

Andreas Schmitt

Mathematical Sciences and STAG Research Centre University of Southampton Southampton SO17 1BJ, United Kingdom

Chiral anomaly induces superconducting baryon crystal

G. W. Evans and A. Schmitt, arXiv:2206.01227 [hep-th]

- QCD phase structure in the $\mu - B$ plane
- chiral soliton lattice and its instability
- charged pion condensation (type-II superconductor)

Chiral perturbation theory with chiral anomaly

 N_f = 2 chiral perturbation theory +electromagnetism+ chiral anomaly D.T. Son, M.A. Stephanov, PRD 77, 014021 (2008)
T. Brauner, N. Yamamoto, JHEP 04, 132 (2017)

$$\mathcal{L} = \frac{f_{\pi}^2}{4} \operatorname{Tr}[\nabla_{\mu} \Sigma^{\dagger} \nabla^{\mu} \Sigma] + \frac{m_{\pi}^2 f_{\pi}^2}{4} \operatorname{Tr}[\Sigma + \Sigma^{\dagger}] - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \left(A_{\mu}^B - \frac{e}{2} A_{\mu}\right) j_B^{\mu}$$

with $\nabla^{\mu}\Sigma = \partial^{\mu}\Sigma - i[\mathcal{A}^{\mu}, \Sigma]$ and anomalous baryon current J. Wess, B. Zumino, PLB 37, 95 (1971); E. Witten, NPB 223, 422 (1983) J. Goldstone, F. Wilczek, PRL 47, 986 (1981)

$$j_B^{\mu} = -\frac{\epsilon^{\mu\nu\rho\lambda}}{24\pi^2} \operatorname{Tr}\left[(\Sigma\nabla_{\nu}\Sigma^{\dagger})(\Sigma\nabla_{\rho}\Sigma^{\dagger})(\Sigma\nabla_{\lambda}\Sigma^{\dagger}) + \frac{3ie}{4}F_{\nu\rho}\tau_3(\Sigma\nabla_{\lambda}\Sigma^{\dagger} + \nabla_{\lambda}\Sigma^{\dagger}\Sigma) \right]$$

- parametrize $\pi^0, \pi^{\pm} \rightarrow \alpha \in \mathbb{R}, \varphi \in \mathbb{C}$
- anomalous current receives contributions from magnetic field and vorticity

$$j_B^{\mu} = -\frac{\epsilon^{\mu\nu\rho\lambda}}{4\pi^2} \partial_{\nu}\alpha \left(\frac{e}{2}F_{\rho\lambda} + \frac{\partial_{\rho}j_{\lambda}}{ef_{\pi}^2}\right)$$

Chiral soliton lattice (CSL)

T. Brauner, N. Yamamoto, JHEP 04, 132 (2017)

- anomaly couples neutral pions to magnetic field via $\mu \nabla \pi^0 \cdot \vec{B}$ D. T. Son and A. R. Zhitnitsky, PRD 70, 074018 (2004)
- "stack of domain walls" for $eB > \frac{16\pi m_\pi f_\pi^2}{\mu}$

- $\nabla \pi^0 \propto n_B$ oscillates in the direction of \vec{B}
- chiral limit: $\nabla \pi^0 = \text{const}$

Instability towards pion condensation

• charged pion fluctuations in CSL (chiral limit)

$$\omega_n = \sqrt{(2n+1)eB + m_*^2 + k_z^2 - \mu_*}$$

with

$$m_*^2 = \mu_*^2 \left[1 - 4 \left(\frac{4\pi^2 f_\pi^2}{eB} \right)^2 \right], \qquad \mu_* = \frac{\mu}{2} \left(\frac{eB}{4\pi^2 f_\pi^2} \right)^2$$

 $\Rightarrow \text{ instability of } n = k_z = 0$ mode for

$$B > B_{c2} = \frac{16\pi^4 f_\pi^4}{e\mu^2}$$

• analogous to ordinary type-II superconductor, where $m_*, \mu_* = \text{const}$ and instability for $B < B_{c2}$

Recall type-II superconductivity

Expansion close to B_{c2} (page 1/2)

method based on A.A. Abrikosov, Soviet Physics JETP 5, 1174 (1957) W.H. Kleiner, L.M. Roth, S.H. Autler, Phys. Rev. 133, A1226 (1964)

- work in chiral limit $m_{\pi} = 0$ for simplicity
- expand α , φ , \vec{A} about CSL solution for small $\sqrt{B B_{c2}}$
- solve equations of motion to obtain charged pion condensate

$$\varphi_0(x,y) = \sum_{n=-\infty}^{\infty} C_n e^{inqy} e^{-\frac{(x-nq\xi^2)^2}{2\xi^2}}$$

• lattice structure encoded in

$$\beta \equiv \frac{\langle |\varphi_0|^4 \rangle}{\langle |\varphi_0|^2 \rangle^2} = \sqrt{\frac{a}{2}} \left\{ \left[\vartheta_3(0, e^{-2\pi a}) \right]^2 + 2e^{-\frac{\pi a}{2}} \vartheta_3(0, e^{-2\pi a}) \vartheta_3(i\pi a, e^{-2\pi a}) - e^{-\pi a} \left[\vartheta_3(i\pi a, e^{-2\pi a}) \right]^2 \right\}$$
for $C_{\text{even } n} = \pm i C_{\text{odd } n}$ and $a \equiv q^2 \xi^2 / \pi$

Expansion close to B_{c2} (page 2/2)

• free energy density for fixed μ , $\langle B \rangle$

$$\mathcal{F} = \mathcal{F}_{\text{CSL}} - \frac{1}{2} \frac{\left(\langle B \rangle - B_{c2}\right)^2}{(2\kappa^2 - 1)\beta + 1}$$

• effective Ginzburg-Landau parameter

$$\kappa \equiv \frac{\sqrt{eB_{c2}}}{\sqrt{2} e f_{\pi}} \gg 1 \qquad (\rightarrow \text{type II})$$

 \bullet minimization of $\beta \rightarrow$ hexagonal lattice

 π^{\pm} lattice favored over CSL for $\langle B \rangle > B_{c2}$

Superconducting baryon crystal

- baryon number enhanced in magnetic flux tubes – main contribution from vorticity $\nabla \times \vec{j} \simeq e\Delta |\varphi_0|^2 \hat{\vec{e}}_z$
- lattice for $\mu = 700 \text{ MeV}, \langle B \rangle = 1.01 B_{c2}$

• 2D lattice in plane perpendicular to \vec{B} ("baryon tubes") \rightarrow 3D lattice expected for nonzero m_{π}

Summary

• QCD at nonzero B and μ exhibits a chiral soliton lattice, which becomes unstable at sufficiently large B and/or μ

• we have constructed the resulting phase in the chiral limit: a superconducting charged pion lattice with magnetic and baryonic tubes

Outlook

- construct 3D structure with physical m_{π} G. Evans, A. Schmitt, work in progress
- 1st order transition π^{\pm} /vacuum?
- include neutrons and protons F. Preis, A. Rebhan, A. Schmitt, JPG 39, 054006 (2012)

- go beyond chiral perturbation theory for rigorous conclusions
- include isospin chemical potential M.S. Grønli, T. Brauner, EPJ C 82, 354 (2022)
- include nonzero temperatures T. Brauner, H. Kolešová, N. Yamamoto, PLB 823, 136737 (2021)
- relevance for compact stars?