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The Casimir e�ect

The emergence of attractive force FC be-
tween two conducting metallic plates in
vacuum.

Predicted in 1948 by Casimir.

Indirect experimental evidence in 1958.

The direct experiment in 1997 (Lamoreaux).
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Figure 1: The schematic
picture of Casimir
e�ect. Wikipedia
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Motivation

• Systems with boundaries
• MIT bag model
• Four-fermion theory with the presence of reflective

boundaries
• CPN−1 model with Dirichlet boundary conditions
• Quenched QCD with Dirichlet boundary conditions

• The e�ect of boundaries on vacuum structure of the
theory
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Compact QED on the lattice

Action
SG[θ] = β

∑
n∈Λ

∑
µ<ν

(1− cos θP)

θPx,µν = θx,µ + θx+µ̂,ν − θx+ν̂,µ − θx,ν

Monopoles
θ̄P = θP + 2πkP ∈ [−π, π) , kP ∈ Z

jx,µ = 1
2π

∑
P∈∂Cx,µ

θ̄P ∈ Z

ρ = 1
Vol4

∑
x,µ
|jx,µ|

The presence of monopole condensate
leads to linear confinement of electric
charges.

Figure 2: The plaquette
angle at site x.

Figure 3: Schematic
illustration of
monopole charge on
the lattice.
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Casimir boundary conditions on the lattice

Figure 4: The position of Casimir plates.

B1 ≡ F23(x)

∣∣∣∣
x1=la

= 0 ,

E2 ≡ F24(x)

∣∣∣∣
x1=la

= 0 ,

E3 ≡ F34(x)

∣∣∣∣
x1=la

= 0 .

cos θx,µν

∣∣∣∣
x1=la

= 1, (µ, ν) = (23, 24, 34)

Sε[θ] =
∑
P
βP(ε)(1− cos θP), βP(ε) = β[1 + (ε− 1)δP,V ]
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The phase transition in the absence of plates

Figure 5: Left: the monopole density ρ vs lattice coupling β; Right: its susceptibility.
The vertical line marks the position of the phase transition calculated from these
observables.
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Monopole configurations in the presence of plates

Figure 6: The examples of monopole configurations in the confinement phase(left,
β = 0.8) and deconfinement phase (right, β = 0.9) for the plates separated by the
distance R = 3. Monopoles and antimonopoles are represented by the red and blue
dots, respectively. The plates, positioned vertically, are not shown.
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The monopole density between plates normalized by monopole
density in the absence of plates

Figure 7: The ratio ρins/ρ
np
ins of the monopole density ρins inside the Casimir plates to

the monopole density in the absence of the plates, ρnp
ins vs interplate separation R for

a fixed set of lattice coupling β. 8 / 13



The shift of phase transition point

Figure 8: The monopole density (left), its susceptibility (center) and the Binder
cumulant(right) for R = 2, 4, 8 (from top to bottom). 9 / 13



The phase diagram

Figure 9: The phase diagram of the vacuum of the compact U(1) gauge theory in
between the perfectly metallic plates separated by the distance R. The solid line
represents best fit βfit

c (R) = β∞
c − α exp[−(R2/R2

0)ν ] with α = 3.7(6), R0 = 0.28(7),
ν = 0.257(16). The limit R→∞ is shown by the dashed horizontal line. 10 / 13



The Polyakov loop as the deconfinement order parameter

Definitions

Px =

NT−1∏
x4=0

eiθx,x4;µ=4

P = 〈Px〉

|P| =

∣∣∣∣∣∣ 1
V3

∑
x∈V3

Px

∣∣∣∣∣∣

Figure 10: The
modulus of
Polyakov loop
in the absence
of plates.

Figure 11: The
modulus of the
Polyakov loop
in the space
between the
Casimir plates
at the
separation R at
a set of fixed
coupling β.
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The Polyakov loop inside plates for di�erent R

Figure 12: The Polyakov loop inside the plates vs β at fixed R.
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Conclusions

• From first-principle numerical simulations we show that
the structure of the vacuum of the compact U(1) gauge
model in 3 + 1 dimensions is a�ected by closely spaced
perfectly conducting parallel plates;

• The non-pertubative Casimir e�ect alternates the
dynamics of abelian monopoles, modifies the vacuum
structure, and leads to the Casimir-induced deconfining
phase transition in between plates;

• The phase diagram in the plane ”lattice coupling
constant”-”distance between the plates” is obtained;

• The presented method now is applied to the non-abelian
case – the exiciting results are coming!

Thank you for attention!
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