General relativistic bubble growth in cosmological phase transitions

1. Department of Physics and Helsinki Institute of Physics, PL 64, FI-00014 University of Helsinki, Finland.

2.Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom

L. Giombi,¹ M. Hindmarsh^{1,2}

8 June 2023

First order phase transitions (FOPT) in the early Universe

- Phase transitions are a generic feature of many gauge field theories
- Usually described by a scalar field ϕ with free energy $\mathcal{F}(\phi, T)$

M.Hindmarsh et al. (2020), arXiv:2008.09136v2

First order phase transitions (FOPT) in the early Universe

- Phase transitions are a generic feature of many gauge field theories
- Usually described by a scalar field ϕ with free energy $\mathcal{F}(\phi, T)$
- FOPT: just below T_c the field ϕ is in a metastable phase

M.Hindmarsh et al. (2020), arXiv:2008.09136v2

First order phase transitions (FOPT) in the early Universe

- Phase transitions are a generic feature of many gauge field theories
- Usually described by a scalar field ϕ with free energy $\mathcal{F}(\phi, T)$
- FOPT: just below T_c the field ϕ is in a metastable phase
- Thermal and quantum fluctuations allow the nucleation of bubbles of the stable phase
- Bubbles expand and merge until filling up the entire Universe

M.Hindmarsh et al. (2020), arXiv:2008.09136v2

M.Hindmarsh et al. (2020), arXiv:2008.09136v2

* So far: expansion on a flat Minkowski spacetime (

* In slow FOPT the timescale of the expansion is of the order of Hubble time ($R_{\star} \sim H_{\star}^{-1}$)

Need for the full general relativistic treatment

L. Giombi with M. Hindmarsh

$$(R_{\star} \ll H_{\star}^{-1})$$

M.Hindmarsh et al. (2020), arXiv:2008.09136v2

 R_{\star} : mean bubble spacing after nucleation of all bubbles

 H_{+}^{-1} : Hubble radius at the time when 1/e of metastable phase remains

Motivations

FOPT are a source of the stochastic background of gravitațional waves

> FOPT at the EW scale ($\sim 100~{\rm GeV}$) are experimentally interesting for the LISA mission $\sim 0.1 \mathrm{~mHz}$ - $10 \mathrm{~Hz}$

Credit: Anna Kormu

Motivations

FOPT are a source of the stochastic background of gravitațional waves

> FOPT at the EW scale (~ 100 GeV) are experimentally interesting for the LISA mission $\sim 0.1 \text{ mHz} - 10 \text{ Hz}$

• Energy density in gravitational waves sourced $1 \le n \le 2$ by sound waves $\Omega_{_{SW}} \propto (R_{\star}H_{\star})^n$

C. Caprini et al. (2016),arXiv:1512.06239v2

Credit: Anna Kormu

Motivations

FOPT are a source of the stochastic background of gravitațional waves

> FOPT at the EW scale (~ 100 GeV) are experimentally interesting for the LISA mission $\sim 0.1 \text{ mHz} - 10 \text{ Hz}$

• Energy density in gravitational waves sourced $1 \le n \le 2$ by sound waves $\Omega_{_{SW}} \propto (R_{\star}H_{\star})^n$

C. Caprini et al. (2016),arXiv:1512.06239v2

- Cosmological scalar perturbations Φ induce secondary gravitational waves that become important in the limit of large bubbles

$$\frac{\partial_i \Phi \partial_j \Phi}{T_{ij}^{TT}} \sim (HR)^2 \left(\frac{\delta e}{e}\right)$$

Credit: Anna Kormu

• Spherical symmetry: $ds^2 = -a^2 dt^2 + b^2 dr^2 + R^2 \left(d\theta^2 + \sin^2 \theta d\varphi^2 \right)$

$$T^{\mu\nu} = w u^{\mu} u^{\nu} + p g^{\mu\nu},$$

 $u^{\mu} = \frac{1}{a} \delta^{\mu 0}$

Misner & Sharp (1964) Phys.Rev 136 B571

• Spherical symmetry: $ds^2 = -a^2 dt^2 + b^2 dr^2 + R^2 \left(d\theta^2 + \sin^2 \theta d\varphi^2 \right)$

$$T^{\mu\nu} = wu^{\mu}u^{\nu} + pg^{\mu\nu},$$

• Self similarity: $\xi = \frac{R}{t}$ I. Musco et al. (2013) arXiv:1201.2379v3

• Spherical symmetry: $ds^2 = -a^2 dt^2 + b^2 dr^2 + b$

$$T^{\mu\nu} = wu^{\mu}u^{\nu} + pg^{\mu\nu},$$

- Self similarity: $\xi = \frac{R}{t}$ I. Musco et al. (2013) arXiv:1201.2379v3
- Steady flow: $R_w = R(t, r_w(t)) = \xi_w t$

$$R^{2} \left(d\theta^{2} + \sin^{2} \theta d\varphi^{2} \right)$$
$$u^{\mu} = \frac{1}{a} \delta^{\mu 0}$$

Bubble size is a constant fraction of Hubble radius Misner & Sharp (1964) Phys.Rev 136 B571

• Spherical symmetry: $ds^2 = -a^2 dt^2 + b^2 dr^2 + b$

$$T^{\mu\nu} = wu^{\mu}u^{\nu} + pg^{\mu\nu},$$

- Self similarity: $\xi = \frac{K}{t}$ I. Musco et al. (2013) arXiv:1201.2379v3
- Steady flow: $R_w = R(t, r_w(t)) = \xi_w t$
- Equation of state: $p = \omega e$, $\omega = \omega_{-}\Theta(r_{\omega}(t) r)$ Strength parameter: $\alpha_{+} = \frac{4}{2} \frac{\theta_{+} - \theta_{-}}{2}$ W_+

$$R^{2} \left(d\theta^{2} + \sin^{2} \theta d\varphi^{2} \right)$$
$$u^{\mu} = \frac{1}{a} \delta^{\mu 0}$$

Bubble size is a constant fraction of Hubble radius

$$r) + \omega_+ \Theta(r - r_w(t))$$

Trace anomaly
$$\theta = \frac{1}{3}(e+3p)$$

Misner & Sharp (1964) Phys.Rev 136 B571

The profile of the bubble is given by the solution of the system of Einstein equations $G_{\mu\nu} = 8\pi T_{\mu\nu}$ and energy-momentum conservation $\nabla_{\mu}T^{\mu\nu} = 0$

$$\frac{d \ln U}{d \ln \xi} = \left[(\Phi + \omega \Omega)^2 - 2c_s^2 \Gamma^2 \Phi \right] \left[\frac{\Omega - \Phi}{U^2 (\Phi + \omega \Omega)^2 - c_s^2 \Gamma^2 (\Omega - \Phi)^2} \right],$$

$$\frac{d \ln \Omega}{d \ln \xi} = \frac{\Omega - \Phi}{\Phi + \omega \Omega} \left[2\omega + (1 + \omega) \frac{d \ln U}{d \ln \xi} \right],$$

$$\frac{d \ln \Phi}{d \ln \xi} = \frac{1}{\Phi} (\Omega - \Phi).$$

$$R = \frac{1}{\Phi} \partial_r R$$

$$Q \equiv 4\pi e R^2$$

$$Q \equiv 4\pi e R^2$$

$$R = \frac{M}{R}$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$R = \frac{1}{2} \partial_\mu R \partial^\mu R = \Gamma^2 - U$$

$$\xi \to 0$$

One parameter family of solutions

$$U(\xi \to 0) = \frac{2}{3(1 + \omega_{-})}\xi$$
$$\Omega(\xi \to 0) = 3k\xi^{2}$$
$$\Phi(\xi \to 0) = k\xi^{2}$$

Spatial curvature at the origin

$$R_0^{(3)} = R^{(3)}(\xi \to 0) = \frac{12\xi^2}{R^2} \left[k - \frac{2}{9(1+\omega_-)^2} \right]$$

Since we expect lower energy density in the interior

L. Giombi with M. Hindmarsh

Asymptotic solutions

$$\xi
ightarrow 0$$

One parameter family of solutions

$$U(\xi \to 0) = \frac{2}{3(1 + \omega_{-})}\xi$$
$$\Omega(\xi \to 0) = 3k\xi^{2}$$
$$\Phi(\xi \to 0) = k\xi^{2}$$

Spatial curvature at the origin

$$R_0^{(3)} = R^{(3)}(\xi \to 0) = \frac{12\xi^2}{R^2} \left[k - \frac{2}{9(1+\omega_-)^2} \right]$$

Since we expect lower energy density in the interior

L. Giombi with M. Hindmarsh

Asymptotic solutions

Flat FLRW solution

$$U_F = \frac{2}{3(1+\omega_+)} \frac{\xi}{a_F}$$

$$U_F^2 = 2\Phi_F \qquad \Omega_F = 3$$

Constant- ξ observers:

$$V^{\mu}_{\xi} = \gamma \left(\frac{1}{a}, \frac{v}{b}, 0, 0\right) \quad v = \frac{\xi}{a}$$

$$u = \frac{v_F - v}{1 - v v_F}$$

Relative velocity between V^{μ}_{ϵ} and another hypothetical constant- ξ observer that lives at the same ξ in FLRW

Measure departure from FLRW

Deflagration solutions: $v(\xi_w)_- < c_{s_-}$

L. Giombi with M. Hindmarsh

Deflagration solutions: $v(\xi_w)_- < c_{s_-}$ - Comparison with Minkowski

Detonation solutions: $v(\xi_w)_+ > c_{s_w}$

L. Giombi with M. Hindmarsh

Detonation solutions: $v(\xi_w)_+ > c_{s_-}$ - Comparison with Minkowski

L. Giombi with M. Hindmarsh

11

Curvature of spatial sections around the origin

Conclusions & future developments

- * Detonation and deflagration solution exist in GR \longrightarrow
- * Detonations and deflagrations have peculiar rarefaction waves

Hybrids

* Spatial sections around the origin are negatively curved (but it's not a FLRW Universe)

* The amount of curvature in the interior is significantly larger than naive expectation

Conclusions & future developments

- * Detonation and deflagration solution exist in GR
- * Detonations and deflagrations have peculiar rarefaction waves

Hybrids

* Spatial sections around the origin are negatively curved (but it's not a FLRW Universe)

* The amount of curvature in the interior is significantly larger than naive expectation

Backup slides

Introduce a tetrad: $\left\{ n^{\mu}, e^{\mu}_{\ \tau}, e^{\mu}_{\ \theta}, e^{\mu}_{\ \phi} \right\}$

Introduce a tetrad:
$$\left\{ n^{\mu}, e^{\mu}_{\ au}, e^{\mu}_{\ heta}, e^{\mu}_{\ \phi} \right\}$$

First fundamental form: $h_{ab} = g_{\mu\nu}e^{\mu}_{\ a}e^{\nu}_{\ b}$

Introduce a tetrad:
$$\left\{ n^{\mu}, e^{\mu}_{\ au}, e^{\mu}_{\ heta}, e^{\mu}_{\ \phi} \right\}$$

First fundamental form: $h_{ab} = g_{\mu\nu}e^{\mu}_{\ a}e^{\nu}_{\ b}$

Second fundamental form: $K_{ab} = e^{\mu}_{\ a}e^{\nu}_{\ b}\nabla_{\mu}n_{\nu}$

Introduce a tetrad:
$$\left\{ n^{\mu}, e^{\mu}_{\ au}, e^{\mu}_{\ heta}, e^{\mu}_{\ \phi} \right\}$$

First fundamental form: $h_{ab} = g_{\mu\nu}e^{\mu}_{\ a}e^{\nu}_{\ b}$

Second fundamental form: $K_{ab} = e^{\mu}_{\ a}e^{\nu}_{\ b}\nabla_{\mu}n_{\nu}$

Israel junction conditions:

$$\begin{bmatrix} A \end{bmatrix}^{\pm} = A_{+} - A_{-} \\ \{A\}^{\pm} = A_{+} + A_{-}$$

15

Introduce a tetrad:
$$\left\{ n^{\mu}, e^{\mu}_{\ \tau}, e^{\mu}_{\ \theta}, e^{\mu}_{\ \phi} \right\}$$

First fundamental form: $h_{ab} = g_{\mu\nu}e^{\mu}_{\ a}e^{\nu}_{\ b}$

Second fundamental form: $K_{ab} = e^{\mu}_{\ a}e^{\nu}_{\ b}\nabla_{\mu}n_{\nu}$

Israel junction conditions:

 $\begin{bmatrix} h_{ab} \end{bmatrix}^{\pm} = 0$ $\begin{bmatrix} K_{ab} \end{bmatrix}^{\pm} = -8\pi \left(\int_{ab} K_{ab} \right)^{\pm} = -2\pi \left(\int_{ab} K_{ab} \right)^{\pm}$

 $S^a_{\ b}\left\{K^b_{\ a}\right\}^{\pm} =$

From Gauss-Codazzi equations:

$$\left(S_{ab} - \frac{1}{2}g_{ab}S\right)$$

 $S^{a}_{\ b}$: surface stress energy tensor

$$\mathcal{D}_{b}S^{b}{}_{a} = -\left[T_{\mu\nu}e^{\mu}{}_{a}n^{\nu}\right]^{\pm} \equiv -\left[T^{n}_{a}\right]^{\pm}$$
$$S^{a}{}_{b}\left\{K^{b}{}_{a}\right\}^{\pm} = -\left[T_{\mu\nu}n^{\mu}n^{\nu}\right]^{\pm} \equiv -\left[T^{n}_{n}\right]^{\pm}$$

$$[A]^{\pm} = A_{+} - A_{-}$$
$$\{A\}^{\pm} = A_{+} + A_{-}$$

15

Dimensional analysis estimate $\mathscr{D}, K \sim R_v$

Israel junction conditions:

From Gauss-Codazzi equations:

 $\mathcal{D}_{b}S^{b}_{\ a} = -\left[T_{\mu\nu}e^{a}\right]^{\pm}$ $S^{a}_{\ b}\left\{K^{b}_{\ a}\right\}^{\pm} = -$

$$_{W}^{-1}, \qquad S \sim \bar{e}W \sim T_{c}^{4}W$$

$$\left(S_{ab} - \frac{1}{2}g_{ab}S\right)$$

$$e^{\mu}{}_{a}n^{\nu}\Big]^{\pm} \equiv -\left[T^{n}_{a}\right]^{\pm}$$
$$\left[T_{\mu\nu}n^{\mu}n^{\nu}\right]^{\pm} \equiv -\left[T^{n}_{n}\right]^{\pm}$$

Israel junction conditions:

From Gauss-Codazzi equations:

$$\begin{bmatrix} h_{ab} \end{bmatrix}^{\pm} = 0$$
$$\begin{bmatrix} K_{ab} \end{bmatrix}^{\pm} = -8\pi \left(S_{ab} - \frac{1}{2}g_{ab}S \right)$$

$$\mathcal{D}_{b}S^{b}{}_{a} = -\left[T_{\mu\nu}e^{\mu}{}_{a}n^{\nu}\right]^{\pm} \equiv -\left[T^{n}_{a}\right]^{\pm}$$
$$S^{a}{}_{b}\left\{K^{b}{}_{a}\right\}^{\pm} = -\left[T_{\mu\nu}n^{\mu}n^{\nu}\right]^{\pm} \equiv -\left[T^{n}_{n}\right]^{\pm}$$

$$s_{v}^{-1}, \qquad S \sim \bar{e}W \sim T_{c}^{4}W$$

Dimensional analysis estimate $\mathfrak{D}, K \sim R_w^{-1}$ Large bubbles $R_w H_c \sim R_w T_c^2 \sim 1$ Thin wall approximation $\epsilon = \frac{W}{R_w} \ll 1$

Israel junction conditions:

From Gauss-Codazzi equations:

$$\begin{bmatrix} h_{ab} \end{bmatrix}^{\pm} = 0$$
$$\begin{bmatrix} K_{ab} \end{bmatrix}^{\pm} = -8\pi \left(S_{ab} - \frac{1}{2}g_{ab}S \right)$$

$$\mathcal{D}_{b}S^{b}{}_{a} = -\left[T_{\mu\nu}e^{\mu}{}_{a}n^{\nu}\right]^{\pm} \equiv -\left[T^{n}_{a}\right]^{\pm}$$
$$S^{a}{}_{b}\left\{K^{b}{}_{a}\right\}^{\pm} = -\left[T_{\mu\nu}n^{\mu}n^{\nu}\right]^{\pm} \equiv -\left[T^{n}_{n}\right]^{\pm}$$

$$s_{v}^{-1}, \qquad S \sim \bar{e}W \sim T_{c}^{4}W$$

Dimensional analysis estimate $\mathfrak{D}, K \sim R_w^{-1}$ Large bubbles $R_w H_c \sim R_w T_c^2 \sim 1$ Thin wall approximation $\epsilon = \frac{W}{R_w} \ll 1$

Israel junction conditions:

From Gauss-Codazzi equations:

$$\begin{bmatrix} h_{ab} \end{bmatrix}^{\pm} = 0$$
$$\begin{bmatrix} K_{ab} \end{bmatrix}^{\pm} = 0$$

$$\begin{bmatrix} T_{\mu\nu}e^{\mu}{}_{a}n^{\nu} \end{bmatrix}^{\pm} = 0$$
$$\begin{bmatrix} T_{\mu\nu}n^{\mu}n^{\nu} \end{bmatrix}^{\pm} = 0$$

 $\mathcal{D}, K \sim R_w^{-1}, \qquad S \sim \bar{e}W \sim T_c^4 W$

$$[R]^{\pm} = 0$$

$$[\Phi]^{\pm} = 0$$

$$[(1 + \omega)\Omega v\gamma^{2}]^{\pm} = 0$$

$$[(1 + \omega)\Omega v^{2}\gamma^{2} + \omega\Omega]^{\pm} = 0$$

Fixed points

i.
$$(U, \Omega, \Phi) = (0, 0, 0)$$

ii. $U = 0, \quad \Omega = \Phi$
iii. $c_{s_{-}} = \frac{U_{\star}}{\Gamma_{\star}} \frac{\Phi_{\star} + \omega \Omega_{\star}}{\Omega_{\star} - \Phi_{\star}}, \qquad U_{\star} = \frac{\Omega_{\star} - \Phi_{\star}}{\sqrt{2\Phi_{\star}}}$

 $\overrightarrow{Y}_k = (U_k, \Omega_k, \Phi_k)$ Trajectory of solutions of the Einstein equations with initial condition k

The endpoint of $\overrightarrow{Y}_k = (U_k, \Omega_k, \Phi_k)$ move along a line of fixed points $\gamma_{\star}(k) = (\xi_{\star}(k), \overrightarrow{Y}_{\star}(k))$

 $\xi_{\star}(k)$ fixed by the condition $a(\xi \to 0) = 1$

17

Deflagration: curvature

Detonation: curvature

$$\tilde{h}_{\mu\nu} = g_{\mu\nu} + u_{\mu}u_{\nu}$$

