Constraining modified GW propagation with extreme mass-ratio inspirals

Chang Liu

Credit: Lorenzo Speri

In collaboration with D. Laghi, N. Tamanini et al. Laboratoire des 2 Infinis, Toulouse & Peking University 10th LISA Cosmology Working Group Workshop 07/06/2023

Outline

- LISA and extreme mass-ratio inspirals (EMRIs) • Cosmology and modified GW propagation • Inference with LISA dark sirens

- Preliminary results
- Conclusion and future prospects

Extreme Mass-Ratio Inspirals (EMRIs)

Black Hole $M \sim 10^5 - 10^7 M_{\odot}$

Object $\mu \approx 10 M_{\odot}$

Mass Ratio $\eta \approx 10^{-6}$ - 10^{-4}

Credit: Lorenzo Speri, Ollie Burke

 $T_{\rm ev} \sim \frac{1}{-1}$

 $f \approx 10^{-4} - 10^{-2} \text{ Hz}$ 3/16

Observation of EMRIs with LISA [Babak et al. 2017] • EMRI waveform: AKK (Analytical Kludge Kerr, optimistic) • Sensitivity curve: 2.5 Gm LISA configuration, 2017

- Observation time: 10 yrs
- Parameter estimation: based on EMRI catalog M1 by Fisher Matrix analysis (SNR>20)

Observation of EMRIs with LISA [Babak et al. 2017] • EMRI waveform: AKK (Analytical Kludge Kerr, optimistic) • Sensitivity curve: 2.5 Gm LISA configuration, 2017

- Observation time: 10 yrs
- Parameter estimation: based on EMRI catalog M1 by Fisher Matrix analysis (SNR>20)

Observation of EMRIs with LISA [Babak et al. 2017] • EMRI waveform: AKK (Analytical Kludge Kerr, optimistic) • Sensitivity curve: 2.5 Gm LISA configuration, 2017

- Observation time: 10 yrs
- Parameter estimation: based on EMRI catalog M1 by Fisher Matrix analysis (SNR>20)

From GW:

$$h_{\mathsf{X}}(t_{o}) = \frac{4}{d_{L}} \left(\frac{G\mathcal{M}_{cz}}{c^{2}}\right)^{5/3} \left(\frac{\pi f_{\mathsf{gw},o}}{c}\right)^{2/3} \cos\theta \sin\left[-2\left(\frac{5G\mathcal{M}_{cz}}{c^{3}}\right)^{-5/8} \tau_{o}^{5/8} + \Phi_{0}\right]$$

From EM: z { Counterpart: Bright sirens No counterpart: Dark sirens

 $E(z) = \sqrt{\Omega_M (1+z)}$

Cosmology with GWs

[Schutz 1986]

$$(z)^3 +
ho_{\rm DE}(z)/
ho_0$$
,

Modified GW propagation

Considering how GWs propagate across cosmological distances, the free propagation of tensor perturbations over FRW is governed by the equation:

Friction term

• Affect amplitude

 $\tilde{h}_A'' + 2\mathcal{H}[1 - \delta(\eta)]\tilde{h}_A' + c^2k^2\tilde{h}_A = 0$ $d_L^{\rm gw}(z) = d_L^{\rm em}(z) \exp\left\{-\int_0^z \frac{dz'}{1+z'}\,\delta(z')\right\}$

Modified gravity: an example [Belgacem et al., 2018]

The function $\delta(\eta)$ is predicted explicitly by the RR model:

$$d_L^{\rm gw}(z) = d_L^{\rm em}(z) \exp\left\{-\int_0^z \frac{dz'}{1+z'}\right\}$$

Parametrization

$$\frac{d_L^{\rm gw}(z)}{d_L^{\rm em}(z)} = \Xi_0 + \frac{1 - \Xi_0}{(1 + z)^n}$$

The model predicts $\delta(z = 0) = 0.062$ [n=5/2 and Ξ_0 =0.970]

- $d_L^{\text{GW}}(z=0)/d_L^{\text{EM}}(z=0) = 1$
- $d_L^{\rm GW}(z)/d_L^{\rm EM}(z)$ saturates to a constant Ξ_0
- Ξ_0 : crucial parameter, fix the asymptotic value of $d_I^{GW}(z)/d_I^{EM}(z)$ at large z
- *n* only determines the precise shape of the function that interpolates from z = 0 and large $\frac{z}{7/16}$

Constraining modified GW propagation with extreme mass-ratio inspirals

 $\Omega \equiv \left\{ H_0, \Omega_m, \Xi_0, n \right\}$ Posterior $p(\Omega \mid D \mathcal{H} I) = p(\Omega \mid \mathcal{H} I) \frac{p(D \mid \Omega \mathcal{H} I)}{p(D \mid \mathcal{H} I)}$ Cosmological model: Defines the relation between $d_r^{\rm gw}, z, \Omega$

Bayesian theorem in cosmology $D \equiv \{D_1, \dots, D_N\} \ i_{\text{th}} \text{GW data} \longrightarrow D_i = \{\hat{d}_L, \hat{\theta}_{gw}, \hat{\phi}_{gw}\} + \text{errors}$ Likelihood Prior Calculated based on cosmological model and the $\Xi_0 = [0.3, 2.0]$ n = [0.5, 3.0]EM $H_0 = [60, 86]$ information $\Omega_M = [0.04, 0.5]$

- EMRI Catalog M1 1.
- Parameter estimation $\rightarrow d_I, \Delta d_I, \Delta \theta, \Delta \phi$ 2.
- Apply modified GW propagation relation $\rightarrow z$ 3.

From GW:

[Credits: Muttoni N., Izquierdo Villalba D.]

prior: 4. 3σ Error box construction:

Statistical information on: z, σ_7

- EMRI Catalog M1
- 3.

Preliminary results: number of detected EMRIs

- 10 yrs observation • low SNR events tend
- to produce a bias in the estimation

Number of events used in the analysis (z < 1)

Ξ_0	=	[0.3,	2.0]
n	=	[0.5,	3.0]
H_0	=	[60,	86]
Ω_M	=	[0.04	,0.5]

M1	$H_0 + \Omega_M + \Xi_0 + n$	$H_0 + \Omega_M + \Xi_0$	$\Xi_0 + n$	Ξ ₀	H_0 +
SNR >= 150	8	8	9	9	9

Preliminary results: Ξ_0

• 90% CI Median of 5 realizations

Injected value and [prior]: $\Xi_0 = 1.0/0.8/1.5 [0.3, 2.0]$ $H_0 = 67.3$ $\Omega_M = 0.315$ $\Delta E_0 / E_0 \sim 4\%$

Liu et al. in prep12/16

Preliminary results: $H_0 + \Omega_M + \Xi_0$

Injected value and [prior]: $\Xi_0 = 1.0 [0.3, 2.0]$ $H_0 = 67.3 [60, 86]$ $\Omega_M = 0.315[0.04, 0.5]$

90% CI Median of 5 realizations Ω_m can not be measured

 $\Delta E_0 / E_0 \sim 21 \%$ $\Delta H_0 / H_0 \sim 5 \%$

Liu et al. in prep14/16

Preliminary results: $H_0 + \Omega_M + \Xi_0 + n$ Injected value and [prior]: $h = 0.674^{+0.037}_{-0.029}$ $\Xi_0 = 1.0 [0.3, 2.0]$ n = [0.5, 3.0] $H_0 = 67.3 [60, 86]$ 90% CI $\Omega_M = 0.315[0.04, 0.5]$ $\Omega_m = 0.287^{+0.193}_{-0.221}$ Median of 5 realizations

$\Delta E_0 / E_0 \sim 33\%$ $\Delta H_0 / H_0 \sim 5\%$

Liu et al. in prep15/16

Conclusion & future prospects

- Conclusion:
- Ξ_0 alone ~ 4 %
- Ξ_0 and *n*: Strongly correlated
 - Different trend when $\Xi_0 > 1, = 1, < 1$
- When also considering other parameters, $\Delta \Xi_0 / \Xi_0 > \sim 20 \%$
- $H_0 \sim$ few percent

- Future prospects:
- New waveform model:
 - Augmented Analytic Kludge with 5PN trajectories
- New sensitivity curve + full response TDI
- Other modified GR model

Backups

M1 4yr detected sources properties: AKK vs AAK5pn

Numbers of detection:

AKK SNR 20: 1178
AKK SNR 50: 111
AAK5pn SNR 20: 257
AAK5pn SNR 50: 17

Modified gravity theory

RR model:

Gravity is modified by the addition of a nonlocal term $\Gamma_{\rm RR} = \frac{m_{\rm Pl}^2}{2} \int d^4x \sqrt{-g} \left[R - \frac{m_{\rm Pl}^2}{2} \right] d^4x \sqrt{-g} \left[R - \frac{m_{\rm Pl}^2}{2} \right]$

Other applicable theories: Horn RT non-local gravity model (E

$$\left[R - \frac{1}{6}m^2R\frac{1}{\Box^2}R\right]$$

deski, DHOST theories,

$$\Xi_0^{\text{max}} = 1.8, n = 1.91$$
)

[Finke et al. 2021]

Explanation of the correlation at lower redshift, expand the formula: С ,

$$\frac{d_L^{\text{gw}}(z)}{d_L^{\text{em}}(z)} = 1 - z\delta(0) + \mathcal{O}(z^2)$$

at very low redshift we are actually sensitive to $\delta(0) \equiv \delta(z=0)$

$$\delta(z) = \frac{n(1 - \Xi_0)}{1 - \Xi_0 + \Xi_0(1 + z)^n}$$

$$\delta(0) = n(1 - \Xi_0)$$

M = 1.00e+06, $\eta = 1e-05$, $e_0 = 0.4$, $p_0 = 10.0$

KGB

EMRI: 1 harmonic

Detection of a single EMRI

400

Credit: Ollie Burke

 $M = 1.00e + 06, \eta = 1e - 05, e_0 =$

Time [days] Credit: Ollie Burke

