Compositeness and several applications to exotic hadronic states with heavy quarks

Compositeness and several
applications to
exotic hadronic states with heavy quarks

José Antonio Oller

Departamento de Física
Universidad de Murcia (Spain)

Related references [1]Meißner,JAO,PLB751,59(2015); [2] JAO, ANP396,429(2018); [3]Guo,JAO,PRD93,096001(2016); [4]Kang,Guo,JAO,PRD94,014012(2016);
[5]Guo,JAO,PRD103,054021(2021); [6]Guo,JAO,PRD103,034024(2021):
[7]Du,Guo,JAO,PRD104,114034(2021)
More details on the basics: My talk today at 15:40h Session B

Outline

(1) Basic formalism on elementariness/compositeness
(2) Resonances
(3) $Z_{b}(10610), Z_{b}(10650)$
(4) $Z_{C S}(3985), Z_{c}(3900), X(4020)$
(5) CDD poles. Track of elementariness
(6) $X(6900)$ and $X(6825)$
(7) $P_{c s}(4459)$

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller

Basic formalism on elementari-
(8) Conclusions

1.- Basic formalism

Shallow bound state. Non-relativistic dynamics

S. Weinberg, PR130,776(1963); PR131,440(1963); PR137,B672(1964)

$$
H=H_{0}+V
$$

H_{0} Kinetic energy
Bare states. The same spectrum as H

$$
\begin{aligned}
H_{0}\left|\varphi_{\alpha}\right\rangle & =E_{\alpha}\left|\varphi_{\alpha}\right\rangle, \quad \text { Continuum spectrum } \\
H_{0}\left|\phi_{n}\right\rangle & =E_{B_{n}}\left|\phi_{n}\right\rangle, \quad \text { Discrete spectrum }
\end{aligned}
$$

$\left|\varphi_{\alpha}\right\rangle$ is made up by free particles of the continuum spectrum $\left|\phi_{n}\right\rangle$ bare "elementary" states by one particle Physical spectrum of H :
$H\left|\psi_{\alpha}^{ \pm}\right\rangle=E_{\alpha}\left|\psi_{\alpha}^{ \pm}\right\rangle,\left|\psi_{\alpha}^{ \pm}\right\rangle$in/out states. Continuum spectrum
$H\left|\psi_{B_{i}}\right\rangle=E_{B_{i}}\left|\psi_{B_{i}}\right\rangle, E_{B_{i}}<0$. Discrete spectrum

Basic formalism on elementari-

Elementariness: Z, Composition: X

$$
\begin{aligned}
\left\langle\psi_{B} \mid \psi_{B}\right\rangle=1 & =\underbrace{\sum_{n}\left|\left\langle\phi_{n} \mid \psi_{B}\right\rangle\right|^{2}}_{Z}+\underbrace{\int d \alpha\left|\left\langle\varphi_{\alpha} \mid \psi_{B}\right\rangle\right|^{2}}_{X} \\
1 & =Z+X
\end{aligned}
$$

Interpretation based on the number operator

Original developments in JAO, Ann.Phys. 396, 429 (2018) Introducing bare "elementary" states as intermediate states are not needed.

Take two free particles of types A y $B, H_{0}\left|A B_{\gamma}\right\rangle=E_{\gamma}\left|A B_{\gamma}\right\rangle$ Creation and annihilation operators $a_{\alpha}^{\dagger} a_{\alpha}, b_{\beta}^{\dagger} b_{\beta}$
Number Operators: $N_{D}=\int d \alpha a_{\alpha}^{\dagger} a_{\alpha}+\int d \beta b_{\beta}^{\dagger} b_{\beta}=N_{D}^{A}+N_{D}^{B}$

$$
N_{D}=\int d^{3} x\left[\psi_{A}^{\dagger}(x) \psi_{A}(x)+\psi_{B}^{\dagger}(x) \psi_{B}(x)\right]
$$

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller

Basic formalism on elementariness/compositeness Resonances
$Z_{b}(10610)$,
$Z_{b}(10650)$
$Z_{C S}(3985)$
$Z_{c}(3900)$,
$X(4020)$
CDD poles. Track of elementariness
$X(6900)$ and
$X(6825)$
$P_{C S}(4459)$

New definition of X

$$
x=\frac{1}{2}\left\langle\psi_{B}\right| N_{D}\left|\psi_{B}\right\rangle
$$

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller

Equivalence with the previous definition

$$
\begin{aligned}
\left|\psi_{B}\right\rangle & =\int d \gamma C_{\gamma}\left|A B_{\gamma}\right\rangle+\sum_{n} C_{n}\left|\phi_{n}\right\rangle \\
X & =\frac{1}{2}\left\langle\psi_{B}\right| N_{D}^{A}+N_{D}^{B}\left|\psi_{B}\right\rangle=\int d \gamma\left|C_{\gamma}\right|^{2}
\end{aligned}
$$

Basic formalism on elementariness/compositeness

Resonances
$Z_{b}(10610)$,
$Z_{b}(10650)$
$Z_{c s}(3985)$
$Z_{C}(3900)$

This definition is specially suitable for Effective Field Theories (EFTs) (e.g. ChPT)
It is very usual not to have explicit bare "elementary" states (fields)

Calculation in QFT

Compositeness and several
applications to exotic hadronic states with heavy quarks

This new definition is the most adequate for the treatment in QFT
$X=\frac{1}{2} \lim _{T \rightarrow+\infty} \frac{1}{T} \int d^{4} x\left\langle\varphi_{B}\right| P\left[e^{-i \int_{-\infty}^{+\infty} d t^{\prime} V_{D}\left(t^{\prime}\right)} \sum_{i} \psi_{A_{i}}^{\dagger}(x) \psi_{A_{i}}(x)\right]\left|\varphi_{B}\right\rangle$
S-matrix elements, with in/out states. LSZ formalism

$$
\begin{aligned}
X & =\frac{1}{2} \lim _{E \rightarrow E_{B}} \frac{\left(E-E_{B}\right)^{2}}{g_{\alpha}\left(k_{B}\right)^{2}} \\
& \times \lim _{T \rightarrow+\infty} \frac{1}{T} \int d^{4} \times\left\langle\varphi_{\alpha}\right| P\left[e^{-i \int_{-\infty}^{+\infty} d t^{\prime} V_{D}\left(t^{\prime}\right)} \sum_{i} \psi_{A_{i}}^{\dagger}(x) \psi_{A_{i}}(x)\right]\left|\varphi_{\alpha}\right\rangle
\end{aligned}
$$

Basic formalism on elementari-
ness/compositeness
Resonances
$Z_{b}(10610)$,
$Z_{b}(10650)$

Explicit formulas

$$
\begin{aligned}
X_{\ell S} & =\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{g_{\ell S}^{2}\left(k^{2}\right)}{\left(k^{2} / 2 \mu-E_{B}\right)^{2}} \\
X & \text { Weinberg's expression for } \\
X & =\sum_{\ell S} X_{\ell S}
\end{aligned}
$$

Equation for $g_{\ell s}(k)$ from $T=V+V G T$

$$
g_{\ell S}(k)=\frac{1}{2 \pi^{2}} \int_{0}^{\infty} k^{\prime 2} d k^{\prime} V_{\ell S}\left(k, k^{\prime}\right) \frac{1}{k^{\prime 2} / 2 \mu-E_{B}} g_{\ell S}\left(k^{\prime}\right)
$$

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller

Basic formalism on elementari-
ness/compositeness
Resonances
$Z_{b}(10610)$,
$Z_{b}(10650)$
$Z_{C S}(3985)$
$Z_{c}(3900)$,

Energy-independent potentials: Pure potential scattering

As demonstrated in JAO, Ann.Phys. 396, 429 (2018)

$$
1=\sum_{\alpha=1}^{n} X_{\alpha}
$$

Deuteron ChPT Energy-independent potentials worked up to $\mathrm{N}^{4} \mathrm{LO}$
Error $\lesssim 4 \%$ for Deuteron properties
Rodríguez-Entem, Machleidt, Nosyk, Front.Phys.8:57(2022)

$$
X=0.96-1.0
$$

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller

Basic formalism on elementariness/compositeness Resonances

2.- Resonances

Analysis based on Scattering Theory. Number operators

JAO, Ann.Phys.396,429(2018)
A resonance stems from the analytic continuation in energy of the in states with energy $E+i \varepsilon$, just above the real E axis Calculation in QFT

S-matrix element with an external source $\sum_{i} \psi_{A_{i}}^{\dagger}(x) \psi_{A_{i}}(x)$

$$
X=\frac{1}{2} \lim _{E \rightarrow E_{n}} \frac{\left(E-E_{n}\right)^{2}}{g_{\alpha}\left(k_{n}\right)^{2}}
$$

$$
\times \lim _{T \rightarrow+\infty} \frac{1}{T} \int d^{4} x\left\langle\varphi_{\alpha}\right| P\left[e^{-i \int_{-\infty}^{+\infty} d t^{\prime} V_{D}\left(t^{\prime}\right)} \sum_{i} \psi_{A_{i}}^{\dagger}(x) \psi_{A_{i}}(x)\right] \begin{gathered}
x(682) \\
\left|\varphi_{\alpha}\right\rangle \\
\text { Condlu }
\end{gathered}
$$

Pure potential scattering

$$
1=X=\sum_{\alpha=1}^{n} X_{\alpha}
$$

For instance, virtual state in the ${ }^{1} S_{0} N N$ scattering

$$
\begin{aligned}
X_{\ell S} & =\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{g_{\ell S}^{2}\left(k^{2}\right)}{\left(k^{2} / 2 \mu-E_{n}^{2}\right)^{2}}+\frac{i \mu^{2}}{\pi k_{n}}\left[\frac{\partial}{\partial k} k g_{\ell S}^{2}\left(k^{2}\right)\right]_{k=k_{n}} \\
X & =\sum_{\ell S} X_{\ell S}
\end{aligned}
$$

Compositeness and several

applications to

 exotic hadronic states with heavy quarksJosé Antonio Oller

Basic formalism on elementari-
ness/compositeness
Resonances
$Z_{b}(10610)$,
$Z_{b}(10650)$
$Z_{C S}(3985)$,
$Z_{c}(3900)$,
$X(4020)$
CDD poles. Track of elementariness
$X(6900)$ and
$X(6825)$
$P_{C S}$ (4459)
Conclusions

Sum rule

From two-body unitarity $\left.\operatorname{Im} T^{-1}\right|_{i j}=\delta_{i j} \rho_{i}$ along the RC $\rho_{i}=p_{i} / 8 \pi \sqrt{s}$

General expression for a PWA in coupled channel in matrix notation

$$
\begin{aligned}
T(s) & =\left[\mathcal{K}(s)^{-1}+G(s)\right]^{-1} \\
G(s)_{i} & =a\left(s_{0}\right)_{i}-\frac{s-s_{0}}{\pi} \int_{0}^{\infty} \frac{\rho_{i}\left(s^{\prime}\right) d s^{\prime}}{\left(s^{\prime}-s\right)\left(s^{\prime}-s_{0}\right)}
\end{aligned}
$$

This is the same expression as for shallow bound states and separable potentials Resonances: Take $\left|X_{i}\right|$.

Transformation of the S matrix: Phase redefinition of the couplings

Let us consider a narrow resonance $\Gamma \ll M_{R}-m_{\text {th }}$
Laurent series around the resonance pole $s_{P}=\left(M_{R}-i \Gamma / 2\right)^{2}$

$$
\begin{aligned}
& S(s)=\frac{R}{s-s_{P}}+S_{0}(s) \\
& S(s) S(s)^{\dagger}=I
\end{aligned}
$$

Solution $\quad S_{0}=\mathcal{O O}^{T}, \mathcal{O O}^{\dagger}=1$

$$
S(s)=\mathcal{O} \underbrace{\left(1+\frac{i \lambda \mathcal{A}}{s-s_{R}}\right)}_{s_{R}(s)} \mathcal{O}^{T}
$$

\mathcal{A} is a rank 1 symmetric projector operator
$S_{R}(s)$ is a purely resonant S matrix

Compositeness and

$$
S_{\alpha \beta}(s)=\mathcal{O}_{\alpha \mu} \mathcal{O}_{\beta \nu}\left(1+\frac{i \lambda \mathcal{A}}{s-s_{R}}\right)_{\mu \nu}
$$

Corrections due to initial- and final-state interactions from S_{0}
They typically modify the phases of the resonance couplings

Example: $\pi \pi-K \bar{K}$ scattering

JAO, Oset, NPA620,438(1997)

Figure: Isoscalar scalar $\pi \pi$ phase shifts. $J^{P C}=0^{++}$

$$
S=\left(\begin{array}{ll}
\eta e^{2 i \delta_{11}} & i\left(1-\eta^{2}\right)^{1 / 2} e^{i\left(\delta_{1}+\delta_{2}\right)} \\
i\left(1-\eta^{2}\right)^{1 / 2} e^{i\left(\delta_{1}+\delta_{2}\right)} & \eta e^{2 i \delta_{2}}
\end{array}\right)
$$

The coupling between channels implies a phase $\delta_{1} \approx \pi / 2$ just at the $f_{0}(980)$ rise \rightarrow phase of the $f_{0}(980)$ coupling to $\pi \pi$

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller
 elementari ness/compos teness

Resonances
$Z_{b}(10610)$,
$Z_{b}(10650)$
$Z_{C S}(3905)$
$Z_{C}(3900)$
$X(4020)$
CDD poles. Track of elementariness

The moduli of the couplings g_{α} have physical meaning

$$
\Gamma_{\alpha}=\frac{\left|g_{\alpha}\right|^{2}}{8 \pi M_{R}^{2}}
$$

The S-matrix phase transformation only change the phases of the resonance couplings

$$
\begin{aligned}
S_{\mathcal{O}}(s) & \equiv \mathcal{O} S(s) \mathcal{O}^{T} \\
\mathcal{O} & =\operatorname{diag}\left(e^{i \phi_{1}}, \ldots, e^{i \phi_{n}}\right) \\
g_{i}^{2} & \rightarrow g_{i}^{2} e^{2 i \phi_{i}}
\end{aligned}
$$

$$
X_{\alpha} \rightarrow\left|X_{\alpha}\right| \geq 0
$$

Compositeness and

Condition $\left|X_{\alpha}\right|$

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller Basic formalism on elementariness/compositeness

Resonances
$Z_{b}(10610)$,
$Z_{b}(10650)$
$Z_{C S}(3985)$,
$Z_{c}(3900)$,
X (4020)
CDD poles. Track of elementariness
$X(6900)$ and $X(6825)$
$P_{C S}(4459)$
3.- S-wave Effective-Range Expansion

$$
\begin{aligned}
& \text { Kang, Guo, JAO,PRDD94,014012(2016) } \\
& \begin{aligned}
T(k) & =\frac{1}{-\frac{1}{a}+\frac{1}{2} r k^{2}-i k} \\
G(k) & =-i k
\end{aligned}
\end{aligned}
$$

$$
E_{R}=M_{R}-i \Gamma / 2
$$

$$
a=-\frac{2 k_{i}}{\left|k_{R}\right|^{2}} \quad, \quad k_{R}=k_{r}-i k_{i}
$$

$$
r=-\frac{1}{k_{i}}, \quad \frac{r}{a}>2
$$

$$
\begin{gathered}
X=-\gamma^{2} \frac{d G}{d s}=-\gamma_{k}^{2} \frac{d G}{d k}=i \frac{k_{i}}{k_{r}}=i \tan \frac{\phi}{2} \\
|X| \leq 1 \leftrightarrow k_{r} \geq k_{i} \leftrightarrow M_{R} \geq 0 \quad \phi \in[0, \pi / 2] \\
\left(|X|=1 \text { for } M_{R}=0 \text { and } \Gamma>0\right)
\end{gathered}
$$

If the real part is taken then ALWAYS $X=0$!

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller

Basic formalism on elementariness/compositeness Resonances
$Z_{b}(10610)$,
$Z_{b}(10650)$
$Z_{C S}(3985)$

CDD poles. Track of elementariness
$X(6900)$ and
$P_{c s}(4459)$
Conclusions

$$
\tan \phi=\frac{\Gamma}{2 M_{R}} \longrightarrow \phi \in\left[0, \frac{\pi}{2}\right] \text { for } M_{R} \geq 0
$$

$$
X=\left(\frac{2 r}{a}-1\right)^{-1}
$$

$Z_{b}(10610)$ and $Z_{b}(10650)$, or Z_{b} and Z_{b}^{\prime}
$B^{(*)} \bar{B}^{*}$ system with $I^{G}\left(J^{P}\right)=1^{+}\left(1^{+}\right)$Bondar et al. (Belle Coll.)
PRL108,122001(2012)

$$
\begin{aligned}
& E_{Z_{b}}=10607.2 \pm 2.0-i(9.2 \pm 1.2) \mathrm{MeV} \\
& E_{Z_{b}^{\prime}}=10652.2 \pm 1.5-i(5.5 \pm 1.1) \mathrm{MeV}
\end{aligned}
$$

M_{R} is around 3 MeV below $B^{(*)} \bar{B}^{*}$ threshold

$$
\begin{array}{lll}
& Z_{b}(10610) & Z_{b}(10650) \\
\hline a(\mathrm{fm}) & -1.03 \pm 0.17 & -1.18 \pm 0.26 \\
r(\mathrm{fm}) & -1.49 \pm 0.20 & -2.03 \pm 0.38 \\
X=\gamma_{k}^{2} & 0.75 \pm 0.15 & 0.67 \pm 0.16 \\
\hline
\end{array}
$$

Kang, Guo, JAO, Phys.Rev.D94,014012(2016)

Determining X by making use of the width of the resonance

Meißner,JAO, PLB751,59(2015)

$$
\begin{aligned}
\Gamma_{1} & =\frac{2 X_{1}}{\mu} k\left(M_{R}\right)\left|k_{R}\right| \\
\Gamma_{2} & =\frac{X_{2}\left|k_{R}\right| M_{R}^{2}}{\pi \mu} \int_{M_{\mathrm{th}}}^{+\infty} d W \frac{k(W)}{W^{2}} \frac{\Gamma}{\left(M_{R}-W\right)^{2}+\Gamma^{2} / 4} \\
\Gamma & =\Gamma_{1}+\Gamma_{2}
\end{aligned}
$$

For the Z_{b}, Z_{b}^{\prime} it gave consistent results with the ERE-based method

Branching ratios are measured

$$
\begin{array}{lll}
& Z_{b}(10610) & Z_{b}(10650) \\
\hline X & 0.66 \pm 0.11 & 0.51 \pm 0.10 \\
\hline
\end{array}
$$

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller

Basic formalism on elementari-
ness/compositeness
Resonances
$Z_{b}(10610)$,
$Z_{b}(10650)$
$Z_{C S}(3985)$
$Z_{c}(3900)$,
$X(4020)$
CDD poles. Track of elementariness
X (6900) and
$X(6825)$
$P_{C S}(4459)$

4.- $Z_{c s}(3985), Z_{c}(3900), X(4020)$

Guo,JAO,PRD103,054021(2021)
$Z_{c}(3900): \bar{D} D^{*} / D \bar{D}^{*}, J / \psi \pi$
$X(4020): D^{*} \overline{D^{*}}, h_{c} \pi$
$Z_{c s}$ (3985) : $D_{s}^{-} D^{* 0} / D_{s}^{*-} D^{0}, J / \psi K^{-}$

Elastic case: ERE study

Tetraquark Resonance	Mass (MeV)	Width (MeV)	Threshold (MeV)	$a(\mathrm{fm})$	$r(\mathrm{fm})$	X
$Z_{c}(3900)$	3888.4 ± 2.5	28.3 ± 2.5	$\bar{D} D^{*}(3875.5)$	-0.84 ± 0.13	-2.52 ± 0.25	0.45 ± 0.06
$X(4020)$	4024.1 ± 1.9	13 ± 5	$\bar{D}^{*} D^{*}(4017.1)$	-1.04 ± 0.30	-3.90 ± 1.35	0.39 ± 0.14
$Z_{c s}(3985)$	3982.5 ± 3.3	12.8 ± 6.1	$D_{s}^{-} D^{* 0}(3975.2)$	-1.00 ± 0.47	-4.04 ± 1.82	0.38 ± 0.18
			$D_{s}^{*-} D^{0}(3977.0)$	-1.28 ± 0.60	-3.65 ± 1.60	0.46 ± 0.19

X, a, r ares similar for all the states \rightarrow similar structure
r tends to be large and negative \rightarrow significant elementariness Still X is also sizeable

Coupled-channel study: Γ_{i}

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller
$Z_{C s}(3985)$
$Z_{c}(3900)$
$X(4020)$

CDD poles. Track of elementariness
(1) $\Gamma_{R}=\Gamma_{1}+\Gamma_{2}=\left|g_{1}\right|^{2} \frac{q_{1}\left(M_{R}^{2}\right)}{8 \pi M_{R}^{2}}+\left|g_{2}\right|^{2} \int_{m_{\mathrm{th}}}^{M_{R}+n \Gamma_{R}} d E \frac{q_{2}\left(E^{2}\right)}{16 \pi^{2} E^{2}} \frac{\Gamma_{R}}{\left(M_{R}-E\right)^{2}+\frac{\Gamma_{R}^{2}}{4}}$
(2) $Z_{c}(3900): \Gamma_{D \bar{D}^{*}} / \Gamma_{J / \psi \pi}=6.2 \pm 2.9$

Results

$$
\left|g_{1}\right|=1.46_{-0.23}^{+0.43}, \quad\left|g_{2}\right|=7.89_{-0.44}^{+0.18}
$$

$\left|g_{2}\right| \ll\left|g_{1}\right|$

$$
\begin{gathered}
X_{1}=0.002 \pm 0.001, \quad X_{2}=0.436_{-0.047}^{+0.021} \\
X=X_{1}+X_{2}=0.438_{-0.047}^{+0.021}
\end{gathered}
$$

X is almost identical to the ERE study
We then use X from ERE for the $X(4020), Z_{c s}(3985)$ as 2 nd input

Resonance	$\left\|g_{1}\right\|(\mathrm{GeV})$	$\left\|g_{2}\right\|(\mathrm{GeV})$	$\Gamma_{1}(\mathrm{MeV})$	$\Gamma_{2}(\mathrm{MeV})$	$X_{1} \times 10^{3}$	
$X(4020)$	1.1 ± 0.2	6.5 ± 1.3	1.4 ± 0.5	11.6 ± 4.5	1 ± 1	
$X_{\text {ERE }}=0.39 \pm 0.14$						
$Z_{c s}(3985)$	6.4 ± 1.7	1.2 ± 0.6	11.6 ± 5.3	0.8 ± 0.14		
Threshold $\left(D_{s}^{-} D^{* 0}\right)$						
$X_{\text {ERE }}=0.38 \pm 0.18$	0.8 ± 0.2	6.8 ± 1.7	1.2 ± 0.6	11.6 ± 5.6	0.8 ± 0.4	
Threshold $\left(D_{s}^{*-} D^{0}\right)$	0.9 ± 0.2					
$X_{\text {ERE }}=0.46 \pm 0.19$						

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller Basic formalism on elementariness/compositeness Resonances
$Z_{b}(10010)$
$Z_{b}(10650)$
$Z_{c s}(3985)$, $Z_{C}(3900)$,
X (4020)
CDD poles. Track of elementariness
$X(6900)$ and
X(6825)
$P_{C S}(4459)$
Conclusions

5.- Scattering Amplitude $t(E)$. CDD Poles

Dispersion Relation for the inverse of $t(E)$

$$
\operatorname{Imt}(E)^{-1}=-i k
$$

One subtraction is needed

$$
\oint d z \frac{t(z)^{-1}}{(z-E)(z-C)}
$$

The only other structure apart from the threshold that can give rise to a strong distortion in $t(E)^{-1}$ is a pole at M_{Z}

CDD pole Castillejo,Dalitz,Dyson,
PR,101,453(1956)
$t(E)=\frac{1}{\frac{\lambda}{E-M_{Z}}+\beta-i k}$
The ERE or a Flatté parameterization break down for

$$
|k| \gtrsim \sqrt{2 \mu\left|M_{Z}\right|}
$$

The general formula for a partial-wave without crossed-channel dynamics was deduced in: JAO,Oset,PRD60,074023(1999)
el

A CDD contributes to r y a as

$$
\begin{aligned}
& \delta a=\frac{M_{Z}}{\lambda} \\
& \delta r=-\frac{\lambda}{m M_{Z}^{2}}
\end{aligned}
$$

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller Basic formalism on elementari-
ness/compositeness Resonances
$z_{b}(10010)$

CDD poles. Track of elementariness
for $g_{V}=1$ the zero at $M_{\rho}^{2} /\left(1-g_{V}^{2}\right) \rightarrow \infty$ JAO,Oset,PRD60,074023(1999)

6.- $X(6900)$. Fits to data

Guo,JAO,PRD103,034024(2021)

$J / \psi J / \psi\left(\eta_{c} \eta_{c}\right), \chi_{c 0} \chi_{c 0}, \chi_{c 1} \chi_{c 1}$
S-wave scattering near threshold of the $\chi_{c 0,1}^{\prime} s J^{P C}=0^{++}$
Aaij et al. (LHCb Coll.), Sci.Bull.65,1983(2020)

$$
\begin{aligned}
& \text { Model I: } M=6905 \pm 11 \pm 7 \mathrm{MeV}, \Gamma=80 \pm 19 \pm 33 \mathrm{MeV} \\
& \text { Model II: } M=6886 \pm 11 \pm 11 \mathrm{MeV}, \Gamma=168 \pm 33 \pm 69 \mathrm{MeV}
\end{aligned}
$$

Channel	Threshold [MeV]
(1) $J / \psi J / \psi$	6193.8
(2) $\chi_{c 0} \chi_{c 0}$	6829.4
(3) $\chi_{c 1} \chi_{c 1}$	7021.3

$$
\mathcal{T}(s)=[1-\mathcal{V}(s) \cdot G(s)]^{-1} \cdot \mathcal{V}(s)
$$

$$
\mathcal{V}(s)=\left(\begin{array}{ccc}
0 & b_{12} & b_{13} \\
b_{12} & \frac{b_{22}}{M_{J / \psi}^{2}}\left(s-M_{C D D}^{2}\right) & \frac{b_{23}}{M_{J / \psi}^{2}}\left(s-M_{C D D}^{2}\right) \\
b_{13} & \frac{b_{23}}{M_{J / \psi}^{2}}\left(s-M_{C D D}^{2}\right) & \frac{b_{33}}{M_{J / \psi}^{2}}\left(s-M_{C D D}^{2}\right)
\end{array}\right)
$$

Heavy-quark symmetry $\quad b_{13}=\frac{b_{12}}{\sqrt{3}}, \quad b_{23}=\frac{b_{22}}{\sqrt{3}}, \quad b_{33}=\frac{b_{22}}{3}$

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller Basic formalism on elementariness/compositeness Resonances
$Z_{b}(10010)$
X (6900) and $X(6825)$

$$
\begin{aligned}
B(s) & =[1-\mathcal{V}(s) \cdot G(s)]^{-1} \cdot \mathcal{P} \\
\mathcal{P} & =\left(\begin{array}{c}
d_{1}=0 \\
d_{2} \\
d_{2} / \sqrt{3}
\end{array}\right)
\end{aligned}
$$

Fits are stable if releasing d_{1}

$$
\frac{d \mathcal{N}(s)}{d \sqrt{s}}=\left|B_{1}(s)\right|^{2} \frac{q_{J / \psi J / \psi}(s)}{M_{J / \psi}^{2}}
$$

Free parameters: $b_{12}, b_{22}, M_{C D D}^{2}, d_{2}$

Basic formalism on elementariness/compositeness Resonances
$Z_{b}(10010)$

G function

$$
G_{j}(s)=-\frac{1}{16 \pi^{2}}\left[a\left(\mu^{2}\right)+\log \frac{m_{2}^{2}}{\mu^{2}}-x_{+} \log \frac{x_{+}-1}{x_{+}}-x_{-} \log \frac{x_{-}-1}{x_{-}}\right],
$$

$$
x_{ \pm}=\frac{s+m_{1}^{2}-m_{2}^{2}}{2 s} \pm \frac{q_{j}(s)}{\sqrt{s}} .
$$

Natural size estimate $a\left(\Lambda^{2}\right)=-2 \log \left(1+\sqrt{1+\frac{m_{x}^{2}}{\Lambda^{2}}}\right) \simeq-3$
Matching at threshold with $G_{\Lambda}(s), \Lambda \simeq 1 \mathrm{GeV}$, a momentum cutoff

Change of Riemann sheet (RS)

$$
G_{j}(s)^{\mathrm{II}}=G_{j}(s)-i \frac{q_{j}(s)}{4 \pi \sqrt{s}} .
$$

Compositeness and several
applications to exotic hadronic states with heavy quarks

Riemann sheets:
1st (,,+++), 2nd (,,-++), 3rd (,,--+), 4th (,,+-+), 5th $(-,-,-)$

Results of the fits

$J / \psi J / \psi$ event distribution. Green histogram averaging over the experimental width 27 MeV

	$\chi^{2} /$ d.o.f	$a(\mu)$	$M_{C D D}$	b_{22}	b_{12}	d_{2}
Fit-I	$1.6 /(12-3)$	-3.0^{*}	6910^{*}	10817_{-2096}^{+8378}	151_{-99}^{+153}	2213_{-316}^{+2106}
Fit-II	$4.9 /(12-3)$	-3.0^{*}	6885^{*}	21073_{-7359}^{+15141}	484_{-112}^{+239}	3645_{-714}^{+1325}

Residua and X_{i}

Compositeness and several
applications to exotic hadronic states with heavy

$$
T_{i j}=-\frac{\gamma_{i} \gamma_{j}}{s-M_{\text {pole }}^{2}}+\ldots
$$

José Antonio Oller

	Mass (MeV)	Width $/ 2(\mathrm{MeV})$	$\left\|\gamma_{1}\right\|(\mathrm{GeV})$	$\left\|\gamma_{2}\right\|(\mathrm{GeV})$	$\left\|\gamma_{3}\right\|(\mathrm{GeV})$	X_{1}	X_{2}	X_{3}	$X=\sum_{i=1}^{3} X_{i}$
Fit I	6907_{-3}^{+5}	33_{-10}^{+14}	$4.6_{-2.8}^{+2.5}$	$9.7_{-2.6}^{+1.4}$	$5.6_{-1.5}^{+0.8}$	$0.01_{-0.01}^{+0.01}$	$0.13_{-0.06}^{+0.04}$	$0.03_{-0.01}^{+0.01}$	$0.17_{-0.07}^{+0.04}$
Fit II	6892_{-2}^{+2}	80_{-17}^{+24}	$10.3_{-1.4}^{+1.8}$	$6.9_{-1.9}^{+1.4}$	$4.0_{-1.1}^{+0.8}$	$0.05_{-0.01}^{+0.02}$	$0.06_{-0.03}^{+0.03}$	$0.01_{-0.01}^{+0.01}$	$0.13_{-0.03}^{+0.03}$

HQSS rule: $\left|\gamma_{3}\right| \approx\left|\gamma_{2}\right| / \sqrt{3}$

LHCb $X(6900)$

$\mathrm{I}: M_{R} 6905 \pm 11 \pm 7 \quad \Gamma_{R}=80 \pm 19 \pm 33 \mathrm{MeV}$
II: $M_{R} 6886 \pm 11 \pm 11 \quad \Gamma_{R}=168 \pm 33 \pm 69 \mathrm{MeV}$
Total compositeness $X<0.2$ Overwhelming bare component In agreement with $M_{\mathrm{CDD}} \approx M_{R} \longrightarrow$ Morgan's pole-counting criterion

- Similar pole position in the 5 th $\operatorname{RS}(-,-,-)$

Distinction between Fits I and II

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller

Basic formalism on

FIG. 3. Our predictions for the distributions of (left panel) $\chi_{c 0} \chi_{c 0}$ and (right panel) $\chi_{c 1} \chi_{c 1}$.

CDD poles. Track of elementariness
$X(6900)$ and
$X(6825)$
$P_{C S}(4459)$

Prediction of the $X(6825)$

It lies in the 4th RS $(+,-,+)$

Fit	$E_{R}^{\prime} \mathrm{MeV}$	$\left\|\gamma_{1}^{\prime}\right\|$	$\left\|\gamma_{2}^{\prime}\right\|$	$\left\|\gamma_{3}^{\prime}\right\|$
I	$6827.0_{-4.8}^{+1.6}-i 1.1_{-1.0}^{+1.3}$	$1.4_{-0.9}^{+0.6}$	$11.9_{-3.1}^{+3.2}$	$6.8_{-1.8}^{+1.8}$
II	$6820.6_{-2.7}^{+3.0}-i 4.0_{-1.6}^{+1.7}$	$2.5_{-0.6}^{+0.5}$	$15.8_{-0.6}^{+0.7}$	$9.1_{-0.4}^{+0.4}$

	Mass (MeV)	Width/2 (MeV)	$\left\|\gamma_{1}\right\|(\mathrm{GeV})$	$\left\|\gamma_{2}\right\|(\mathrm{GeV})$	$\left\|\gamma_{3}\right\|(\mathrm{GeV})$	X_{1}	X_{2}	X_{3}	$X=\sum_{i=1}^{3} X_{i}$
Fit I	6907_{-3}^{+5}	33_{-10}^{+14}	$4.6_{-2.8}^{+2.5}$	$9.7_{-2.4}^{+1.4}$	$5.6_{-1.5}^{+0.8}$	$0.01_{-0.01}^{+0.01}$	$0.13_{-0.04}^{+0.04}$	$0.03_{-0.01}^{+0.01}$	$0.17_{-0.07}^{+0.04}$
Fit II	6892_{-2}^{+2}	80_{-17}^{+24}	$10.3_{-1.4}^{+1.8}$	$6.9_{-1.9}^{+1.4}$	$4.0_{-1.1}^{+0.8}$	$0.05_{-0.01}^{+0.02}$	$0.06_{-0.03}^{+0.03}$	$0.01_{-0.01}^{+0.01}$	$0.13_{-0.03}^{+0.03}$

- $\left|\gamma_{1}^{\prime}\right|$ are much smaller than for $X(6900) \rightarrow$ much smaller width
- $\left|\gamma_{2,3}^{\prime}\right|$ are much larger than for $X(6900)$. HQSS rule $\gamma_{3}^{\prime} \approx \gamma_{2}^{\prime} / \sqrt{3}$
- Virtual state present only at the 4th RS \rightarrow dynamically generated (Morgan's pole counting rule)
- $b_{12}=0$. It becomes a pure bound state at 6825 (I) and 6827 (II) MeV

$X(6825)$

- $b_{12}=0$ and $m_{\chi_{c 0}}=m_{\chi_{c 1}} \rightarrow$ bound state. When $b_{12} \neq 0$ resonance in the 2nd RS

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller
 elementari-

$X(6900)$ and
$\left|\gamma_{1}^{\prime}\right|$ is very small. $\left|\gamma_{2}^{\prime}\right|$ is very large. HQSS rule $\left|\gamma_{3}^{\prime}\right| \approx\left|\gamma_{2}^{\prime}\right| / \sqrt{3}$

$\psi(3770) \mathrm{J} / \psi$ extra channel

Channel Threshold [MeV]

$$
\begin{array}{ll}
\text { (1) } J / \psi J / \psi & 6193.8 \\
\text { (2) } \psi(3370) J / \psi & 6870.6
\end{array}
$$

$$
\hat{\mathcal{V}}(s)=\left(\begin{array}{cc}
0 & \hat{b}_{12} \tag{1}\\
\hat{b}_{12} & \frac{\hat{b}_{22}}{M_{J / \psi}^{2}}\left(s-\hat{M}_{C D D}^{2}\right)
\end{array}\right)
$$

- Fits are not well fixed -large errorbars
- Coupling to $\psi(3770) J / \psi$ are much smaller than to $\chi_{c 0,1} \chi_{c 0,1}$-much less important role of the $\psi(3770) \mathrm{J} / \psi$ channel

Perturbative treatment of $\psi(3770) \mathrm{J} / \psi$

Compositeness and several
applications to exotic hadronic states with heavy quarks
$J / \psi J / \psi(1), \chi_{c 0} \chi_{c 0}$ (2), $\chi_{c 1} \chi_{c 1}$ (3) and $\psi(3770) J / \psi(4)$
$b_{14}=b_{44}=d_{4}=0$ Perturbative Treatment
Only one more free parameter $b_{24}=b_{34} \sqrt{3}$
Fits I and II are stable

Saturating X and Γ

Taking X from the fits exotic hadronic
$X=X_{1}+X_{2}+X_{3}$
$=\left|\gamma_{1}\right|^{2}\left|\frac{d G_{1}^{\mathrm{II}}\left(s_{R}\right)}{d s}\right|+\left|\gamma_{2}\right|^{2}\left|\frac{d G_{2}^{\mathrm{II}}\left(s_{R}\right)}{d s}\right|+\frac{\left|\gamma_{2}\right|^{2}}{3}\left|\frac{d G_{3}\left(s_{R}\right)}{d s}\right|$, states with heavy

$$
\Gamma=\Gamma_{1}+\Gamma_{2}+\Gamma_{3}
$$

$$
=\left|\gamma_{1}\right|^{2} \frac{q_{1}\left(M_{R}^{2}\right)}{8 \pi M_{R}^{2}}+\left|\gamma_{2}\right|^{2} \int_{m_{\mathrm{th}, 2}}^{M_{R}+2 \Gamma_{R}} d w \frac{q_{2}\left(w^{2}\right)}{16 \pi^{2} w^{2}} \frac{\Gamma_{R}}{\left(M_{R}-w\right)^{2}+\Gamma_{R}^{2} / 4}
$$

$$
+\frac{\left|\gamma_{2}\right|^{2}}{3} \int_{m_{\mathrm{th}, 3}}^{M_{R}+2 \Gamma_{R}} d w \frac{q_{3}\left(w^{2}\right)}{16 \pi^{2} w^{2}} \frac{\Gamma_{R}}{\left(M_{R}-w\right)^{2}+\Gamma_{R}^{2} / 4},
$$

recall $\left|\gamma_{3}\right| \approx\left|\gamma_{2}\right| / \sqrt{3}$
Fit I $X=0.17$

$$
\begin{aligned}
& \left|\gamma_{1}\right|=6.2 \mathrm{GeV}, \quad\left|\gamma_{2}\right|=9.5 \mathrm{GeV} \\
& \Gamma_{1}=49.7 \mathrm{MeV}, \quad \Gamma_{2}=30.1 \mathrm{MeV}, \quad \Gamma_{3}=0.2 \mathrm{MeV}, \\
& x_{1}=0.018, \quad X_{2}=0.126, \quad X_{3}=0.026,
\end{aligned}
$$

Fit II $X=0.13$

$$
\begin{aligned}
& \left|\gamma_{1}\right|=11.1 \mathrm{GeV}, \quad\left|\gamma_{2}\right|=6.7 \mathrm{GeV} \\
& \Gamma_{1}=154.7 \mathrm{MeV}, \quad \Gamma_{2}=12.8 \mathrm{MeV}, \quad \Gamma_{3}=0.5 \mathrm{MeV}, \\
& X_{1}=0.06, \quad X_{2}=0.06, \quad X_{3}=0.01
\end{aligned}
$$

The $\left|\gamma_{i}\right|$ are in good agreement with the fit values
Decay partial widths and partial compositeness coefficients are provided

Basic formalism on elementariness/compositeness Resonances
$Z_{b}(10010)$,

7.- $P_{c s}(4459) . X-\Gamma$ studies

Charmonium pentaquark resonance with strangeness $P_{c s}(4459)$ by the LHCb Sci.Bull.66,1278(2021)

$$
M_{R}=4458.8 \pm 2.9_{-1.1}^{+4.7} \mathrm{MeV}, \quad \Gamma_{R}=17.3 \pm 6.5_{-5.7}^{+8-0} \mathrm{MeV}
$$

$J / \psi \Lambda$ event distributions -one or two resonances, $\quad J=1 / 2$ or $3 / 2$

Theoretical predictions Wu,Molina,Oset,Zou,PRL(2010) and others
Our three methods \rightarrow Molecular nature of the $P_{C S}(4459)$
Elastic-ERE Study

Resonance	Mass (MeV)	Width (MeV)	Threshold (MeV)	$a(\mathrm{fm})$	$r(\mathrm{fm})$	X
$P_{c s}$	4458.8 ± 5.5	17.3 ± 10.3	$\Xi_{c}^{\prime} D(4446.0)$	-0.63 ± 0.38	-3.68 ± 2.11	0.31 ± 0.19
$P_{c s}$	4458.8 ± 5.5	17.3 ± 10.3	$\Xi_{c} D^{*}(4478.0)$	-1.79 ± 0.23	-0.94 ± 0.13	\cdots

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller elementari-
ness/compositeness Resonance
$Z_{b}(10610)$,

Saturating X and Γ

Main difference: To take into account the partial-decay width to $J / \psi \Lambda \rightarrow$ reproducing with the elastic ERE not the total width but partial-decay widths
Phase-space suppression:
Distance from M_{R} to threshold $\sim \Gamma_{R}$

$$
\begin{aligned}
X & =X_{1}+X_{2}=\left|g_{1}\right|^{2}\left|\frac{d G_{1}^{\mathrm{II}}\left(s_{R}\right)}{d s}\right|+\left|g_{2}\right|^{2}\left|\frac{d G_{2}\left(s_{R}\right)}{d s}\right| \\
\Gamma=\Gamma_{1}+\Gamma_{2} & =\left|g_{1}\right|^{2} \frac{q_{1}\left(M_{R}^{2}\right)}{8 \pi M_{R}^{2}} \\
& +\left|g_{2}\right|^{2} \int_{m_{\mathrm{th}, 2}}^{M_{R}+n \Gamma_{R}} d w \frac{q_{2}\left(w^{2}\right)}{16 \pi^{2} w^{2}} \frac{\Gamma_{R}}{\left(M_{R}-w\right)^{2}+\Gamma_{R}^{2} / 4}
\end{aligned}
$$

Compositeness and
exotic hadronic states with heavy quarks

José Antonio Oller
-

$$
\bar{\square}
$$

(1) $J / \psi \Lambda$, (2) $\equiv_{c} \bar{D}^{*}$

	$\left\|g_{1}\right\|(\mathrm{GeV})$	$\left\|g_{2}\right\|(\mathrm{GeV})$	$\Gamma_{1}(\mathrm{MeV})$	$\Gamma_{2}(\mathrm{MeV})$	X_{1}	X_{2}
$X=0.1$	$3.5_{-0.8}^{+1.0}$	$4.3_{-0.4}^{+0.2}$	$16.4_{-6.7}^{+9.5}$	$0.9_{-0.5}^{+0.5}$	$0.02_{-0.01}^{+0.01}$	$0.08_{-0.01}^{+0.01}$
$X=0.5$	$3.1_{-0.7}^{+0.7}$	$10.4_{-0.8}^{+0.6}$	$12.3_{-4.9}^{+5.9}$	$5.0_{-2.9}^{+4.7}$	$0.01_{-0.01}^{+0.01}$	$0.49_{-0.01}^{+0.01}$
$X=1.0$	$2.3_{-0.4}^{+0.4}$	$14.8_{-1.0}^{+1.0}$	$7.1_{-2.3}^{+1.7}$	$10.2_{-5.5}^{+9.5}$	$0.0_{-0.0}^{+0.0}$	$1.0_{-0.0}^{+0.0}$

(1) $J / \psi \Lambda$, (2) $\Xi^{\prime} \bar{D}$

	$\left\|g_{1}\right\|(\mathrm{GeV})$	$\left\|g_{2}\right\|(\mathrm{GeV})$	$\Gamma_{1}(\mathrm{MeV})$	$\Gamma_{2}(\mathrm{MeV})$	X_{1}	X_{2}
$X=0.1$	$3.2_{-1.0}^{+1.2}$	$3.8_{-0.4}^{+0.2}$	$13.0_{-6.4}^{+12.2}$	$4.3_{-1.4}^{+1.8}$	$0.01_{-0.00}^{+0.02}$	$0.09_{-0.02}^{+0.00}$
$X=0.3$	$1.4_{-0.0}^{+2.0}$	$7.0_{-0.4}^{+0.4}$	$2.5_{-0.0}^{+12.2}$	$14.8_{-6.1}^{+4.3}$	$0.00_{-0.00}^{+0.02}$	$0.30_{-0.02}^{+0.00}$

No solution for $X \gtrsim 0.3 \rightarrow$ If $P_{c s}$ is of molecular type then it must be made up by $\bar{\Xi}_{c} \bar{D}^{*}$

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller

Basic formalism on elementariness/compositeness

Resonances
$Z_{b}(10010)$
$Z_{b}(10650)$
$Z_{C s}(3985)$
$Z_{c}(3900)$
X(4020)
CDD poles. Track
of elementariness
$X(6900)$ and
$X(6825)$
$P_{C S}(4459)$

Fits to data: $P_{c s}(4459)$

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller
S-wave scattering

- $P_{c s}(4459)$ is very close to the thresholds of (2) and (3)
- HQSS. The $J / \psi \wedge\left(\eta_{c} \Lambda\right)$ cannot couple to (2)-(3) in D and higher partial waves

$$
\begin{gather*}
\mathcal{T}_{J}(s)=\left[\mathbb{I}-\mathcal{V}_{J} \cdot G(s)\right]^{-1} \cdot \mathcal{V}_{J}(s) . \\
\mathcal{V}_{\frac{1}{2}}=\left(\begin{array}{ll}
0 & g \\
g & C_{\frac{1}{2}}
\end{array}\right), \quad \mathcal{V}_{\frac{3}{2}}=\left(\begin{array}{ll}
0 & g \\
g & C_{\frac{3}{2}}
\end{array}\right) . \tag{cs}
\end{gather*}
$$

(1) $J / \psi \wedge \quad 4212.6$
(2) $\equiv_{c} \bar{D}^{*} \quad 4478.0$

Channel	Threshold $[\mathrm{MeV}]$
(1) $J / \psi \Lambda$	4212.6
(2) $\bar{\Xi}_{c} \bar{D}^{*}$	4478.0

Two-channel case

Direct $J / \psi \Lambda$ and $\eta_{c} \wedge$ scattering is OZI suppressed. LQCD Skerbis, Prelovsek PRD99(2019),...

HQSS: $C_{\frac{1}{2}}=C_{\frac{1}{3}}$

We let them float as a check of completeness of the model
J / ψ production amplitude and event distribution

$$
\begin{gathered}
F_{J}(s)=\frac{d_{J}}{\Delta_{J}(s)}=\frac{d_{J}}{1-\left(C_{J}+G_{1}(s) g^{2}\right) G_{3}(s)} \\
\Delta_{J}(s)=\operatorname{det}\left[\mathbb{I}-\mathcal{V}_{J} \cdot G(s)\right] \\
\frac{d N(s)}{d \sqrt{s}}=\frac{1}{128 \pi^{3} M_{\underline{\Xi}_{b}}^{3}} \frac{\sqrt{\lambda\left(M_{\Xi_{b}}^{2}, s, M_{K}^{2}\right) \lambda\left(s, M_{J / \psi}^{2}, M_{\Lambda}^{2}\right)}}{\sqrt{s}} \sum_{J}\left|F_{J}\right|^{2} .
\end{gathered}
$$

\times convolution to take into account energy resolution

Compositeness and

$J / \psi \Lambda, ~ \equiv{ }_{c} \bar{D}^{*}$ Fit Results

Compositeness and several
applications to exotic hadronic

(210), (220) J/ $\psi \Lambda, \bar{\Xi}_{c} \bar{D}^{*} ;(210)^{\prime} J / \psi \Lambda, \bar{\Xi}_{c}^{\prime} \bar{D}$
(320) J/ $\psi \Lambda, \bar{\Xi}_{c} \bar{D}^{*}, \bar{E}_{c}^{\prime} \bar{D}$
(320) $C_{\frac{1}{2}}=C_{\frac{3}{2}}$ Lack of $\Xi_{c}^{\prime} \bar{D}$ was the reason for HQSS breaking in (220) with $C_{\frac{1}{2}} \neq C_{\frac{3}{2}}$

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller

Basic formalism on elementari-
ness/compositeness
Resonances
$Z_{b}(10010)$,
$Z_{b}(10650)$
$Z_{C s}(3985)$,
$Z_{c}(3900)$,
X(4020)

CDD poles. Track

of elementariness
$X(6900)$ and
$X(6825)$
$P_{C S}(4459)$
Conclusions

CDD poles: If including linear s dependence
$C_{\frac{1}{2}}\left(\frac{s}{M_{\mathrm{CDD}}{ }^{-1}}-1\right) \rightarrow$ Resonance poles in the 1 st RS!

$$
V_{\frac{1}{2}}=\left(\begin{array}{lll}
0 & g^{\prime} & g \\
g^{\prime} & C_{\frac{1}{2}}^{\prime} & C_{\mathrm{mx}} \\
g & C_{\mathrm{mx}} & C_{\frac{1}{2}}
\end{array}\right), \quad P_{\frac{1}{2}}=\left(\begin{array}{c}
0 \\
d_{\frac{1}{2}}^{\prime} \\
d_{\frac{1}{2}}
\end{array}\right)
$$

(320) Perturbative treatment of $\bar{\Xi}^{\prime} \bar{D}$

$$
g^{\prime}=C_{\frac{1}{2}}^{\prime}=d_{\frac{1}{2}}^{\prime}=0
$$

Fit	χ^{2}	C_{mx}	g^{\prime}	$C_{\frac{1}{2}}^{\prime}$	$d_{\frac{1}{2}}^{\prime}$
(320)	3.06	$851.1_{-148.1}^{+341.0}$	0	0	0
$(320)_{1}$	3.00	$885.6_{-204.9}^{+333.4}$	$59.6_{-249.2}^{+160.7}$	0	0
$(320)_{2}$	2.81	$579.8_{-2201.5}^{+1014}$	0	$187.6_{-831.8}^{+174.8}$	0

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller Basic formalism on elementariResonances

CDD poles. Track of elementariness
$X(6900)$ and
$X(6825)$
$P_{C S}(4459)$
Conclusions

Poles

RSII (-,+,+), RSIII (-, -, +), RSIV (-,-, -)
$\left.\begin{array}{lcccccr}\hline \hline \text { Type } & J & \text { RS } & \sqrt{s_{R}}(\mathrm{MeV}) & \left|g_{1}\right|(\mathrm{MeV}) & \left|g_{2}\right|(\mathrm{MeV}) & \left|g_{3}\right|(\mathrm{MeV}) \\ \hline(320) & 3 / 2 & \text { RSII } & 4466.6_{-2.7}^{+1.9}-i 1.3_{-3.7}^{+1.3} & 1.4_{-1.4}^{+1.4} & \times & 12.6_{-0.6}^{+0.8} \\ (320) & (-+) & 1 / 2 & \text { RSIII } & 4453.8_{-3.3}^{+2.4}-i 2.8_{-0.8}^{+0.9} & 0.6_{-0.6}^{+0.6} & 4.2_{-0.4}^{+0.2}\end{array} \lll<15.0_{-0.3}^{+0.5}\right)$

$$
\begin{gathered}
J=1 / 2: \Gamma_{1}=0.5_{-0.5}^{+1.9} \mathrm{MeV}, \Gamma_{2}=4.3_{-1.4}^{+1.2} \mathrm{MeV}, \Gamma_{3}=0.9_{-0.6}^{+1.2} \mathrm{MeV} \\
X_{1}=0.0 \pm 0.0, X_{2}=0.15 \pm 0.05 \\
J=3 / 2: \Gamma_{1}=2.6_{-2.6}^{+8.2} \mathrm{MeV}, \Gamma_{3}=0.4_{-0.4}^{+2.5} \mathrm{MeV} \\
X_{1}=0.0 \pm 0.0, \quad X_{3}=1.0_{-0.2}^{+0.2}
\end{gathered}
$$

Composite resonances, like $P_{c}(4312), P_{c}(4380), P_{c}(4440)$,
$P_{c}(4457)$ Du,et. al. PRL124,072001(2020)
$J / \psi \wedge, \bar{\Xi}_{c} \bar{D}^{*}$ only

Fit	RS	$\sqrt{s_{R}}(\mathrm{MeV})$	$\left\|g_{1}\right\|(\mathrm{MeV})$	$\left\|g_{2}\right\|(\mathrm{MeV})$
(210)	$(-+)$	$4463.2_{-4.4}^{+2.8}-i 7.1_{-2.8}^{+2.8}$	$3.29_{-0.68}^{+0.64}$	$13.81_{-0.68}^{+0.87}$
(220)	$(-+)$	$4465.5_{-2.3}^{+2.3}-i 3.8_{-3.4}^{+2.3}$	$1.20_{-0.44}^{+0.46}$	$13.01_{-0.65}^{+0.62}$
(220)	$(-+)$	$4452.1_{-2.0}^{+2.4}-i 0.5_{-0.3}^{+0.3}$	$0.88_{-0.33}^{+0.46}$	$15.73_{-0.41}^{+0.33}$

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller

8.- Conclusions

Compositeness and

Fits to data
w/wo CDDs

1 Classic formalism for elementariness and compositeness
2 New formalism based on the use of the number operators of free particles JAO,ANP (2018)
$3 Z_{b}(10610), Z_{b}(10650)$ Admixture
$4 Z_{c s}$ (3985), Z_{c} (3900), X (4020) Related dynamics
$5 X$ (6900) Elementary. X (6825) Composite virtual state.
$6 P_{c s}(4459)$ Composite

Saturating
X and Γ_{R}

Contact interactions: $\left|k_{n, B}\right| \ll \Lambda$

Guo,JAO,PRD103,054021(2021)

$$
X=\frac{2 m^{2}}{\pi^{2}} \int_{0}^{\infty} k^{2} \frac{g\left(k^{2}\right)^{2}}{\left(k^{2}-k_{B}^{2}\right)^{2}} d k, k_{B}^{2}=2 m E_{B}
$$

- Expansion of $g\left(k^{2}\right)^{2}$ in powers of $k^{2}-k_{B}^{2}$

$$
g\left(k^{2}\right)=g\left(k_{B}^{2}\right)+c_{1}\left(k^{2}-k_{B}^{2}\right)+c_{2}\left(k^{2}-k_{B}^{2}\right)^{2}+\ldots
$$

- Dimensional regularization \rightarrow power-like divergences vanish

$$
\begin{aligned}
X & =-\left.g\left(k_{B}^{2}\right)^{2} \frac{\partial G(E)}{\partial E}\right|_{E_{B}}-\left.\frac{m^{2}\left|k_{B}\right|}{\pi} \frac{\partial g\left(k^{2}\right)^{2}}{\partial k^{2}}\right|_{E_{B}} \\
& =-g\left(k_{B}^{2}\right)^{2} \frac{i \mu^{2}}{2 \pi k_{B}}+\mathcal{O}\left(\frac{k_{B}^{2}}{\Lambda^{2}}\right)
\end{aligned}
$$

If k_{B}^{2} dependence of $g\left(k_{B}^{2}\right)$ is neglected \rightarrow Weinberg's formula for $1-Z$ for a shallow bound state

Equality of the wave functions of the Gamow state and its dual

$$
\begin{aligned}
& \left|\psi_{\alpha}^{+}\right\rangle=\left|\varphi_{\alpha}\right\rangle+\int d \gamma \frac{T_{\gamma \alpha}(E+i \varepsilon)}{E+i \varepsilon-E_{\gamma}}\left|\varphi_{\gamma}\right\rangle+\sum_{n} \frac{T_{n \alpha}(E)}{E-E_{n}}\left|\varphi_{n}\right\rangle \\
& \left\langle\psi_{\alpha}^{-}\right|=\left\langle\varphi_{\alpha}\right|+\int d \gamma \frac{T_{\gamma \alpha}(E+i \varepsilon)}{E+i \varepsilon-E_{\gamma}}\left\langle\varphi_{\gamma}\right|+\sum_{n} \frac{T_{n \alpha}(E)}{E+i \varepsilon-E_{n}}\left\langle\varphi_{n}\right|
\end{aligned}
$$

Therefore,

$$
\left\langle\psi_{\alpha}^{-} \mid \varphi_{\gamma}\right\rangle=\left\langle\varphi_{\gamma} \mid \psi_{\alpha}^{+}\right\rangle=\frac{T_{\gamma \alpha}(E+i \varepsilon)}{E+i \varepsilon-E_{\gamma}} \rightarrow \frac{g_{\gamma}\left(k_{n}\right)^{2}}{\left(E_{n}-E_{\gamma}\right)^{2}}
$$

Instead of $\left|g_{\gamma}\left(k_{n}\right)\right|^{2}$. Wave-function squared
Hernández,Mondragón (1984)

$$
u_{n \prime}\left(q ; k_{n}\right)=\widetilde{u}_{n \prime}\left(q ; k_{n}\right)
$$

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller Basic formalism on elementari-
ness/compositeness Resonances

Compositeness and several
applications to exotic hadronic states with heavy quarks

José Antonio Oller

$$
\left(\frac{1}{T_{2}+T_{4}+G T_{2}^{2}}+G\right)^{-1}
$$

Basic formalism on elementariness/compositeness

$$
\frac{1}{T_{2}+T_{4}+G T_{2}^{2}}+G=\frac{1}{T_{2}}-\frac{T_{4}}{T_{2}^{2}}+\ldots
$$

$Z_{b}(10610)$
$Z_{b}(10650)$
$Z_{c s}(3985)$,
$Z_{c}(3900)$,

$$
T_{I A M}=\left(\frac{1}{T_{2}}-\frac{T_{4}}{T_{2}^{2}}\right)^{-1}=\frac{T_{2}^{2}}{T_{2}-T_{4}}
$$

X(1020)
CDD poles. Track of elementariness
$X(6900)$ and $X(6825)$
$P_{C S}$ (4459)
Conclusions

