Maximal temperature of strongly coupled dark sectors

Helena Kolešová (AEC, ITP, University of Bern)

Joint work with Simona Procacci and Mikko Laine ArXiv: 2303.17973

Supported by the SNSF under grant 200020B-188712

^b UNIVERSITÄT BERN

Summary

- Inflaton coupled to non-abelian dark sector (parametrised by confinement scale Λ_{TR})
- Thermal bath present throughout the inflation!
- Working example: Axion inflation coupled to SU(3) gauge sector [Laine, Procacci: 2102.09913] [Klose, Laine, Procacci: 2201.02317] [Klose, Laine, Procacci: 2210.11710]
- [HK, Laine, Procacci: 2303.17973] evolution of dark sector temperature studied

Credit: João G. Rosa/University of Aveiro; ESA and the Planck collaboration

Why is high temperature interesting?

Possible gravitational wave signal:

Thermal fluctuations

[Ghiglieri, Laine: 1504.02569] [Klose, Laine, Procacci: 2201.02317, 2210.11710]

Dark sector confinement phase transition

[Caprini et al.: 1910.13125] [Schwaller:1504.07263]

Credit: http://lisa.jpl.nasa.gov/gallery/lisa-waves.html

Why is high temperature interesting?

- Possible gravitational wave signal:
 - Thermal fluctuations
 - [Ghiglieri, Laine: 1504.02569] [Klose, Laine, Procacci: 2201.02317, 2210.11710]
 - Dark sector confinement phase transition [Caprini et al.: 1910.13125] [Schwaller:1504.07263]
- But has the dark sector heated up above the confinement temperature?

Credit: http://lisa.jpl.nasa.gov/gallery/lisa-waves.html

Why is high temperature interesting?

- Possible gravitational wave signal:
 - Thermal fluctuations

[Ghiglieri, Laine: 1504.02569] [Klose, Laine, Procacci: 2201.02317, 2210.11710]

Dark sector confinement phase transition [Caprini et al.: 1910.13125] [Schwaller:1504.07263]

- But has the dark sector heated up above the confinement temperature?
- Amplitude of gravitational waves from thermal fluctuations grows significantly with maximum reached temperature!

NB: abelian vs non-abelian dark sector

Pseudoscalar inflaton coupled to gauge fields: ۲

$$\mathscr{L} \supset -\frac{\alpha \,\varphi \,\epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}}{16\pi f_a}$$

- Abelian case: exponential growth of one helicity mode of the vector field \Rightarrow GW, PBH, CMB nongaussianities... [Sorbo: 1101.1525; Cook, Sorbo: 1101.1525; Barnaby, Pajer, Peloso: 1110.3327; Domcke, Pieroni, Binétruy: 1603.01287...]
- Discussion about back-reaction [... Figueroa et al.: 2303.17436] ${ \bullet }$
- Non-Abelian case: thermalisation assumption \bullet simplifies the back-reaction modeling!

• Pseudoscalar inflaton coupled to gauge fields:

$$\mathscr{L} \supset -\frac{\alpha \,\varphi \,\epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}}{16\pi f_a}$$

- Abelian case: exponential growth of one helicity mode of the vector field \Rightarrow GW, PBH, CMB nongaussianities... [Sorbo: 1101.1525; Cook, Sorbo: 1101.1525; Barnaby, Pajer, Peloso: 1110.3327; Domcke, Pieroni, Binétruy: 1603.01287...]
- Discussion about back-reaction [... Figueroa et al.: 2303.17436] ${ \bullet }$
- Non-Abelian case: thermalisation assumption simplifies the back-reaction modeling!

Model setup

 Inflaton coupled to non-abelian dark sector (parametrised by confinement scale Λ_{TR})

Yang-Mills field strength

 $\alpha \, \varphi \, \epsilon^{\mu
u
ho \sigma} F^c_{\mu
u}$

Axion decay constant

Phys.Rev.Lett. 65 (1990)]

Credit: João G. Rosa/University of Aveiro; ESA and the Planck collaboration

Model setup

 Inflaton coupled to non-abelian dark sector (parametrised by confinement scale Λ_{TR})

Yang-Mills

Credit: João G. Rosa/University of Aveiro; ESA and the Planck collaboration

Friction due to inflaton coupling to dark sector! [Laine, Niemi, Procacci, Rummukainen: 2209.13804]

Axion decay constant

 $\ddot{\bar{\varphi}} + (3H + \Upsilon)\dot{\bar{\varphi}} + V_{\varphi} \simeq 0$

 $\dot{e}_r + 3H(e_r + p_r) \simeq \Upsilon \dot{\bar{\phi}}^2$

Dark radiation energy and pressure densities

Hubble rate

Message 1: Temperatures up to $10^{-3} m_{pl}$ can be reached

- For $\Lambda_{\rm IR}$ up to $10^{-3} \, m_{\rm pl}$
- If Yang-Mills plasma not coupled to extra light d.o.f.
- \Rightarrow Hope for potentially detectable GW from thermal plasma in ET, LISA frequency range!

Message 2: For lower $\Lambda_{
m IR}$ the dark sector heats up above T_c \Rightarrow undergoes a phase transition! Possible further GW signal!

- Message 1: Temperatures up to $10^{-3} m_{pl}$ can be reached
- For $\Lambda_{\rm IR}$ up to $10^{-3} m_{\rm pl}$
- If Yang-Mills plasma not coupled to extra light d.o.f.
- \Rightarrow Hope for potentially detectable GW from thermal plasma in ET, LISA frequency range!

Message 3: There can even be two phase transitions!

Example: $\Lambda_{\rm IR} = 10^{-8} m_{\rm pl}$

Benchmark parameter choice (axion inflation consistent with CMB data) [Klose, Laine, Procacci: 2201.02317]: axion mass: $m = 1.09 \times 10^{-6} m_{\rm pl}$, axion decay constant: $f_a = 1.25 m_{pl}$, initial time: $t_{ref} \sim H_{initial}^{-1}$

 $\Rightarrow \Upsilon \sim 10^{-23} m_{\rm pl} \ll H_{\rm initial}$

Example: $\Lambda_{\rm IR} = 10^{-8} m_{\rm nl}$

Benchmark parameter choice (axion inflation consistent with CMB data) [Klose, Laine, Procacci: 2201.02317]: axion mass: $m = 1.09 \times 10^{-6} m_{\rm pl}$, axion decay constant: $f_a = 1.25 m_{pl}$, initial time: $t_{ref} \sim H_{initial}^{-1}$

 $\Rightarrow \Upsilon \sim 10^{-23} m_{\rm pl} \ll H_{\rm initial}$

 Heating and cooling phase transitions may bring interesting GW signatures! [Buen-Abad, Chang, Hook: 2305.09712]

Example: $\Lambda_{\rm IR} = 10^{-8} m_{\rm nl}$

Benchmark parameter choice (axion inflation consistent with CMB data) [Klose, Laine, Procacci: 2201.02317]: axion mass: $m = 1.09 \times 10^{-6} m_{\rm pl}$, axion decay constant: $f_a = 1.25 m_{pl}$, initial time: $t_{ref} \sim H_{initial}^{-1}$

 $\Rightarrow \Upsilon \sim 10^{-23} m_{\rm pl} \ll H_{\rm initial}$

 Heating and cooling phase transitions may bring interesting GW signatures! [Buen-Abad, Chang, Hook: 2305.09712]

BUT!

- $\Upsilon \ll H \Rightarrow$ Long inflaton domination \Rightarrow more significant GW dilution
- How and when SM is reheated?

Example: $\Lambda_{\rm IR} = 10^{-8} m_{\rm nl}$

Benchmark parameter choice (axion inflation consistent with CMB data) [Klose, Laine, Procacci: 2201.02317]: axion mass: $m = 1.09 \times 10^{-6} m_{\rm pl}$, axion decay constant: $f_a = 1.25 m_{pl}$, initial time: $t_{ref} \sim H_{initial}^{-1}$

 $\Rightarrow \Upsilon \sim 10^{-23} m_{\rm pl} \ll H_{\rm initial}$

 Heating and cooling phase transitions may bring interesting GW signatures! [Buen-Abad, Chang, Hook: 2305.09712]

BUT!

- Υ ≪ H ⇒ Long inflaton domination outly more significant GW dilution
 How and when SM is rel to be worked outly to be wo

Conclusions

- Evolution of a dark Yang-Mills sector coupled to axion inflation studied
- Different qualitative behaviour depending on the dark confinement scale Λ_{TR} :

$$\Lambda_{\rm IR} \lesssim 10^{-8} m_{\rm pl} : T_{\rm max} \sim 10^{-8} m_{\rm pl}$$
$$\Lambda_{\rm IR} \gtrsim 10^{-8} m_{\rm pl} : T_{\rm max} \text{ slightly below}$$

Possible gravitational wave signal in both cases

- $> T_c \Rightarrow$ Phase transition
- ow $T_c \Rightarrow$ Large temperatures achieved

Conclusions

- Evolution of a dark Yang-Mills sector coupled to axion inflation studied
- Different qualitative behaviour depending on the dark confinement scale Λ_{TR} : \bullet

$$\Lambda_{\rm IR} \lesssim 10^{-8} m_{\rm pl} : T_{\rm max} \sim 10^{-8} m_{\rm pl}$$
$$\Lambda_{\rm IR} \gtrsim 10^{-8} m_{\rm pl} : T_{\rm max} \text{ slightly below}$$

Possible gravitational wave signal in both cases

Stay tuned :) Thanks for your attention!

- $> T_c \Rightarrow$ Phase transition
- ow $T_c \Rightarrow$ Large temperatures achieved

Back up

[Ghiglieri, Laine: 1504.02569] [Klose, Laine, Procacci: 2201.02317] [Klose, Laine, Procacci: 2210.11710]

[Ghiglieri, Laine: 1504.02569] [Klose, Laine, Procacci: 2201.02317] [Klose, Laine, Procacci: 2210.11710]

"Boltzmann domain" - determines total energy density in GW \Leftrightarrow constraints from $\Delta N_{\rm eff}$ at BBN $(\Delta N_{\rm eff} \lesssim 10^{-3} \Rightarrow T_{\rm max} \lesssim 10^{17} \,{\rm GeV})$ [Klose, Laine, Procacci: 2201.02317] MHZ Gffz THZ

[Ghiglieri, Laine: 1504.02569] [Klose, Laine, Procacci: 2201.02317] [Klose, Laine, Procacci: 2210.11710]

"Boltzmann domain" - determines total energy density in GW \Leftrightarrow constraints from ΔN_{eff} at BBN $(\Delta N_{\rm eff} \lesssim 10^{-3} \Rightarrow T_{\rm max} \lesssim 10^{17} \,{\rm GeV})$ [Klose, Laine, Procacci: 2201.02317] in the second se MHZ Gffz THZ

[Ghiglieri, Laine: 1504.02569] [Klose, Laine, Procacci: 2201.02317] [Klose, Laine, Procacci: 2210.11710]

"Boltzmann domain" - determines total energy density in GW \Leftrightarrow constraints from ΔN_{eff} at BBN $(\Delta N_{\rm eff} \lesssim 10^{-3} \Rightarrow T_{\rm max} \lesssim 10^{17} \,{\rm GeV})$ [Klose, Laine, Procacci: 2201.02317] see servingers servingers sei servinger servin MHZ Gffz THZ

Might be measurable if $T_{\rm max} \sim 10^{-3} \, m_{\rm pl}$ but more detailed calculation needed!

 $\ddot{\bar{\varphi}} + (3H + \Upsilon)\dot{\bar{\varphi}} + V_{\varphi} \simeq 0$

 $\dot{e}_r + 3H(e_r + p_r) \simeq \Upsilon \dot{\bar{\phi}}^2 \qquad \text{Parametrize} \\ e_r, p_r \text{ by } T$

 $c_r(T) \dot{T} + 3H[e_r(T) + p_r(T)] \simeq \Upsilon \dot{\phi}^2$

12

 $\ddot{\bar{\varphi}} + (3H + \Upsilon)\dot{\bar{\varphi}} + V_{\varphi} \simeq 0$

 $\dot{e}_r + 3H(e_r + p_r) \simeq \Upsilon \dot{\bar{\phi}}^2 \,.$

 $c_r(T) \dot{T} + 3H [e_r(T) + p_r(T)] \simeq \Upsilon \dot{\bar{\phi}}^2$

Entropy density of pure SU(3) measured on lattice [Giusti, Pepe: 1612.00265]

 $\ddot{\bar{\varphi}} + (3H + \Upsilon)\dot{\bar{\varphi}} + V_{\varphi} \simeq 0$

 $c_r(T)\dot{T} + 3H[e_r(T) + p_r(T)] \simeq \Upsilon \dot{\bar{\phi}}^2$

Heat capacity:

$\ddot{\bar{\varphi}} + (3H + \Upsilon)\dot{\bar{\varphi}} + V_{\omega} \simeq 0$

 $c_r(T)\dot{T} + 3H[e_r(T) + p_r(T)] \simeq \Upsilon \dot{\bar{\phi}}^2$

Heat capacity:

$$c_r = \partial_T e_r$$

 C_r exponentially small well below $T_c \Rightarrow$ rapid temperature growth!

