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First order phase transitions (FOPT) in the early Universe 

• Usually described by a scalar field  with 
free energy  

ϕ
ℱ(ϕ, T)
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Figure 4: The figure shows the thermal e�ective Higgs potential VT („) at di�erent temper-
atures. For large temperatures T ∫ Tc (red) the potential has a minimum at „ = 0 and the
ground state is symmetric. Below the temperature T1 > Tc (dark green) a second, but higher
lying minimum develops. At the critical temperature Tc (green) both minima are degener-
ate. Below the critical temperature, the new minimum at non-zero field value is the global
minimum representing the true (stable) ground state.

We can then try to compute the partition function

Z = Tr
Ë
e

≠—(Ĥ0+ĤI)
È

, (3.15)

by expanding in powers of the coupling constant. This is a non-trivial exercise, but it turns
out that we are in fact expanding in the parameter

Á = g
2
f(k̨) (3.16)

with f the phase space density. For a boson,

f(k̨) = 1
e

—Ê
k̨ ≠ 1

(3.17)

which approaches T/Ê
k̨

for frequencies low compared with the temperature, Ê
k̨

π T . In this
limit, the expansion parameter reads

Á = g
2
T

Ê
k̨

(3.18)

which is greater than unity for k . g
2
T . The expansion parameter diverges as |̨k| æ 0 (in the

“infrared”) for massless bosons, cf. Eq. (2.13). We therefore learn that in the case of massless
bosons at zero chemical potential a perturbative expansion in powers of g breaks down in a
thermal state, at any temperature [23], for momenta k . g

2
T .

However, thermal corrections contribute to the mass of a thermal state which have to
be taken into account. One can apply the above argument to the W , Z and gluons of the
Standard Model, which have an interaction term of a similar form.2

2Indeed, this infrared problem was first pointed out for gauge bosons [23].
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First order phase transitions (FOPT) in the early Universe 

• Usually described by a scalar field  with 
free energy  

ϕ
ℱ(ϕ, T)

• Thermal and quantum fluctuations allow the 
nucleation of bubbles of the stable phase

M.Hindmarsh et al. (2020), arXiv:2008.09136v2  
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• Bubbles expand and merge until filling up the  
entire Universe
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Hydrodynamic description of a single expanding bubble: 

So far: expansion on a flat Minkowski spacetime ( )  R⋆ ≪ H−1
⋆

In slow FOPT the timescale of the expansion is of the order of Hubble time ( )  R⋆ ∼ H−1
⋆

Need for the full general relativistic treatment  

M.Hindmarsh et al. (2020), 
arXiv:2008.09136v2  

R⋆

 : mean bubble spacing  
after nucleation of all bubbles

R⋆

 : Hubble radius at the 

 time when  of metastable  
phase remains

H−1
⋆

1/e

3

Goal 
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FOPT are a source of the stochastic background of 
gravitațional waves

FOPT at the EW scale (  GeV) are 
experimentally interesting for the LISA mission

 mHz -  Hz
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• Cosmological scalar perturbations  induce 
secondary gravitational waves that become 
important in the limit of large bubbles

Φ

∂iΦ∂jΦ
TTT

ij
∼ (HR)2( δe

e )
4
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Gravitating bubbles
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1 Einstein equations

Let’s start from the most general metric enjoying a spherical symmetry:

ds
2 = �a

2
dt

2 + b
2
dr

2 +R
2
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2 + sin2 ✓d'2
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R
�2 sin�2

✓

1

CCA (2)

with a, b, R functions of the coordinate time t and radius r. The first step to compute the Einstein tensor is to
evaluate the Christo↵el symbols

�µ
⌫⇢ ⌘

1

2
g
µ�(g�⌫,⇢ + g�⇢,⌫ � g⌫⇢,�) (3)
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while all the other elements are vanishing. Ricci tensor:

Rµ⌫ = �⇢
µ⌫,⇢ � �⇢
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1

• Spherical symmetry:

Tμν = wuμuν + pgμν, uμ =
1
a

δμ0

5

Hydrodynamic description of a single expanding bubble 
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ȧḃ
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• Self similarity: ξ =
R
t

Hydrodynamic description of a single expanding bubble 
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RṘ

a2
sin2 ✓ �1

33 =
1

2
g
1�(�g33,�) = �

RR
0

b2
sin2 ✓

�2
20 =

1

2
g
2�(g2�,0) =

Ṙ
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ȧṘ

aR
+ 2

aa
0
R

0

b2R
(5)

1

• Spherical symmetry:

Tμν = wuμuν + pgμν, uμ =
1
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• Steady flow:   Rw = R(t, rw(t)) = ξwt

rw

Bubble size is a constant 
 fraction of Hubble radius

5

• Self similarity: ξ =
R
t

Hydrodynamic description of a single expanding bubble 
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RṘ

a2
sin2 ✓ �1

33 =
1

2
g
1�(�g33,�) = �

RR
0

b2
sin2 ✓

�2
20 =

1

2
g
2�(g2�,0) =

Ṙ
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Ṙ

R

�2
21 =

1

2
g
2�(g2�,1) =

R
0

R
�3
13 =

1

2
g
3�(g3�,1) =

R
0

R

�2
33 =

1

2
g
2�(�g33,�) = � sin ✓ cos ✓ �3

23 =
1

2
g
3�(g3�,2) =

cos ✓

sin ✓

while all the other elements are vanishing. Ricci tensor:

Rµ⌫ = �⇢
µ⌫,⇢ � �⇢

µ⇢,⌫ + �⇢
µ⌫�

�
⇢� � �⇢

µ��
�
⌫⇢ (4)

R00 = �1
00,1 � �1

10,1 � �2
02,0 � �3

03,0 + �0
00�

�
0� + �1

00�
�
1� � �0

0��
�
00 � �1

0��
�
01 � �2

0��
�
02 � �3

0��
�
03

=
aa

00

b2
�

aa
0
b
0

b3
�

b̈

b
+

ȧḃ
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• Spherical symmetry:

Tμν = wuμuν + pgμν, uμ =
1
a

δμ0

• Equation of state:   p = ωe, ω = ω−Θ(rw(t) − r) + ω+Θ(r − rw(t))

• Steady flow:   Rw = R(t, rw(t)) = ξwt

p+ = ω+e+

p− = ω−e−

rwα+ =
4
3

θ+ − θ−

w+

Bubble size is a constant 
 fraction of Hubble radius

5

Strength parameter: 
at the wall Trace anomaly  θ =

1
3

(e + 3p)

• Self similarity: ξ =
R
t

Hydrodynamic description of a single expanding bubble 

L. Giombi with M. Hindmarsh

I. Musco et al. (2013) arXiv:1201.2379v3 

Misner & Sharp (1964) Phys.Rev 136 B571



d ln U
d ln ξ

= [(Φ + ωΩ)2 − 2c2
s Γ2Φ] [ Ω − Φ

U2(Φ + ωΩ)2 − c2
s Γ2(Ω − Φ)2 ],

d ln Ω
d ln ξ

=
Ω − Φ

Φ + ωΩ [2ω + (1 + ω)
d ln U
d ln ξ ],

d ln Φ
d ln ξ

=
1
Φ

(Ω − Φ) .

U ≡
1
a

∂tR Γ ≡
1
b

∂rR Ω ≡ 4πeR2 Φ ≡
M
R

1 − 2
M
R

≡ ∂μR∂μR = Γ2 − U

a =
Ω − Φ

(1 + ω)UΩ
ξ

6

The profile of the bubble is given by the solution of the system of Einstein equations 
 and energy-momentum conservation Gμν = 8πTμν ∇μTμν = 0

Radial fluid 4-velocity  
Eulerian observer

Generalised Lorentz 
Gamma factor

Energy on a shell 
of radius R

Gravitational potential 
at radius  R

Hydrodynamic description of a single expanding bubble 

L. Giombi with M. Hindmarsh

Misner & Sharp (1964) 
Phys.Rev 136 B571



ξ → 0

One parameter family of solutions

U(ξ → 0) =
2

3(1 + ω−)
ξ

Ω(ξ → 0) = 3kξ2

Φ(ξ → 0) = kξ2

R(3)
0 = R(3)(ξ → 0) =

12ξ2

R2 [k −
2

9(1 + ω−)2 ]
Since we expect lower energy density in the interior

0 < k <
2

9(1 + ω)2

7

Asymptotic solutions 

L. Giombi with M. Hindmarsh

Spatial curvature at the origin



ξ → 0 ξ → ∞

One parameter family of solutions Flat FLRW solution

U(ξ → 0) =
2

3(1 + ω−)
ξ

Ω(ξ → 0) = 3kξ2

Φ(ξ → 0) = kξ2

R(3)
0 = R(3)(ξ → 0) =

12ξ2

R2 [k −
2

9(1 + ω−)2 ]
Since we expect lower energy density in the interior

0 < k <
2

9(1 + ω)2

U2
F = 2ΦF ΩF = 3ΦFUF =

2
3(1 + ω+)

ξ
aF

u =
vF − v

1 − vvF

Relative velocity between  

and another hypothetical 
constant-  observer that lives at 
the same  in FLRW

Vμ
ξ

ξ
ξ

7

Asymptotic solutions 

Constant-  observers:ξ Vμ
ξ = γ ( 1

a
,

v
b

,0,0) v =
ξ − aU

aΓ

Measure departure from FLRW
L. Giombi with M. Hindmarsh

Spatial curvature at the origin
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Deflagration solutions:  v(ξw)− < cs−

L. Giombi with M. Hindmarsh
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Deflagration solutions:    - Comparison with Minkowski v(ξw)− < cs−

L. Giombi with M. Hindmarsh
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Detonation solutions:  v(ξw)+ > cs−

L. Giombi with M. Hindmarsh
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Detonation solutions:    - Comparison with Minkowski v(ξw)+ > cs−

L. Giombi with M. Hindmarsh
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Curvature of spatial sections around the origin 

L. Giombi with M. Hindmarsh

h̃μν = gμν + uμuν

θμν = h̃α
μh̃β

ν ∇αuβ

Projection tensor

Expansion tensor

θϕ ≡ θϕ
ϕ

L. Rezzolla and O. Zanotti (2013)



Detonation and deflagration solution exist in GR 
                     

Detonations and deflagrations have peculiar rarefaction waves 

Spatial sections around the origin are negatively curved (but it’s not a FLRW Universe) 

The amount of curvature in the interior is significantly larger than naive expectation

Hybrids

13

Conclusions  future developments &

L. Giombi with M. Hindmarsh



Detonation and deflagration solution exist in GR 
                     

Detonations and deflagrations have peculiar rarefaction waves 

Spatial sections around the origin are negatively curved (but it’s not a FLRW Universe) 

The amount of curvature in the interior is significantly larger than naive expectation

Hybrids

Calculation of secondary GW?

13

Conclusions  future developments &
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Israel junction conditions: [hab]±
= 0

[Kab]±
= − 8π (Sab −

1
2

gabS)  : surface stress energy tensorSa
b

From Gauss-Codazzi equations: 𝒟bSb
a = − [Tμνe

μ
anν]

±
≡ − [Tn

a]±

Sa
b {Kb

a}
±

= − [Tμνnμnν]
±
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Junction conditions
nμ

Σ

Rw

W

𝒟, K ∼ R−1
w , S ∼ ēW ∼ T4

c WDimensional analysis estimate

Israel junction conditions: [hab]±
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Junction conditions
nμ

Σ

Rw

W

ϵ =
W
Rw

≪ 1

𝒟, K ∼ R−1
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Junction conditions
nμ

Σ

Rw

W

ϵ =
W
Rw

≪ 1

𝒟, K ∼ R−1
w , S ∼ ēW ∼ T4

c W

RwHc ∼ RwT2
c ∼ 1

Dimensional analysis estimate

Large bubbles

Thin wall approximation

Israel junction conditions: [hab]±
= 0

[Kab]±
= 0

From Gauss-Codazzi equations: [Tμνe
μ
anν]

±
= 0

[Tμνnμnν]
±

= 0

[R]± = 0
[Φ]±

= 0

[(1 + ω)Ωvγ2]±
= 0

[(1 + ω)Ωv2γ2 + ωΩ]±
= 0
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Fixed points

i. (U, Ω, Φ) = (0,0,0)

 Trajectory of solutions of the 

Einstein equations with initial condition 

⃗Y k = (Uk, Ωk, Φk)
k

The endpoint of  move along a 

line of fixed points 

⃗Y k = (Uk, Ωk, Φk)
γ⋆(k) = (ξ⋆(k), ⃗Y ⋆(k))

 fixed by the condition ξ⋆(k) a(ξ → 0) = 1

ii. U = 0, Ω = Φ

iii. cs− =
U⋆

Γ⋆

Φ⋆ + ωΩ⋆

Ω⋆ − Φ⋆
, U⋆ =

Ω⋆ − Φ⋆

2Φ⋆

17
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h̃μν = gμν + uμuν
σμν = θ(μν) + a(μuν) −

1
3

θh̃μνθμν = h̃α
μh̃β

ν ∇αnβ

Deflagration: curvature
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h̃μν = gμν + uμuν
σμν = θ(μν) + a(μuν) −

1
3

θh̃μνθμν = h̃α
μh̃β

ν ∇αnβ

Detonation: curvature


