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Introduction

Our main goal as physicists is to make inferences about nature
In light of the data we collect
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The Textbook way

The way we do this usually iIs through statistical inference by
formulating a data-generating process p(x|0)

When we say p(x | 0) (or “likelihood”) we actually mean two things:
- ability to generate data for a given theory: x ~ p(x|6)

- ability to evaluate the probability under a given theory: L(60) = p(x | 0)



Bayesian and Frequentist Inference

With a likelihood in hand, we can follow inference procedures

Bayesians: Let’s update our priors!

p(x|0)p(0)

9 —
p(0|x) )

Note 1: requires ability to compute p(x | 0)
Note 2: subjective choice on your priors p(60)



Bayesian and Frequentist Inference

Frequentists: let’s look at the data distribution!

e |deally In a way that accentuates the difference between theories
i.e. through a scalar “test statistic” 7(x) : R" — [
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Note 1: in principle only requires ability to sample x ~ p(x| ) and compute #(x)
Note 2: subjective choice of which test statistic 7(x) to use



Optimal Test Statistics

In reality, we often do want evaluate the likelihood p(x | 6)

Why? Because it leads to the optimal test statistic!

Neyman-Pearson Lemma: The most powerful
test is the Likelihood Ratio Test

p(x|Hp)
p(x|H)

t(x) = —2log




In what sense is it optimal?
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Optimal Test Statistics

Likelihood-Ratio is best test for any size!
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Adding Nuisance Parameters

For realistic models we often seriously expand the parameter space

nuisance parameters

/ often O(100)
0 — (1, v)

|

parameters’of
interest.. often O(10)

The Profile Likelihood:

t,(r) = —2log

p(x|u, V)
p(z|f, D)

... proven by A. Wald in 1943 to be optimal in the sense of having optimal average power



A slight problem

Unfortunately in HEP we cannot evaluate p(x | 0) - it’s likelihood-free!

Hypothesis 9
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often try to at least build an approximate
likelihood using smart dim. reduction
e.g. reconstruction & analysis

p(x|0) = p(fana(¥) | 0)

proceed using standard techniques
e.g. via pyhf-based models p_;«'i-f

Yikelihoods

derived #(x) (e.g. approx. LR) may not be
optimal, but inference will never be wrong



As discussed:
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Likelihood-free Inference and ML
are a match made in heaven

But key question: ML depends on training data,
which depends on nuisance parameters

What does uncertainty-aware ML look like



A typical workflow

. p(y(x) | pu,v)
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if y = f(x) is well-chosen, f(y(x)) — #(x)



A simple Idea

There is a path to likelihood-free frequentist inference by exploiting the
optimality properties of the test statistic we seek

If we’re using #(x) (e.g. likelihood ratio or profile likelihood ratio)
because it Is optimal....

... that just means that we can find #(x) through optimization in
function space, a.k.a. Machine Learning

» just requires samples from p(x | 6), not the likelihood



Likelihood Ratio Trick

For the non-nuisance case this is the “likelihood ratio trick”

Training to discriminate H,, v. H; will converge to a function f(x) that is 11 to

the exact Likelihood Ratio #(x) instead of
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Likelihood Ratio Trick

What’s happening? We’'re replacing a big chunk of the workflow with a NN
with a clever training objective that asymptotes to the target
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With Nuisance Parameters

Can we extend go all the way?

i.e. train a neural network f(x, 1) such that it converges to the profile likelihood

(or a function that is 11 with it)
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Go back to Wald 1943

To find appropriate training procedure to
optimize f(x, u) — tﬂ(x) we need to recall
IN what sense the profile likelihood is optimal
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1. Introduction. In this paper we shall deal with the following general prob-
lem: Let f(«!, x2, - ~+, x7, 0%, - - -, %) be the joint probability density func-
tion of the variates (chance variables) %!, - - -, x" involving 2 unknown pa-
rameters 0%, - - «, 6% Any set of & values 6!, - - -, 0% can be represented by a
point @ in the k-dimensional Cartesian space with the coordinates 6!, - - -, 6%,
We shall denote the set of all possible parameter points by @. The set Q is
called parameter space. The parameter space 2 may be the whole k-dimen-
sional Cartesian space, or a subset of it. For any subset w of {2, we shall
denote by F, the hypothesis that the parameter point lies in w. If w consists
of a single point, H, is called a simple hypothesis, otherwise H, is called a
composite hypothesis. In this paper we shall discuss the question of an ap-
propriate test of the hypothesis /, based on a large number of independent
observationson x', - -+, x".

For simplicity we shall introduce the following notations: The letter 6 or 6;
for any subscript z will denote a point in the parameter space Q. The letter x

Some of the results contained in this paper were presented. to the Society, February 22,
1941 and September 2, 1941; received by the editors March 31, 1943,
(*) Research under a grant-in-aid from the Carnegie Corporation of New York.
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Best Average Power

Wald defines optimality as a test having best average power against alternatives
“equally distant” from subspace defined by the parameters of interest

subspace of null hypo u = subspace of null hypo i = p,,

alternatives
at fixed distance
from null

alternatives at fixed
distance from null

1 POI, 1 NP 2 POl, 1 NP i




Best Average Power

Gives us a clear recipe on what loss to train our network on.

* | R trick: binary cross entropy optimizes for best power for fixed alternative
 Wald: Profile LR will emerge from optimized for best average power

> optimize on best average BXE by sampling fixed-distance
alternatives and average over them. Then watch f(x, 1) — £,(x)

Algorithm 1 Training a Test Statistic with Best Average Power

Require: 7): learning rate

Require: ¢g: initial parameters

Require: 6 ~ p(0), 8 ~ p(0,S.|0p): sampling routines
1: while not converged do

0o = (mo,vo) ~ p(6) > sample null
0; = (ui,v;) ~ p(0,Sc|0p) > sample alternatives
(i, y:) ~ p(x|0o), p(x|6;) > null: y; = 0, all alternatives have y; = 1

pi < 8¢(Zi; pro)

L= Znul],alts Lxg(Yi, i)
Git1 < ¢ — NV L

8: end while

9: return ¢y




Does this work?

Check on a well-known example from HEP stats: the on-off problem

p(z1, Z2|p, v) = Pois(z1|ps + vb)Pois(z2|v7d),

In this case we can solve for the true profile likelihood analytically

) n—m/T
K = /,
S
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|

(n+m— (1+7)us)2 +4(1 + 7)mus

4(1 + 7)?

can check, whether this idea works
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Abstract

We describe likelihood-based statistical tests for use in high energy physics for the
discovery of new phenomena and for construction of confidence intervals on model pa-
rameters. We focus on the properties of the test procedures that allow one to account
for systematic uncertainties. Explicit formulae for the asymptotic distributions of test
statistics are derived using results of Wilks and Wald. We motivate and justify the use of




Examples

Does this work? Check on a well-known example from HEP Stats

p(x1, x2|u, v) = Pois(z1|us + vb)Pois(xs|v7h),
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Examples

Are these two test statistics related?

(s, t) -
Yes: they’re 11 ~; 201 — iso. regression O
:3”- 10 - 2. © -
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Examples

We can recover the “profile likelihood” in a fully likelihood free way
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Summary
t,(r) = —2log

i, U

Described method to compute p(x

» without evaluating p(x | 6)
+ without running any optimiation to find [} p. 7
e just using samples from p(x | 0)

by choosing appropriate training procedure.
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Summary

Taking Wald’s optimality criterion seriously and using it as an

optimization objective: extension of LR trick to case of nuisance
parameters

Larger Question: As physicists, we often talk about adding knowledge
to ML but open question where to add it / how much is needed

e.g. this approach manages to effectively “shortcircuit” a lot of steps
we usually associate with data analysis (fitting, model building, ...), while
retaining some nice properties (robustness to NPs)



