{d \ln(Q_s^2(L))}{d \ln L} = 1 + \frac{4b_0}{(4b_0Y)^{1/2}} + \frac{2\xi_1 b_0}{(4b_0Y)^{5/6}} + (1 - 8b_0 + 4b_0B_g) \frac{1}{4Y} - \frac{7\xi_1^2 b_0}{270} \frac{1}{(4b_0Y)^{7/6}} \\ - (5 + 1944b_0) \frac{\xi_1 b_0}{81} \frac{1}{(4b_0Y)^{4/3}} - b_0^2 \left(2 - 16b_0 + 8b_0B_g\right) \frac{\ln(Y)}{(4b_0Y)^{3/2}} + \mathcal{O}\left(\frac{1}{Y^{3/2}}\right)$$

• In agreement with lancu, Triantafyllopoulos 1405.3525 for the linearized equation.

PC, Mehtar-Tani, 2203.09407 & in prep.

Introduction 00000	TMB in DLA 00	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Conclusion •
Summary				

- Study of the effect of radiative corrections on transverse momentum broadening in a dense QCD medium for large system sizes.
- TMB satisfies extended geometric scaling.
- Radiative corrections yield super-diffusive behaviour in momentum space, and a heavy tail with power index smaller than the typical Rutherford behaviour.
- The DLA non-linear evolution equations share similar mathematical properties as equations for wave front propagation into unstable states.
- Enable to compute the universal behaviour of the TMB distribution in pQCD, independent of non-perturbative aspects.