Gravitational wave cosmology with LISA standard sirens

10th LISA CosWG Workshop - Stavanger - 07/06/2023

CNES Postdoctoral Fellow* Laboratoire des 2 Infinis - Toulouse danny.laghi@l2it.in2p3.fr

Credits: Steve Drasco/ESA-HUBBLE/NASA

* This research is directly supported by the CNES

LISA Mission Proposal: arXiv:1702.00786

Contents

1 Introduction

2 Science performance

- 2.1 SO1: Study the formation
- 2.2 SO2: Trace the origin, grow
- 2.3 SO3: Probe the dynamics
- 2.4 SO4: Understand the astro
- 2.5 SO5: Explore the fundame
- 2.6 SO6: Probe the rate of exp
- 2.7 SO7: Understand stochast
 - TeV-scale particle physics
- 2.8 SO8: Search for GW burst
- 2.9 Summary

Measure the **cosmological parameters** $\Omega = \{H_0, \Omega_m, ...\}$

	0
	7
and evolution of compact binary stars in the Milky Way Galaxy	8
wth and merger history of massive black holes across cosmic ages	8
of dense nuclear clusters using EMRIs	10
ophysics of stellar origin black holes	11
ental nature of gravity and black holes	11
ansion of the Universe	12
ic GW backgrounds and their implications for the early Universe and	
	12
as and unforeseen sources	13
	13

LASER INTERFEROMETER SPACE ANTENNA

Amaro-Seoane et al. (2017)

EXTREME MASS-RATIO INSPIRALS

Binary systems with mass-ratio $q \sim 10^{-6} - 10^{-3}$

- Massive BH $(10^4 M_{\odot} 10^7 M_{\odot})$
- Compact object $(10 M_{\odot})$

Slow inspiral, $10^4 - 10^5$ orbital cycles in the final year before plunge

Extremely accurate measurements of the system parameters

No EM counterpart

hole. Credit: NASA.

eLISA White Paper, arXiv:1305.5720

PREVIOUS STUDIES ON EMRIS AS DARK SIRENS

Macleod, Hogan, PRD (2008):

 H_0 at 1% with 20 EMRIs at z < 0.5BUT

- assume only linear cosmic expansion
- assume old 5 Gm LISA configuration
- no PE on the GW signals
- no Bayesian inference framework

Dec [deg] ū Dec [ded] 12.2 0ec [deg] 0.274

Macleod, Hogan, PRD (2008)

'PE' = Parameter estimation

EMRIS AS DARK STANDARD SIRENS

HOW MANY EMRIS WILL WE OBSERVE?

EMRI rates span 2-3 orders of magnitudes, reflecting variations in: MBH population: semi-analytic models, realistic/pessimistic

- Stellar clusters distributions around MBHs
- EMRI's orbit parameters
- ...

Model	Mass function	MBH spin	Cusp erosion	$M{-}\sigma$ relation	$N_{\mathbf{p}}$	$\begin{array}{c} \text{CO} \\ \text{mass} \left[M_{\odot} \right] \end{array}$	Total	EMRI rate [yr ⁻¹] Detected (AKK)	Detected (AKS)
M1	Barausse12	a98	yes	Gultekin09	10	10	1600	294	189
M2	Barausse12	a98	yes	KormendyHo13	10	10	1400	220	146
M3	Barausse12	a98	yes	GrahamScott13	10	10	2770	809	440
M4	Barausse12	a98	yes	Gultekin09	10	30	520(620)	260	221
M5	Gair10	a98	no	Gultekin09	10	10	140	47	15
M6	Barausse12	a98	no	Gultekin09	10	10	2080	479	261
M7	Barausse12	a98	yes	Gultekin09	0	10	15800	2712	1765
M8	Barausse12	a98	yes	Gultekin09	100	10	180	35	24
M9	Barausse12	aflat	yes	Gultekin09	10	10	1530	217	177
M10	Barausse12	a0	yes	Gultekin09	10	10	1520	188	188
M11	Gair10	a0	no	Gultekin09	100	10	13	1	1
M12	Barausse12	a98	no	Gultekin09	0	10	20000	4219	2279

Babak et al., PRD (2017)

HOW MANY EMRIS WILL WE OBSERVE?

EMRI rates span 2-3 orders of magnitudes,

- MBH population: semi-analytic models, realistic/pessimis
- Stellar clusters distributions around MBHs
- EMRI's orbit parameters

			Model	Mass function	MBH spin	Cusp erosion	$M – \sigma$ relation
fiducial	_	-▶[M1	Barausse12	a98	yes	Gultekin09
			M2	Barausse12	a98	yes	KormendyHo13
			M3	Barausse12	a98	yes	GrahamScott13
			M4	Barausse12	a98	yes	Gultekin09
pessimistic	_	-> [M5	Gair10	a98	no	Gultekin09
optimistic	_	-> [M6	Barausse12	a98	no	Gultekin09
•			M7	Barausse12	a98	yes	Gultekin09
			M8	Barausse12	a98	yes	Gultekin09
			M9	Barausse12	aflat	yes	Gultekin09
			M10	Barausse12	a0	yes	Gultekin09
			M11	Gair10	a0	no	Gultekin09
			M12	Barausse12	a98	no	Gultekin09

Babak et al., PRD (2017)

. . .

HOW WELL CAN WE LOCALIZE EMRIs?

EMRI PE: catalogs of Babak2017 provide best estimates and uncertainties for:

$$d_L \pm \sigma_{d_L}$$

$$\Delta d_L/d_L \sim 10^{-1}$$

 $\Delta \Omega/\Omega \sim 10 \text{ deg}^2$

Babak et al., PRD (2017)

$\phi \pm \sigma_{\phi} \qquad \theta \pm \sigma_{\theta}$

OUR DATA: LOCALISATION ERROR VOLUMES

Flux-limited, full-sky galaxy simulations of Henriques et al., *MNRAS* (2012) based on the **Millennium Run**

Springel et al., Nature (2005)

For a given cosmology:

 $\hat{d}_L \pm \Delta \hat{d}_L \longrightarrow z \pm \Delta z$

• Assuming cosmological priors: $[z^-, z^+]$

Accounting for galaxy peculiar velocities:

$$[z^{-} - \Delta z_{v_p}^{-}, z^{+} + \Delta z_{v_p}^{+}]$$

• EMRI localisation volume:

$$\Delta \Omega_{sky} \times [z^- - \Delta z^-_{v_p}, z^+ + \Delta z^+_{v_p}]$$

SELECTING EVENTS

Green: 10yrs 3k EMRIs!

SELECTING EVENTS

Danny Laghi

Require **SNR>100**:

- Well-localised, most-informative events
- Few hosts per error-box

(SNR>100)	Events (4 yr)	Events (10 yr)
M5 (pessimistic)	O(2)	O(5)
M1 (fiducial)	O(10)	O(30)
M6 (optimistic)	O(30)	O(70)

Danny Laghi

COSMOLOGICAL INFERENCE SCHEME

13

Quick facts

- Bayesian inference of cosmological parameters with LISA (and 3G detectors) • Forecasts with dark sirens or bright sirens (GW data and galaxy catalog pre-processed)
- Sources: EMRI, MBHB, ...
- The code is public [Del Pozzo, Laghi: github.com/wdpozzo/cosmolisa]

Implementation

- Modules written in cython (likelihood, libraries from LALCosmology) to speed up the inference • Nested sampling algorithm (CPNest) optimised for multithreading

Ongoing development

- GW selection effects and incompleteness of galaxy catalogs
- Joint inference of cosmological (beyond H0) + source population parameters

COSMOLISA

RESULTS: ACDM

EMRIs will be very good probes of H_0

h accuracy (68% CI) 1-6%

 Ω_m accuracy (68% CI) 25% at most

RESULTS: DARK ENERGY

EMRIs can constrain w_0

$$w(z) = w_0 + w_a z/(1+z)$$

w_0 accuracy (68% CI) 10% at least

Modified gravity beyond CPL: see talk by **C. Liu**

MASSIVE BLACK HOLE BINARIES AS BRIGHT STANDARD SIRENS

Danny Laghi

Measure H_0, Ω_m, \ldots

JOINT ANALYSIS: EMRIs + MBHBs

Combine them to help break degeneracies!

FORECASTS FOR DIFFERENT EMRIs & MBHB MODELS

LISA STANDARD SIRENS

