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There is a strong evidence for something called “dark matter”.
But what is the nature of this matter?
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This talk: what it is NOT.
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Outline

© Standard dark matter detection techniques
@ Direct detection limits based on cosmic ray up-scattered dark matter

© Improving 1:

v~ Improved treatment of attenuation in the Earth’s crust
v Taking into account specific DM models
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Probing the nature of dark matter
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Indirect Detection

credit: wikipedia.org

Direct Detection

credit: fermi.gsfc.nasa.gov
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Negative results up to now!
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Direct detection experiments
@ Velocity distribution of DM particles in the halo:
F(v) = N e/ (v — Vesc)
with vp ~ 220km/s and vesc >~ 544 km/s
@ Moreover, the Earth is moving with respect to the DM halo:

ve ~ 230km/s + (15 km/s) cos[w(t — to)]

Dark Matter Halo e 7.

December “  credit: Schumann (1903.03026)
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Direct detection experiments: kinematics

@ Experiments search for nuclear recoils of halo dark matter
@ Detectable signal for Tz ~ O(keV)
= Minimal velocity for DM particle to be detectable:

mn Tr < my > mN:21.2km/s,/£—f/,/%
2
2H5n m, < mN:2120km/s%\/£—'§/\/l&)”ﬁ

(pxn: reduced mass of the DM-nucleus system)

Vmin =
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Standard Direct Detection limits
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Direct detection experiments: DM-nucleus cross section
@ Spin-independent cross section: scalar or vector effective Lagrangian
Ls~Xxxqq or Lv~Xvuxdr"q
> contributions of individual nucleons U‘SI sum coherently:
o3} = oS /‘xN 22
Xn
(assuming equal coupling of x to proton and neutron, u: reduced mass)

@ Simplified differential cross section used for interpretation of the results:

2(Q2)

do Otot

dTg ~ T

@ F(Q?): nuclear form factor (Q? = 2my Tg)
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Nuclear form factors

@ Capture finite size of the nucleus: Fourrier transform of the charge density distribution
@ E.g., charge density x e~/ < dipole form factor:

1

- applicable for protons, more complicated shape for heavier nuclei

F(@%) =

@ Model independent form factors - more accurate than Helm form factors
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do/dTg  F?(Q?) = suppression of the cross section for large Q2!
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Standard Direct Detection limits
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Standard Direct Detection limits

[Emken,Kouvaris: Phys.Rev.D 97 (2018)]
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Standard Direct Detection limits

[Emken,Kouvaris: Phys.Rev.D 97 (2018)]
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Standard Direct Detection limits

[Emken,Kouvaris: Phys.Rev.D 97 (2018)]
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Window for strongly interacting dark matter?

@ Gas cloud cooling [Bhoonah et al.: PRL 121 (2018) & PRD 100 (2019)]

[Bhoonah et al.: PRL 121 (2018)]
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Window for strongly interacting dark matter?
@ Gas cloud cooling [Bhoonah et al.: PRL 121 (2018) & PRD 100 (2019)]

@ Updated constraints based on structure formation:

@ Milky Way satellite population [DES: PRL 126 (2021)]
@ Lyman alpha forest [Rogers et al.: PRL 128 (2022)]

[Rogers et al.: PRL 128 (2022)]
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Window for strongly interacting dark matter?
@ Gas cloud cooling [Bhoonah et al.: PRL 121 (2018) & PRD 100 (2019)]

@ Updated constraints based on structure formation:

@ Milky Way satellite population [DES: PRL 126 (2021)]
@ Lyman alpha forest [Rogers et al.: PRL 128 (2022)]

@ Resonant scattering in case of strong attractive ineraction
[Xu and Farrar: 2101.00142]

@ Finite thermalization efficiency for experiments like CRESST?
[Mahdawi, Farrar: JCAP 10 (2018)]

@ Room for strongly interacting DM candidates like QCD hexaquark?
[Farrar, Wang, Xu: 2007.10378]

[Rogers et al.: PRL 128 (2022)] [)(u, Farrar 2101 00142]
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Cosmic ray up-scattered dark matter

@ DM interacting strongly with baryons = DM accelerated by interactions
with cosmic rays (=CRDM)

@ Flux of relativistic DM particles arriving to Earth = sub-GeV DM
detectable by direct detection experiments like Xenon or neutrino
experiments like MiniBooNE!

[Bringmann, Pospelov: PRL 122 (2019)]
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credit: T. Brigmann
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Cosmic ray up-scattered dark matter

@ DM interacting strongly with baryons = DM accelerated by interactions
with cosmic rays (=CRDM)

@ Flux of relativistic DM particles arriving to Earth = sub-GeV DM
detectable by direct detection experiments like Xenon or neutrino
experiments like MiniBooNE!

[Bringmann, Pospelov: PRL 122 (2019)]
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Cosmic ray up-scattered dark matter - updates

@ CRDM limits are being widely updated/applied

@ Example: [Xia, Xu and Zhou: JCAP 02 (2022)]

@ CRDM limits based on XenonlT

@ Acceleration of DM also by heavier cosmic ray elements

@ Nuclear form factors, Monte Carlo simulations taken into account for attenuation
of the CRDM flux in the Earth's crust
CRDM limits reaching to extremely large cross sections?
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[Xia,Xu,Zhou: JCAP 02 (2022)]
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Outline

© Standard dark matter detection techniques
@ Direct detection limits based on cosmic ray up-scattered dark matter
© Improving 1:

v Improved treatment of attenuation in the Earth’s crust
v Taking into account specific DM models
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CRDM flux

DM kinetic
energy

CR elements H, He, C, O included
CR local interstellar spectra (LIS) based on [Boschini et al.: APJ 250:27 (2020)]

Spacial

integra, SUM OVer R kinetic

CR elements energy

Py dJXN doy
/ /,Of Z/mm NdT, dTw

local
7., 4o dO
= Dur” Z/ win ' dT, dTy

7‘ 7

DM density CR-DM CR flux
cross section

Effective distance Des = 10 kpc considered

“Constant” cross section with protons assumed: doy,/dTy = 051/ TD™ x F2(Q?)
(NB: Q%2 =2myTy)

Coherent enhancement factor A2“§<N/“§<p included for heavier nuclei

Model independent nuclear form-factors included in DM-CR cross sections
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CRDM flux

@ CR elements H, He, C, O included

@ CR local interstellar spectra (LIS) based on [Boschini et al.: APJ 250:27 (2020)]

@ Effective distance D = 10 kpc considered

@ “Constant” cross section with protons assumed: doy,/dTy = o5/ T® X F2(@%)
(NB: Q%2 =2myTy)

@ Coherent enhancement factor AzuiN/uip included for heavier nuclei

@ Model independent nuclear form-factors included in DM-CR cross sections
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Attenuation in the Earth's crust
Energy loss equation:

max d
ZDN/ dwy UXN

ny - number density of nuclei N

wy - DM energy loss (w, = Tr for elastic scattering with nuclei at rest)
d inel
FAQ%) + %

Wx

dO’XN o OxN
- max
dwy, TR

@ Form factors = large suppression of stopping power for high-energy DM!

@ Inclusion of inelastic scattering changes considerably the results!

VAquila
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Intermezzo: Inelastic scattering with nuclei

@ Inspiration: neutral current neutrino-nucleus scattering

@ For E, 2 0.1 GeV different inelastic processes appear:
_ E,=0.1GeV _ E,=0.5GeV _ E,=1GeV _ E,=5GeV
5 i3 o 5 - i3 N .
B 8 10l Excitation of ]# 1| Excitation ] & 1
% Quasi-elastic % . delta resonances % of other %
1= [ ™\ /
E scattering E J N \l/ AN Izesonances S /
4 P NS
v N p ) ALY AN M
00 002 Q04 006 008 010 012 0 0i 02 03 04 05 0 00 02 04 06 08 10 12 0o ooo5TETS
w[Gev] w[Gev] w[Gev] w[Gev]
. GiBUU
® The Giessen Boltzmann-Uehling-Uhlenbeck Project

(dependence of neutrino-oxygen differential cross section per nucleon on energy
transfer w, = E, — E], obtained by GiBUU code [gibuu.hepforge.org])
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Effect of inelastic scattering on attenuation of DM flux

@ Estimate of DM-nucleus inelastic cross section:
GiBUU results on neutrino-nucleus cross sections rescaled by the ratio of
the DM-nucleon and neutrino-nucleon cross sections

. . do
inel Z9xn
dUXN " dUS;VBUU de
~ doun
dwy, dw, G

@ Large og: energetic DM particles slowed down in the Earth's crust due to
inelastic scattering with nuclei!
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XenonlT limits

No inelastic
scattering

Full result

CRESST SR
1 L ] | | 1 I
1072 107" 100

my [GeV]

Helena KoleSova: Update on cosmic ray up-scattered dark matter



Q?-dependent DM cross section

@ Different motivated Q? dependent cross sections studied
@ Example: DM-nucleus scattering via scalar mediator ¢
dO'XN ~ Qz + 4m§< m?g
dT, 4m2 Q%+ mé
= CRDM flux enhanced for light DM, suppressed for light mediator
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Example: DM-nucleus scattering via scalar mediator
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Conclusions
@ Direct detection limits based on cosmic ray up-scattered dark matter
complementary to standard direct detection and cosmological limits

@ Inclusion of inelastic scattering crucial for obtaining realistic results for
attenuation in Earth's crust

@ Limits extended to larger DM masses compared to no-form-factor case
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Conclusions

@ Direct detection limits based on cosmic ray up-scattered dark matter complementary to standard direct detection
and cosmological limits

@ Inclusion of inelastic scattering crucial for obtaining realistic results for attenuation in Earth's crust

@ Limits extended to larger DM masses compared to no-form-factor case

We know slightly better what dark matter is not like...

Thanks for attention!
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