Review of Lattice QCD calculations for Rare Kaon decays

Ryan Hill

RBC-UKQCD

4th August 2022 XVth Quark Confinement and the Hadron Spectrum Conference

The RBC & UKQCD collaborations

UC Berkeley/LBNL Aaron Meyer

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Peter Boyle (Edinburgh) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christopher Kelly Meifeng Lin Hiroshi Ohki Shigemi Ohta (KEK) Amariit Soni

CERN

Andreas Jüttner (Southampton)

Columbia University

Norman Christ Duo Guo Yikai Huo Yong-Chull Jang Joseph Karpie Bob Mawhinney Ahmed Sheta Bigeng Wang Tianle Wang Yidi Zhao

University of Connecticut

Tom Blum Luchang Jin (RBRC) Michael Riberdy Masaaki Tomii

Edinburgh University

Matteo Di Carlo Luigi Del Debbio Felix Erben Vera Gülpers Tim Harris Raoul Hodgson Nelson Lachini Michael Marshall Fionn Ó hÓgáin Antonin Portelli James Richings Azusa Yamaguchi Andrew Z.N. Yong

KEK

Julien Frison

University of Liverpool Nicolas Garron

<u>Michigan State University</u> Dan Hoying Milano Bicocca Mattia Bruno

<u>Peking University</u> Xu Feng

University of Regensburg Davide Giusti

Christoph Lehner (BNL)

University of Siegen

Matthew Black Oliver Witzel

University of Southampton

Nils Asmussen Alessandro Barone Jonathan Flynn Ryan Hill Rajnandini Mukherjee Chris Sachrajda

<u>University of Southern Denmark</u> Tobias Tsang

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

- $K \to \pi \ell \bar{\ell}, K \to \pi \nu \bar{\nu}$: Flavour-changing neutral currents \to Highly suppressed; sensitive to new physics
- Rare K decays feature long-distance contributions of the form

$$\int d^4x \langle \pi | {\cal J}(x) {\cal H}_W(0) | K
angle$$

 \rightarrow Long-distance here means distances $\gtrsim 1/m_c$

Significant or dominant effects for several channels
 → Non-perturbatively calculable

Background

- Theoretical framework for lattice computations of $K \to \pi \ell \bar{\ell}$ and $K \rightarrow \pi \nu \bar{\nu}$ first published by Isidori, Martinelli, and Turchetti (2006)¹
- Extended for full evaluation by RBC-UKQCD collaborations $\rightarrow K^+ \rightarrow \pi^+ \ell \bar{\ell}$ (2015)² $\rightarrow K^+ \rightarrow \pi^+ \nu \bar{\nu}$ (2016)³
- Proof-of-concept: RBC-UKQCD Exploratory calculations $\rightarrow K^+ \rightarrow \pi^+ \ell \bar{\ell}$ (2016)⁴ $\rightarrow K^+ \rightarrow \pi^+ \nu \bar{\nu} \ (2017)^{5} \ ^6, \ (2019)^7$

Production runs

¹Phys. Lett. B 633, 75 (2006) [arXiv:hep-lat/0506026] ²Phys.Rev. D. 92 (2015) 094512 [arXiv:1507.03094] ³Phys.Rev. D 93 (2016) 114517 [arXiv:1605:04442] ⁴Phys.Rev. D 94 (2016) 114516 [arXiv:1608.07585] ⁵Phys.Rev.Lett. 118 (2017) 252001 [arXiv:1701.02858] ⁶Phys.Rev. D 98 (2018) 074509 [arXiv:1806.11520]

⁷Phys. Rev. D 100 (2019) 114506 [arXiv:1910.10644]

 $K \to \pi \ell \bar{\ell}$

• Long-distance amplitude:

$$\mathcal{A}_{\mu}(q^2) = \int d^4x \langle \pi(\mathsf{p}) | \, \mathcal{T} \left[J_{\mu}(x) \mathcal{H}_W(0)
ight] | \mathcal{K}(\mathsf{k})
angle$$

• Re-expressed using EM gauge invariance^{1 2}:

Ryan Hill

$$\mathcal{A}_{\mu}(q^{2}) = -i \frac{G_{F}}{(4\pi)^{2}} \left[q^{2} \left(k + p \right)_{\mu} - \left(M_{K}^{2} - M_{\pi}^{2} \right) q_{\mu} \right] \underbrace{V(z)}_{\text{non-pert.}}$$

$$V(z) = a + bz + V^{\pi\pi}(z)$$
 $z = q^2/M_K^2$

¹JHEP 08 (1998) 004 [arXiv:hep-ph/9808289]

²Rev. Mod. Phys. 84, 399 (2012) [arXiv:1107.6001]

 $K \to \pi \ell \bar{\ell}$

• Minkowski and Euclidean spectral representations:

$$\begin{aligned} \mathcal{A}_{\mu}(\mathbf{k},\mathbf{p}) &= +i \int_{0}^{\infty} dE \frac{\rho(E)}{2E} \frac{\langle \pi(\mathbf{p}) | J_{\mu} | E, \mathbf{k} \rangle \langle E, \mathbf{k} | H_{w} | K(\mathbf{k}) \rangle}{E_{K}(\mathbf{k}) - E + i\epsilon} \\ &-i \int_{0}^{\infty} dE \frac{\rho_{S}(E)}{2E} \frac{\langle \pi(\mathbf{p}) | H_{W} | E, \mathbf{p} \rangle \langle E, \mathbf{p} | J_{\mu} | K(\mathbf{k}) \rangle}{E - E_{\pi}(\mathbf{p}) + i\epsilon} \\ \mathcal{I}_{\mu}(T_{a}, T_{b}, \mathbf{k}, \mathbf{p}) &= -\int_{0}^{\infty} dE \frac{\rho(E)}{2E} \frac{\langle \pi(\mathbf{p}) | J_{\mu} | E, \mathbf{k} \rangle \langle E, \mathbf{k} | H_{w} | K(\mathbf{k}) \rangle}{E_{K}(\mathbf{k}) - E} \left(1 - e^{[E_{K}(\mathbf{k}) - E]T_{a}}\right) \\ &+ \int_{0}^{\infty} dE \frac{\rho_{S}(E)}{2E} \frac{\langle \pi(\mathbf{p}) | H_{W} | E, \mathbf{p} \rangle \langle E, \mathbf{p} | J_{\mu} | K(\mathbf{k}) \rangle}{E - E_{\pi}(\mathbf{p})} \left(1 - e^{-[E - E_{\pi}(\mathbf{p})]T_{b}}\right) \end{aligned}$$

• T_a , T_b come from integration of normalised 4pt function: $I_{\mu}(T_a, T_b, \mathbf{k}, \mathbf{p}) = e^{-[E_{\pi}(\mathbf{p}) - E_K(\mathbf{k})]t_J} \int_{t_I - T_c}^{t_J + T_b} dt_H \widetilde{\Gamma}_{4\text{pt}}$

 $K \to \pi \ell \bar{\ell}$

$$\begin{split} I_{\mu}(T_{a}, T_{b}, \mathbf{k}, \mathbf{p}) &= -\int_{0}^{\infty} dE \frac{\rho(E)}{2E} \frac{\langle \pi(\mathbf{p}) | J_{\mu} | E, \mathbf{k} \rangle \langle E, \mathbf{k} | H_{w} | K(\mathbf{k}) \rangle}{E_{K}(\mathbf{k}) - E} \left(1 - e^{[E_{K}(\mathbf{k}) - E]T_{a}} \right) \\ &+ \int_{0}^{\infty} dE \frac{\rho_{S}(E)}{2E} \frac{\langle \pi(\mathbf{p}) | H_{W} | E, \mathbf{p} \rangle \langle E, \mathbf{p} | J_{\mu} | K(\mathbf{k}) \rangle}{E - E_{\pi}(\mathbf{p})} \left(1 - e^{-[E - E_{\pi}(\mathbf{p})]T_{b}} \right) \end{split}$$

- Amplitude corresponds to limit $T_a, T_b \rightarrow \infty$
- First line: π, ππ, and πππ on-shell intermediate states enter the spectral density (for physical masses)
 → E_K > E_π, E_{ππ}, E_{πππ}: Causes the T_a exponential to diverge!
- Lattice can't take $T_a, T_b \to \infty$

 \rightarrow Must remove exponentially growing terms in \mathcal{T}_a due to intermediate states

 \rightarrow ${\cal T}_{a},~{\cal T}_{b}$ must be large enough for exponentials to sufficiently decay

 $K \to \pi \ell \bar{\ell}$

 $K \to \pi \ell \bar{\ell}$

$K\to \pi \ell \bar\ell$

Theoretical proposal:

• Prospects for a lattice computation of rare kaon decay amplitudes: I, $K \rightarrow \pi \ell^+ \ell^-$ decays RBC-UKQCD (2015) Phys.Rev. D. 92 (2015) 094512 [arXiv:1507.03094]

Existing results:

• First exploratory calculation of the long distance contributions to the rare kaon decay $K \to \pi \ell^+ \ell^-$ RBC-UKQCD (2016)

Phys.Rev. D 94 (2016) 114516 [arXiv:1608.07585]

• Simulating rare kaon decays $K \to \pi \ell^+ \ell^-$ using domain wall lattice QCD with physical light quark masses RBC-UKQCD (2022) [arXiv:2202.08795] RBC-UKQCD Exploratory study (2016)¹:

- 2+1 flavour, $L^3 imes T = 24^3 imes 64$, $a^{-1} = 1.78~{
 m GeV}$
- ${\sim}430~{\rm MeV}$ pion, ${\sim}625~{\rm MeV}$ Kaon
 - \rightarrow Only single- π intermediate state enters spectral density
- Shamir Domain Wall Fermions: good chiral symmetry \rightarrow simplified renormalisation

¹Phys.Rev. D 94 (2016) 114516 [arXiv:1608.07585]

 $K \to \pi \ell \bar{\ell}$

 $K \to \pi \ell \bar{\ell}$

RBC-UKQCD physical-point calculation (2022)¹:

- 2+1 flavour, $L^3 \times T = 48^3 \times 96$, $a^{-1} = 1.73 \text{ GeV}$
- Physical Pion and Kaon masses
 - \rightarrow Expensive calculation!
 - \rightarrow Energy budget allows $\pi,\,\pi\pi,\,\pi\pi\pi$ intermediate states
- zMöbius Domain Wall Fermions: **Reduced computational** expense in addition to simplified renormalisation
 - \rightarrow Requires an All-Modes-Averaging (AMA) style correction to correlators

 \rightarrow Allows statistics to be accumulated on a cheaper estimator and then be shifted to the full Möbius action

1 [arXiv:2202.08795] Intermediate states:

- π IS: Significant contribution, can be removed *via* techniques demonstrated in exploratory study
- $\pi\pi$ IS: Introduced by lattice artefacts, at practical values of T_a expected to be percent-level effect¹
- $\pi\pi\pi$ IS: Compare decay widths of $K_S \to \pi\pi$ to $K_{S,+} \to \pi\pi\pi$: factor $\sim \mathcal{O}(1/500)$ further suppressed, $\pi\pi\pi$ completely negligible for forseeable future with these values of T_a^{-1}

¹Phys.Rev. D. 92 (2015) 094512 [arXiv:1507.03094]

 $K \to \pi \ell \bar{\ell}$

•
$$A_0 = 0.00035(180)$$

•
$$V(z) = -0.87(4.44)$$

- *z* = 0.013(2)
- $V(z) \approx V(0) = a^+$ for our choice of kinematics
- Form factor unfortunately unresolved, but let's investigate why...

 $K \to \pi \ell \bar{\ell}$

Exploratory Study

Physical-Point

- Plots show the GIM subtraction for the saucer diagram constructed from the *I* and *c* quark correlators
- GIM subtraction does not lead to a cancellation of errors with physical light masses

$K \to \pi \ell \bar{\ell}$

• Much reduced correlation between *l* and *c* loop quark diagrams at physical point due to large mass difference

Statistical error cannot be overcome by square-root scaling of additional statistics <u>alone</u> in near future.

- \rightarrow Potential ways forward:
 - Improvement of estimators for up- and charm-loop propagators
 - \rightarrow Similar to issues faced in disconnected diagrams
 - Forgo explicit charm contribution to GIM loop and handle *via* different renormalisation procedure

 \rightarrow Look to $K \rightarrow \pi \nu \bar{\nu}$ for lessons learned

 \rightarrow Combination of algorithmic improvements and next-generation computers makes a competitive lattice result appear feasible in the coming years.

$K \to \pi \nu \bar{\nu}$

$$Br(\mathcal{K}^+ \to \pi^+ \nu \bar{\nu}) = \kappa \left(\left[\frac{\Im \mathfrak{m}(\lambda_t)}{\lambda^5} X_t \left(\frac{m_t^2}{M_W^2} \right) \right]^2 + \left[\frac{\Re \mathfrak{e}(\lambda_c)}{\lambda} P_c + \frac{\Re \mathfrak{e}(\lambda_t)}{\lambda^5} X_t \left(\frac{m_t^2}{M_W^2} \right) \right]^2 \right)$$

- $\lambda = |V_{us}|$
- $\lambda_q = V_{qs}^* V_{qd}$
- Top contribution: ${\sim}68\%$
- Charm contribution: ~32%

$$ightarrow$$
 Short-distance: \sim 29%

 \rightarrow Long-distance: \sim 3% \Rightarrow Non-negligible contribution

- SM¹: $Br(K^+ \to \pi^+ \nu \bar{\nu}) = (9.11 \pm 0.72) \times 10^{-11}$
- NA62²: $Br(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{\text{stat.}} \pm 0.9_{\text{syst.}}) \times 10^{-11}$
 - \rightarrow Based on Run 1 (2016-2018) results
 - \rightarrow Run 2 (2021-2024) will be of great interest
- Long-distance contributions will comprise a larger portion of SM error as CKM uncertainties continue to fall

¹JHEP 11 (2015) 033 [arXiv:1503.02693] ²JHEP 06 (2021) 093 [arXiv:2103.15389]

Diagrams

- Similar to $K \to \pi \ell \bar{\ell}$, but with electromagnetic current \to neutral weak current
- Additionally: W-W box diagrams:

$K\to \pi\nu\bar\nu$

Theoretical proposal:

• Prospects for a lattice computation of rare kaon decay amplitudes: II, $K \rightarrow \pi \nu \bar{\nu}$ decays RBC-UKQCD (2016) Phys.Rev. D 93 (2016) 114517 [arXiv:1605:04442]

Existing results:

• Exploratory lattice QCD study of the rare kaon decay $K^+ \to \pi^+ \nu \bar{\nu}$ RBC-UKQCD (2017)

Phys.Rev.Lett. 118 (2017) 252001 [arXiv:1701.02858]

• $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay amplitude from lattice QCD RBC-UKQCD (2018)

Phys.Rev. D 98 (2018) 074509 [arXiv:1806.11520]

• Lattice QCD study of the rare kaon decay $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ at a near-physical pion mass RBC-UKQCD (2019) Phys. Rev. D 100 (2019) 114506 [arXiv:1910.10644] RBC-UKQCD Exploratory study $(2017)^{1}$ ², sought to overcome three issues before a full calculation:

- Contamination from intermediate $|\ell^+\nu\rangle$, $|\pi^0\ell^+\nu\rangle$, $|(\pi^+\pi^0)^{I=2}\rangle$ states
- New UV divergences as neutral current and H_W approach, unlike $K^+ \to \pi^+ \ell \bar{\ell}$

 \rightarrow Additional counter-terms in renormalisation

• Finite-volume effects introduced by $\pi\pi$ on-shell intermediate states

¹Phys.Rev.Lett. 118 (2017) 252001 [arXiv:1701.02858]

²Phys.Rev. D 98 (2018) 074509 [arXiv:1806.11520]

 $K \to \pi \nu \bar{\nu}$

$K \to \pi \nu \bar{\nu}$

RBC-UKQCD Near-physical-point calculation (2019)¹, main findings:

- Mild momentum-dependence of the amplitude
 - \rightarrow Lattice QCD is expensive to simulate at different momenta \rightarrow Implies that a good estimate of long-distance contribution could be obtained at a single kinematic point
- $\pi\pi$ Intermediate state: < 1% contribution
- Finite-volume effects from $\pi\pi$ intermediate states negligible

Main systematics under control

 \rightarrow Groundwork now laid out for a full physical-point calculation.

¹Phys. Rev. D 100 (2019) 114506 [arXiv:1910.10644]

$K \to \pi \nu \bar{\nu}$

Conclusions

- $K \to \pi \ell \bar{\ell}$
 - \rightarrow Viability of calculation demonstrated at physical point
 - \rightarrow Next steps identified: gain control of GIM loop stochastic estimators or sidestep the explicit simulation thereof
- $K \to \pi \nu \bar{\nu}$

 \rightarrow Exploratory studies providing important insights for a full physical-point calculation

- $K \to \pi \ell \bar{\ell}$: Challenging calculation with physical kinematics achieved. Competitive errors in the next few years?
- $K \to \pi \nu \bar{\nu}$: Next target: calculation with full physical kinematics
- Related efforts: Rare $\Sigma^+ o p \ell^+ \ell^-$