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In this talk I will explore 4d N = 2 susy field theories on euclidean
4-manifolds M. (and 2d N = (2, 2) theories on S

2)

There are two seemingly distinct classes of examples from which to
draw inspiration:

Topologically twisted N = 2 theories on M !

Donaldson invariants Witten...

Untwisted N = 2 theories on S
4
b !

Partition function/ Susy Wilson loops Pestun....

Window on the dynamics of strongly interacting QFT.

Interplay with geometry of M4.

What is the most general setting to explore? Klare, Za↵aroni;
Butter, Inverso, Lodato
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Motivation 1: Donaldson-Witten

Twisting of N = 2 SYM results in topological theory Witten
This theory localizes on instantons on four manifold M4.

F
+ = 0 Elliptic problem

Schematically:
Z

M

p
gF

2 =

Z

M

p
g (F+)2 +

Z
F ^ F

Adding fermions and SUSY

�2 = 0 , SSYM = �(...) + topological term
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Adding equivariance

M4 can admit a torus action T
2
⇥M ! M

e.g. R4 = C2 and (z1, z2) ! (z1e i✓1 , z2e i✓2)

Deformation of DW Losev, Moore, Nekrasov, Shatashvili

�2 = Lv where v = ✏1
@

@✓1
+ ✏2

@

@✓2

Instanton partition function on R4
✏1,✏2 Nekrasov

Z
inst
✏1,✏2(a, q) = Z1�loop(a)

X

n

q
nvoln(✏1, ✏2, a)

For other non-compact toric M4 Nekrasov; Gottsche, Nakajima,
Yoshioka; Gasparim, Liu Bershtein; Bonelli, Ronzani, Tanzini

The vector field can have multiple fixed points
Flux sectors H2(M)

Z (a, ✏1, ✏2) =
X

k2flux

Y

i2fixed
Z

inst
✏i1,✏

i
2
(a+�(k , i , ✏i1,2), q)
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Pestun’s sphere

Pestun uncovered a di↵erent way of placing N = 2 SYM on the
four-sphere S

4 preserving SUSY.

The theory localizes to instantons on
the north pole and anti-instantons on
the south pole
Pestun; Hama, Hosomichi.

Z =

Z
daZ

inst
✏1,✏2(ia, q)Z

antinst
✏1,�✏2 (ia, q̄)

Localization involves transversely
elliptic operators

Is there a relation with topological twisting?
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Summary of results

We construct a wide class of SUSY field theories on M4 that
admit an isometry (even better a T

2 action)

Equivariant topological
twisting and Pestun’s theory
are special cases.

Localizes to instantons or
anti-instantons at di↵erent
fixed points of the isometry

Susy observables are not topological but depend only weakly on
metric.

Interplay between susy and transverse ellipticity.
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Setting:

M with smooth metric g .

v real Killing vector field with
(at most) isolated fixed points.

Generically the orbits of v are
not compact. There are then
two isometries generating a
torus action on M.

Equip fixed points with binary ±

label.
These data can be used to specify a smooth N = 2 supergravity
background to which to couple N = 2 SYM preserving susy.

The supercharge squares to a motion along v .

Today I will present a twisted description of the theory.
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Cohomological theory: the DW complex

Equivariant Donaldson Witten theory is written using twisted fields:

A , ,� , ' , ⌘ , �+, H
+

On which Susy acts as follows

�A = i , � = ◆vF + idA� , �� = ◆v 

��+ = H
+ , �H+ = iL

A
v �

+
� i [�,�+]

�' = i⌘ , �⌘ = ◆vdA'� [�,']

The algebra closes o↵ shell

�2 = Lv + gauge transf

? (hence the metric) enters in defining �+, H
+.
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We want to replace self duality on �, H with a di↵erent condition.

Self-duality near � fixed points and
anti-self duality near + fixed points.

The vector field v gives a map
between self-dual and anti sef-dual
two forms ( = g(v))

B ! �B +
2

|v |2
 ^ ivB

It is well defined away from the fixed points. We can use it to glue
together ⌦+ and ⌦� via transition functions away from v = 0.

This establishes a bundle of two forms with the desired property.
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We can define a projector on two forms which depends on a
function 0 < ! < ⇡

P
+
! B =

1

1 + cos2(!)

✓
B + cos! ? B �

sin(!)2

|v |2
 ^ ivB

◆

(P+
! )2 = P

+
! and its eigenspaces are orthogonal.

it is well defined provided that sin(!) ! 0 at fixed points

Choose ! = 0 at + fixed points and ! = ⇡ at � fixed points

P
+
! !

1

2
(1 + ?) approaching + fixed points

P
+
! !

1

2
(1� ?) approaching � fixed points
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New Twisted variables

We can ”twist” ordinary fields in N = 2 vector multiplet

X , X̄ , Aµ, �
i
↵, �̃

i
↵̇, Dij

The twisted fields include two Grassmann even and one Grassmann
odd scalars

� , � , ⌘

The connection and a Grassmann odd one form

Aµ ,  µ

Finally one even and one odd two forms

�µ⌫ , Hµ⌫ .

These two forms satisfy

P
+
! � = 0 , P

+
! H = 0 .
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These split into multiplets under the action of supersymmetry

�A = i , � = ◆vF + idA� , �� = ◆v 

�� = H , �H = iL
A
v �� i [�,�]

�' = i⌘ , �⌘ = ◆vdA'� [�,']

Comment: the definition of � and � involves both X and X̄ . As a
consequence the notion of holomorphy is changed.

� = �i(X � X̄ ) , � = (X + X̄ ) + cos(!)(X � X̄ )

Note however that � approaches either X or X̄ at the fixed points
of v .
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The action

Tr [F ^ ?F ] =Tr


(1 + cos2!)(P+

! F ) ^ ?F +
sin2!

||v ||2
◆vF ^ ?◆vF

�

� cos! Tr [F ^ F ] .

We use this identity to write a supersymmetric action

L VolM = O + �{. . .} .

O =
i

4⇡

Z

M

⇣
⌦0 + ⌦2 + ⌦4

⌘
^ Tr

⇣
�+  + F

⌘2

=

Z

M

⇣
⌦0Tr(F

2) + 2⌦2 ^ Tr(�F) + Tr(�2)⌦4 + ⌦2 ^ Tr( 2)
⌘
,

⌦0 = ⌧ sin2
!

2
+ ⌧̄ cos2

!

2
⌦2 and ⌦4 are forms written explicitly in terms of ! and vµ.
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Why is O supersymmetric?

O =

Z

M

⇣
cos(!) + ⌦2 + ⌦4

⌘
^ Tr

⇣
�+ + F

⌘2

One can check that

�Tr
⇣
�+ + F

⌘k
= (idA + ◆v)Tr

⇣
�+ + F

⌘k
.

Moreover ⌦ = cos(!) + ⌦2 + ⌦4 is equivariantly closed

(id + ◆v )(cos(!) + ⌦2 + ⌦4) = 0

Note that shifting the equivariantly closed multi-form ⌦ by a
equivariantly exact term leads to a Q-exact deformation of O.

⌦+ (idA + ◆v )(. . .) ) O + �(. . .)
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Deformations

Our theory could in principle depend on

The function cos(!) entering the projector and ⌦

the metric on M4

The choice of vector field v (that is ✏1 and ✏2 in toric case)

If we change cos(!) we need to modify Hµ⌫ and �µ⌫ . This only
a↵ects Q-exact terms. (provided that ◆vd cos(!) = 0).

The observable O changes as well because of ⌦.
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Formally the change in ⌦ is exact:

�⌦ = (id + ◆v )

✓
 ^�⌦

◆v
� i

 ^ d ^�⌦

(◆v)2

◆
.

For generic �⌦ this only makes sense away from the fixed points

It is well defined if � cos(!) vanishes at the fixed points.

We conclude that cos(!) can be changed with a Q-exact
deformation as long as the distribution of ± at the fixed points
remains fixed.
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Changing the metric while keeping v fixed and Killing can be
analyzed similarly.

Again P
+
! is changed which requires a redefinition of Hµ⌫ and �µ⌫

As long as the change in the metric is smooth and compatible with
v it results in a Q-exact deformation.

Finally changing v is not a Q-exact deformation.

Hence susy observables depend on ✏1,2.

We can take ✏1,2 to be complex. Because ⌦ depends only on v and
not v⇤ the dependence on ✏1,2 is holomorphic.
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Localization

General idea: add supersymmetric Q-exact terms that are positive
definite to action: t �(V ) > 0 where t 2 R+.

Susy observables are unchanged. As t ! +1 path integral
localizes on configurations such that �(V ) = 0.

Need to choose reality conditions for bosonic fields. Can use
those inherited from original theory:

(X )⇤ = X̄ , F
a
µ⌫ 2 R .

Insure that action has positive real part. Dependence on M.

Choose localizing terms. Simplest choice also depends on M.
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For simply connected M end up with the following localization
locus (for SU(N) SYM):

� = diag(�i ) , ' = diag('i ) , i = 1, ...,N � 1 .

and
�i = a

i
� i cos(!)'i

a
i
2 R constant

The gauge group is broken to its Cartan H. One gets to integrate
over H bundles satisfying.

◆v'
i = 0 , ◆vF

i
� d(cos(!)'i ) = 0 , P

+
! ⌦

i = 0 .

where
⌦i = F

i
� ?( ^ d'i )� . . .

Discrete solutions are distinguished by integer fluxes

1

2⇡

Z

Cn
F
a = k

a
n .

Twisting with a Flip



For simply connected M end up with the following localization
locus (for SU(N) SYM):

� = diag(�i ) , ' = diag('i ) , i = 1, ...,N � 1 .

and
�i = a

i
� i cos(!)'i

a
i
2 R constant

The gauge group is broken to its Cartan H. One gets to integrate
over H bundles satisfying.

◆v'
i = 0 , ◆vF

i
� d(cos(!)'i ) = 0 , P

+
! ⌦

i = 0 .

where
⌦i = F

i
� ?( ^ d'i )� . . .

Discrete solutions are distinguished by integer fluxes

1

2⇡

Z

Cn
F
a = k

a
n .

Twisting with a Flip



For simply connected M end up with the following localization
locus (for SU(N) SYM):

� = diag(�i ) , ' = diag('i ) , i = 1, ...,N � 1 .

and
�i = a

i
� i cos(!)'i

a
i
2 R constant

The gauge group is broken to its Cartan H. One gets to integrate
over H bundles satisfying.

◆v'
i = 0 , ◆vF

i
� d(cos(!)'i ) = 0 , P

+
! ⌦

i = 0 .

where
⌦i = F

i
� ?( ^ d'i )� . . .

Discrete solutions are distinguished by integer fluxes

1

2⇡

Z

Cn
F
a = k

a
n .

Twisting with a Flip



Partition function in simply connected case

The general answer for ZM✏1,✏2
with p fixed points labelled by +

points and (l � p) points labelled by � will be given by

X

ki

Z

h

da e
�Scl

pY

i=1

Z
inst
✏i1,✏

i
2

⇣
ia+ ki (✏

i
1, ✏

i
2), q

⌘ lY

i=p+1

Z
ainst
✏i1,✏

i
2

⇣
ia+ ki (✏

i
1, ✏

i
2), q̄

⌘
.

The parameters (✏i1, ✏
i
2) can be obtained from T

2-action around
the fixed point xi .

The precise form for the shifts in each flux sector can be worked
out for specific cases e.g. CP2. Lundin, Ruggeri

The structure and regularization of the perturbative contributions
can be worked out in general Mauch, Ruggeri
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Dimensional Reduction [Bershadsky,Johansen, Sadov, Vafa]

Consider a N = 2 theory on a product of Riemann surfaces C ⇥⌃.

Performing a partial topological twist on C and making C small we
obtain a N = (2, 2) �-model on ⌃ whose target is the moduli
space of flat connections on C .

The topologically twisted N = 2 gives rise to the A twist of the
�-model.

For our framework we need a Killing vector with fixed points. For
instance we can start with ⌃ being S

2.

What do we get upon reduction?
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Dimensional Reduction

If both fixed points on C ⇥ S
2 are of the same kind we get an

(equivariant) A twist or Ā twist of the �-model.

With fixed points of di↵erent kinds we should get an interpolation
between the A twist and the Ā twist at the two poles of S2.

For the (equivariant) A model we have

�Xµ =  µ , � µ = LvX
µ ,

��µ = H
µ
� �µ⌫⇢ 

⇢�⌫ ,

�Hµ = L
�
⌫�

⌫
� �µ⌫⇢ 

⌫
H

⇢ +
1

2
R
µ
⌫⇢��

⌫ ⇢ � .

The one forms �µ and H
µ are in the kernel of 1

2(1 + ?J) where J is
the complex structure of the target space.
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Dimensional Reduction

In the “exotic” theory the projector is ( = g(v))

P
+ =

1

1 + cos2 ✓

�
1� cos(✓) ? J �  ^ ◆v

�

which approaches 1
2(1± ?J) at the two poles of S2.

Up to � exact terms the action is:
Z

(⌦0 + ⌦2)(!µ⌫dX
µ
^ dX

⌫ + !µ⌫ 
µ n

u)

where ! is the target space Käler form while (⌦0 + ⌦2) is
equivariantly closed but not exact e.g.

(⌦0 + ⌦2) = cos ✓ + sin ✓d� ^ d✓
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Dimensional Reduction

This theory is a cohomological rewriting of the N = (2, 2) theories
on S

2 studied by Benini, Cremonesi; Closset, Cremonesi; Jia,
Sharpe; Doroud, Gomis, Le Floch, Lee

In particular one can consider GLSM flowing in the IR to
N = (2, 2) non-linear �-models with Calabi-Yau target spaces.
The corresponding partition functions on S

2 computes the
quantum corrected Kähler potential for the Kähler moduli space of
the Calabi-Yau. Jockers, Kumar, Lapan, Morrison, Romo; Gomis,
Lee; Gerchkovitz, Gomis, Komargodski; Hsin, Komargodski,
Schwimmer, Seiberg, Theisen
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Localization

BPS localization locus in the A model: holomorphic maps X i (z).

In the equivariant model one gets in addition that LvX
µ = 0.

Hence BPS configurations need to be constant except for defects
at the poles. These singular configurations are hard to control.

This problem persists in the “exotic” theory. However we can start
by localizing around constant maps Xµ. We thus recover results of
Halverson, Jockers, Lapan, Morrison; Hori, Romo directly from the
�-model.
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Some directions to explore

Study line/surface operators.

Study cases with a lot of symmetry in detail e.g. S2
⇥ S

2

Understand the contribution of fluxes in general.

Study how to include instanton corrections in 2d.

Theory interpolating between B and B̄ model?

Generalization of AGT correspondence?
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Thank You !


