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EW phase transitions - why New Physics?10.1. Order of Phase Transition 221

Fig. 10.3 Shapes of the effective potential Veff (φ) at various temperatures: upper darker curves
correspond to higher temperatures. Left and right panels describe systems with 1st and 2nd order
phase transition, respectively. Black circles show the expectation value 〈φ〉T .

change of 〈φ〉T . The right part of Fig. 10.3 corresponds to the 2nd order phase
transition: the expectation value 〈φ〉T is a smooth function of temperature.

The famous example of the 1st order phase transition is boiling of liquid.
Examples of the 2nd order phase transition are transitions in ferromagnets, order-
disorder transitions in alloys of metals, transitions into superconducting and super-
fluid states.

The notion of different phases and respective phase transition is particularly
well-defined in the cases where the phases differ by symmetry and/or there is a
parameter (called the order parameter) equal to zero in one phase and different
from zero in the other. The above examples of the 2nd order phase transitions
belong to this category (the order parameter in ferromagnet is spontaneous mag-
netization, in superconductor it is the density of the Cooper pair condensate, etc.).
Another example is the chiral phase transition of QCD with massless quarks, the
order parameter here is quark condensate. If the system is such that there is no
order parameter, then phase transitions are also possible, but their existence or
absence may depend on internal or external parameters. A well-known example is
the water-vapor transition, which is of the 1st order at low pressure, and is not a
phase transition at all at high pressure. In the latter case, the substance properties
(e.g., density) change with temperature continuously, albeit rather quickly, so the
system exhibits a phenomenon called smooth crossover, rather than phase tran-
sition proper. The same situation occurs in the electroweak sector of the Standard
Model of particle physics: if gauge and Yukawa couplings are fixed, then at small
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Fig. 10.1 The effective Higgs potential at zero (a) and high (b) temperatures.

As the Universe cools down, the transition from 〈φ〉T = 0 to 〈φ〉T #= 0 occurs at a
certain temperature Tc, the temperature of the phase transition. Depending on the
parameters of the theory, the transition can be quite long or nearly instantaneous,
occur at once throughout the entire system, or proceed in its individual parts.

Two types of phase transitions are most common; these are phase transitions
of the 1st and 2nd order. From the standpoint of the general formalism, 1st order
phase transition is accompanied by a jump in heat capacity; in field theory this
corresponds to a jump in the expectation value 〈φ〉T as a function of temper-
ature, see Fig. 10.2(a). On the contrary, 2nd order phase transition is characterized
by continuous behavior of the heat capacity and the expectation value 〈φ〉T , see
Fig. 10.2(b). This difference is illustrated in Fig. 10.3 where the families of effective
potentials Veff (φ, T ) as functions of φ at various temperatures T are shown. The left
panel of Fig. 10.3 shows the 1st order phase transition, culminating in an abrupt

(a) (b)

Fig. 10.2 The expectation value 〈φ〉T as a function of temperature for the systems with 1st order
(a) and 2nd order (b) phase transition.

1st order 2nd order
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GW/Collider probes for New Physics: 

Example I: Triplet-extended SM
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How/Where New Physics may show up

•    Surprising CDF II measurement of W mass 
     lies >7σ away from the Standard Model 
 

•    Many scenarios beyond the SM have been  
     deployed in the literature to explain this 
     measurement (over 300 publications so far!) 
 

•    A large class of BSM scenarios offering  
     such an explanation features the existence  
     of a new SU(2) adjoint (triplet) scalar which  
     provides a tree-level corrections to the  
     SM W mass value  
 

•    Existence of such scalars may impact 
     the Electro Weak phase transition in early  
     Universe, possibly rendering such models 
     testable in future gravitational-wave detectors

  

(2023)

(                                                              )

credit to Maarten Boonekamp
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EMEFT approach

1 Introduction

Electroweak precision observables have played a crucial role to firmly establish the Standard
Model (SM) as a quantum field theory and to constrain possible New Physics (NP) extensions.
Remarkably, electroweak precision observables were instrumental to indirectly infer the masses
of the top quark and the Higgs boson well before their direct detection at Tevatron and LHC,
respectively. Nowadays, the SM electroweak fit is performed using as input parameters the
fine structure constant ↵, the muon decay constant Gµ, the Z boson mass MZ , the strong
coupling ↵s(MZ), the top quark mass mt, the Higgs mass Mh, and the hadronic contribution
to the running of ↵, i.e. �↵

5
had(MZ). In terms of these parameters, all other observables can be

predicted. In particular, the resulting value of the W
± boson mass from the electroweak fit is

MW = 80354.5± 5.7MeV [1].
The CDF collaboration has recently published a high-precision measurement of MW =

80433.5± 9.4MeV [2], whose precision exceeds that of the current PDG world average, MW =
80379±12MeV [3], obtained from the combination of all previous measurements from LEP, D0,
CDF, and ATLAS. The new CDF value turns out to be considerably larger than the current
PDG world average as well as the value previously inferred from the SM electroweak fit [1].

Taking the new CDF result at face value, a few collaborations have already assessed its
impact in the global electroweak fit, in the attempt of highlighting the favoured NP scenario to
solve this anomaly (see e.g. [4–7]). In particular, it turned out that universal NP models, which
are fully described by the famous Ŝ, T̂ , U,W, andY parameters [8–10], provide an overall good
quality of the fit. The viable solutions prefer either T̂ ⇡ 10�3 and Ŝ = U = W = Y = 0 or
highly-correlated positive Ŝ and T̂ parameters of comparable size T̂ ⇠ Ŝ ⇠ 10�3 and U = W =
Y = 0. If Ŝ and T̂ are loop-induced, they are of order (g4NP/16⇡

2) ⇥M
2
W /M

2
NP and therefore,

weakly-interacting theories require MNP to lie at the electroweak scale to accommodate the
MW anomaly. Such a solution can be hardly reconciled with the direct-search bounds on new
particles. Instead, tree-level NP e↵ects –which are equivalent to the e↵ects stemming from a
strongly-coupled sector with gNP ⇠ 4⇡– can provide the desired values of Ŝ and T̂ even for
MNP ⇠ 10 TeV.

The primary goal of this work is to establish a connection between the NP e↵ects en-
tering MW and Higgs physics observables. Indeed, since within the SM E↵ective Field Theory
(SMEFT) Ŝ and T̂ receive contributions respectively from the d = 6 operators (H†

⌧
a
H)W a

µ⌫B
µ⌫

and (H†
DµH)((DµH)†H), it seems rather natural that NP e↵ects in MW need to be accom-

panied by modifications of the SM predictions for Higgs decay processes like h ! ��, Z� and
h ! ZZ,WW . In Sect. 2 we quantitatively assess this connection in the context of the SMEFT.
Another goal of the present analysis is to systematically classify explicit NP extensions of the
SM which can give a sizeable contribution to T̂ at the tree level. We provide this classification
in Sect. 3 and, for those simplified models predicting a positive shift in T̂ , we discuss accordingly
the correlated signals in Higgs physics. We conclude in Sect. 4 with a summary of our findings.

2 SMEFT approach to the MW anomaly and Higgs physics

Parametrizing the SMEFT Lagrangian as

LSMEFT = LSM +
X

i

ciOi , (2.1)

where we adopt the Warsaw basis [11] and focus in particular on the following subset of opera-
tors, which are relevant for electroweak and Higgs physics:

OHW = (H†
H)W a

µ⌫W
aµ⌫

, (2.2)

OHB = (H†
H)Bµ⌫B

µ⌫
, (2.3)

2

SMEFT Lagrangian (Warsaw):

OHWB = (H†
⌧
a
H)W a

µ⌫B
µ⌫

, (2.4)

OHD = (H†
DµH)((DµH)†H) , (2.5)

OH = (H†
H)3 , (2.6)

OH2 = (H†
H)2(H†

H) , (2.7)

OeH = (H†
H)`LeRH , (2.8)

OuH = (H†
H)qLuRH̃ , (2.9)

OdH = (H†
H)qLdRH , (2.10)

with the covariant derivative defined as Dµ = @µ+ ig2W
a

µ⌧
a+ ig1BµY . Employing the notation

of Refs. [6, 10], the leading electroweak oblique corrections are described by1

Ŝ ⌘
cW

sW

⇧0(0)W3B
=

cW

sW

v
2
cHWB , (2.11)

T̂ ⌘
1

M
2
W

(⇧W3W3
(0)�⇧

W
+
W

�(0)) = �
v
2

2
cHD , (2.12)

with v = 246 GeV and sW ⌘ sin ✓W (cW ⌘ cos ✓W ). We remark that in Eqs. (2.11)–(2.12) we
only included so-called “universal” bosonic operators. Upon applying the equations of motion
in a given basis, other fermionic operators can contribute as well to the Ŝ and T̂ parameters
(see e.g. [12, 13]). Concretely, in terms of the Warsaw basis these are four-fermion operators as

well as operators of the type (H
 !
D µH)( �µ ). These operators can also lead to contributions

to electroweak precision observables beyond the oblique parameters (with the exception of top-
quark operators2) and hence are neglected in the present analysis.

The MW anomaly could be due to a universal new physics correction to T̂ [6]

T̂ ' (0.84± 0.14)⇥ 10�3
, (2.13)

(cHD = �(0.17 ± 0.07/TeV)2) as well as a correlated contribution to Ŝ ⇠ 10�3 (cHWB ⇠

(0.07/TeV)2) of the same size of T̂ , but compatible with zero [6, 7]. The inclusion of higher-
order corrections in the momentum expansion of the inverse propagators (Y and W ) does not
alter significantly the fit [6], while a non-vanishing Û parameter can also explain by itself the
MW anomaly [7]. However, under the assumption of heavy NP, which is captured by the SMEFT
description, the Û parameter is usually neglected since it arises from d = 8 operators.

Since the Ŝ and T̂ parameters are obtained by condensing the Higgs fields in OHWB and
OHD, there is clearly a connection with Higgs physics, as highlighted schematically in Fig. 1.

Writing the SMEFT Lagrangian in the electroweak broken phase as

L
int
SMEFT 3 g

(1)
hWW

hW
+
µ W

�µ + g
(2)
hWW

hW
+
µ⌫W

�µ⌫ + g
(1)
hZZ

hZµZ
µ + g

(2)
hZZ

hZµ⌫Z
µ⌫ + gh��hFµ⌫F

µ⌫

+ gh�ZhFµ⌫Z
µ⌫ + ghhhh

3 + (gheheLeR + ghuhuLuR + ghdhdLdR + h.c.) + . . . , (2.14)

one finds at tree level (see e.g. [17])

g
(1)
hWW

=
2M2

W

v

 
1�

v
2

4
(cHD � 4cH2)

!
, (2.15)

g
(2)
hWW

= 2vcHW , (2.16)

1
In this notation the S and T parameters of Refs. [8, 9] read S = 4s2W Ŝ/↵ and T = T̂ /↵.

2
Top-quark operators can be (weakly) constrained by top-quark physics [14] and via their loop contributions

by electroweak observables [15] and Higgs physics [16].
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Leading EW oblique corrections:
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Universal “bosonic” operators:

L. Di Luzio, R. Gröber and P. Paradisi,  
"Higgs physics confronts the mW anomaly” Phys.Lett.B 832 (2022) 137250


W mass anomaly Anomaly in T-parameter  
(assuming U=0)

2

which receives relatively large corrections due to Higgs
interactions with the scalar triplet.

II. MINIMAL SUL(2) TRIPLET EXTENSION:

MW -ANOMALY AND FOPT

The CDF-II measurement of the W boson mass MW sug-
gests an anomaly in the T̂ -parameter [28] (in particular,
under an assumption of Û = 0), namely

T̂ ' (0.84 ± 0.14) ⇥ 10�3
, (1)

cHD = �(0.17 ± 0.07/TeV)2 , (2)

with cHD being the coupling related to the E↵ective Field
Theory (EFT) operator expressed by

cHDOHD = cHD(H†
DµH)((DµH)†

H) , (3)

and the T̂ -parameter by

T̂ = �v
2

2
cHD . (4)

A possible simple explanation that has been suggested
is to introduce a new state, � = (1, 3, 0) of mass M�,
with charges given w.r.t. the SM gauge group SU(3)c ⇥
SU(2)L ⇥ U(1)Y, i.e. a real scalar triplet of SU(2)L that
is a color singlet and has no hypercharge [6]. This state
is coupled to the Higgs doublet via the interaction La-
grangian term

LT = �k�H
†� · �H + h.c. , (5)

where � denotes the Pauli matrices. Integrating out the
massive state �, the interaction term (5) directly gener-
ates negative coupling in the EFT operator 3

cHD = �2
k

2

�

M
4

�

, (6)

and hence leading to a positive T̂ contribution consistent
with the observed shift in the W mass,

T̂ =
k

2

�
v
2

M
4

�

= 0.84 ⇥ 10�3

✓
|k�|
M�

◆2 ✓8.5 TeV

M�

◆2

. (7)

This is a tree-level e↵ect suggesting that the SU(2)L
scalar triplet can be in a multi-TeV mass range. Nonethe-
less, saturating the perturbativity bound |k�|/M�  4⇡,
the triplet cannot exceed 100 TeV [6].

It is worth to notice that, after integrating out �, Eq. 5
generates an additional contribution to the quartic Higgs
self-interaction term of the form (k�/m�)2(H†

H)2. The
Higgs bare coupling constant �bare hence receives a tree-
level correction, according to � = �bare + (k�/m�)2. In
what follows, we consider the full Higgs quartic coupling
� = m

2
/2v2 (with m

2 being the Higgs mass parameter
in the Lagrangian and v ' 246 GeV – the Higgs vacuum

expectation value) rather than �bare, which appears in
the SM framework.

We may now focus on a Lagrangian term of the form

µ�

3
�3 + h.c. , (8)

where �3 ⌘ (�·�)(�·�)(�·�). Integrating out �-states,
Eqs. (5) and (8) generate the following six-dimensional
operator



⇤2
(H†

H)3 + h.c. (9)

in terms of the cuto↵ scale ⇤, where



⇤2
=

µ�k
3

�

3M6

�

. (10)

The latter recasts as

⇤p


=

p
3M3

�

p
µ�k

3/2
�

, (11)

with  . 4⇡ as a perturbativity bound. Note, the six-
dimensional operator (9) appears to be a crucial contri-
bution to determine the nature and the strength of the
EWPT.

In order to develop a consistent analysis of the EW
FOPT, it is convenient to choose the unitary gauge, such
that H = h/

p
2. The one-loop finite-temperature e↵ec-

tive potential then casts as

Ve↵(T, h) = Vtree(h) + V
(1)

T=0
(h) + �VT (h, T ) , (12)

where

Vtree(h) =
1

2
m

2
h

2 +
�

4
h

4 +


8⇤2
h

6 (13)

is the tree-level Higgs potential, V (1)

T=0
(h) is the Coleman-

Weinberg one-loop potential fixed at the EW scale at
zero temperature, and �VT (h, T ) is the thermal con-
tribution obtained through the daisy resummation tech-
nique [44, 45] and the use of dimensional reduction within
the context of EWPT thermodynamics [46–49].

At tree-level, the e↵ective Higgs potential acquires a
dominant thermal correction to the mass that reads as
CT

2
/2, where

C ' 1

16

⇣
g

02 + 3g2 + 4y2

t
+ 4

m
2

h

v2
+ 36

v
2

⇤2

⌘
, (14)

and where g
0
, g are, respectively, the U(1)Y and SU(2)L

gauge couplings, yt is the Yukawa coupling of the top
quark providing a leading contribution from the SM
fermion sector and mh is the Higgs boson mass which, at
tree-level, is given by m

2

h
= 2�v2+3v4

/⇤2. In this work,
we compute the Coleman-Weinberg contribution and per-
form the bounce action calculations and the search for
FOPTs using the CosmoTransitions package [62].

A. Strumia, JHEP 08 (2022) 248
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Ŝ ⌘
cW

sW

⇧0(0)W3B
=

cW

sW

v
2
cHWB , (2.11)

T̂ ⌘
1

M
2
W

(⇧W3W3
(0)�⇧

W
+
W

�(0)) = �
v
2

2
cHD , (2.12)

with v = 246 GeV and sW ⌘ sin ✓W (cW ⌘ cos ✓W ). We remark that in Eqs. (2.11)–(2.12) we
only included so-called “universal” bosonic operators. Upon applying the equations of motion
in a given basis, other fermionic operators can contribute as well to the Ŝ and T̂ parameters
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which receives relatively large corrections due to Higgs
interactions with the scalar triplet.

II. MINIMAL SUL(2) TRIPLET EXTENSION:

MW -ANOMALY AND FOPT

The CDF-II measurement of the W boson mass MW sug-
gests an anomaly in the T̂ -parameter [28] (in particular,
under an assumption of Û = 0), namely

T̂ ' (0.84 ± 0.14) ⇥ 10�3
, (1)

cHD = �(0.17 ± 0.07/TeV)2 , (2)

with cHD being the coupling related to the E↵ective Field
Theory (EFT) operator expressed by

cHDOHD = cHD(H†
DµH)((DµH)†

H) , (3)

and the T̂ -parameter by

T̂ = �v
2

2
cHD . (4)

A possible simple explanation that has been suggested
is to introduce a new state, � = (1, 3, 0) of mass M�,
with charges given w.r.t. the SM gauge group SU(3)c ⇥
SU(2)L ⇥ U(1)Y, i.e. a real scalar triplet of SU(2)L that
is a color singlet and has no hypercharge [6]. This state
is coupled to the Higgs doublet via the interaction La-
grangian term

LT = �k�H
†� · �H + h.c. , (5)

where � denotes the Pauli matrices. Integrating out the
massive state �, the interaction term (5) directly gener-
ates negative coupling in the EFT operator 3
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and hence leading to a positive T̂ contribution consistent
with the observed shift in the W mass,
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This is a tree-level e↵ect suggesting that the SU(2)L
scalar triplet can be in a multi-TeV mass range. Nonethe-
less, saturating the perturbativity bound |k�|/M�  4⇡,
the triplet cannot exceed 100 TeV [6].

It is worth to notice that, after integrating out �, Eq. 5
generates an additional contribution to the quartic Higgs
self-interaction term of the form (k�/m�)2(H†

H)2. The
Higgs bare coupling constant �bare hence receives a tree-
level correction, according to � = �bare + (k�/m�)2. In
what follows, we consider the full Higgs quartic coupling
� = m

2
/2v2 (with m

2 being the Higgs mass parameter
in the Lagrangian and v ' 246 GeV – the Higgs vacuum

expectation value) rather than �bare, which appears in
the SM framework.

We may now focus on a Lagrangian term of the form

µ�

3
�3 + h.c. , (8)

where �3 ⌘ (�·�)(�·�)(�·�). Integrating out �-states,
Eqs. (5) and (8) generate the following six-dimensional
operator
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in terms of the cuto↵ scale ⇤, where
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The latter recasts as
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p
3M3

�

p
µ�k
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�
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with  . 4⇡ as a perturbativity bound. Note, the six-
dimensional operator (9) appears to be a crucial contri-
bution to determine the nature and the strength of the
EWPT.

In order to develop a consistent analysis of the EW
FOPT, it is convenient to choose the unitary gauge, such
that H = h/

p
2. The one-loop finite-temperature e↵ec-

tive potential then casts as

Ve↵(T, h) = Vtree(h) + V
(1)

T=0
(h) + �VT (h, T ) , (12)

where

Vtree(h) =
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2
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2
h
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4 +
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h
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is the tree-level Higgs potential, V (1)

T=0
(h) is the Coleman-

Weinberg one-loop potential fixed at the EW scale at
zero temperature, and �VT (h, T ) is the thermal con-
tribution obtained through the daisy resummation tech-
nique [44, 45] and the use of dimensional reduction within
the context of EWPT thermodynamics [46–49].

At tree-level, the e↵ective Higgs potential acquires a
dominant thermal correction to the mass that reads as
CT

2
/2, where

C ' 1
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g

02 + 3g2 + 4y2

t
+ 4

m
2

h

v2
+ 36

v
2
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⌘
, (14)

and where g
0
, g are, respectively, the U(1)Y and SU(2)L

gauge couplings, yt is the Yukawa coupling of the top
quark providing a leading contribution from the SM
fermion sector and mh is the Higgs boson mass which, at
tree-level, is given by m

2

h
= 2�v2+3v4

/⇤2. In this work,
we compute the Coleman-Weinberg contribution and per-
form the bounce action calculations and the search for
FOPTs using the CosmoTransitions package [62].
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A minimal scalar SU(2) triplet extension
Interaction Lagrangian with Higgs:

Field Spin SU(3)C SU(2)L U(1)Y sign(T̂ ) Ŝ

� 0 1 3 0 + ⇥

�1 0 1 3 1 � ⇥

⇥1 0 1 4 1/2 + ⇥

⇥3 0 1 4 3/2 � ⇥

B 1 1 1 0 + ⇥

B1 1 1 1 1 � ⇥

W 1 1 3 0 � ⇥

W1 1 1 3 1 + ⇥

L 1 1 2 1/2 +/� X

Table 1: New physics states which can yield a tree-level contribution to T̂ via d  4 interactions
with SM states. Highlighted in pink are the representations predicting a positive shift on T̂ .
The last column indicates whether a tree-level contribution to Ŝ is generated (X) or not (⇥).

3.1 � ⇠ (1, 3, 0)S

From the interaction Lagrangian
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which has the correct sign to explain the MW anomaly.
When the � is not integrated out, the tree-level contribution to T̂ can be alternatively

understood to arise from the generation of a tree-level vacuum expectation value (VEV) for
�, that is h�i ⌘ v� = �v
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�). In general, the VEV of a scalar representation S ⇠
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with hSi = ↵vS , where ↵ = 1 (↵ = 1/
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2) for a real (complex) representation and vS is the

VEV of the canonically normalized real scalar component of S. In the case S = � this yields
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�, as in Eq. (3.5).

The connection between this scalar triplet and electroweak precision measurements was
previously considered e.g. in Refs. [28–30]. Note that the perturbativity range of the massive
� parameter can be obtained by requiring that finite loop corrections to the trilinear scalar
vertex �H

†
H remain smaller than the tree-level value [31]. This yields |�|/M� . 4⇡ [32].

Hence, a scalar triplet well above the TeV scale and with perturbative couplings can explain
the value of T̂ while easily evading all direct collider searches. In particular, saturating the
perturbativity bound, it turns out that M� . 100 TeV.

Other coe�cients which are unavoidably generated after integrating out � are directly
correlated with T̂ via the coupling �:
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with SM states. Highlighted in pink are the representations predicting a positive shift on T̂ .
The last column indicates whether a tree-level contribution to Ŝ is generated (X) or not (⇥).
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which has the correct sign to explain the MW anomaly.
When the � is not integrated out, the tree-level contribution to T̂ can be alternatively

understood to arise from the generation of a tree-level vacuum expectation value (VEV) for
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The connection between this scalar triplet and electroweak precision measurements was
previously considered e.g. in Refs. [28–30]. Note that the perturbativity range of the massive
� parameter can be obtained by requiring that finite loop corrections to the trilinear scalar
vertex �H

†
H remain smaller than the tree-level value [31]. This yields |�|/M� . 4⇡ [32].

Hence, a scalar triplet well above the TeV scale and with perturbative couplings can explain
the value of T̂ while easily evading all direct collider searches. In particular, saturating the
perturbativity bound, it turns out that M� . 100 TeV.

Other coe�cients which are unavoidably generated after integrating out � are directly
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3.1 � ⇠ (1, 3, 0)S

From the interaction Lagrangian

L
int
� 3 ��H

†�a
�
a
H �

�H�

2
(H†

H)�a�a
, (3.3)

one obtains

cHD = �2

2
�

M
4
�

, (3.4)

and hence

T̂ =

2
�v

2

M
4
�

= 0.84⇥ 10�3
✓
|�|

M�

◆2✓8.5TeV

M�

◆2

, (3.5)

which has the correct sign to explain the MW anomaly.
When the � is not integrated out, the tree-level contribution to T̂ can be alternatively

understood to arise from the generation of a tree-level vacuum expectation value (VEV) for
�, that is h�i ⌘ v� = �v

2
/(2M2

�). In general, the VEV of a scalar representation S ⇠

(1, 2j + 1, y) yields [26, 27]

T̂ ' 4
⇣
⌘[j(j + 1)� y

2]� 2y2
⌘
hSi

2

v
2 , (3.6)

with hSi = ↵vS , where ↵ = 1 (↵ = 1/
p
2) for a real (complex) representation and vS is the

VEV of the canonically normalized real scalar component of S. In the case S = � this yields
T̂ ' 

2
�v

2
/M

4
�, as in Eq. (3.5).

The connection between this scalar triplet and electroweak precision measurements was
previously considered e.g. in Refs. [28–30]. Note that the perturbativity range of the massive
� parameter can be obtained by requiring that finite loop corrections to the trilinear scalar
vertex �H

†
H remain smaller than the tree-level value [31]. This yields |�|/M� . 4⇡ [32].

Hence, a scalar triplet well above the TeV scale and with perturbative couplings can explain
the value of T̂ while easily evading all direct collider searches. In particular, saturating the
perturbativity bound, it turns out that M� . 100 TeV.

Other coe�cients which are unavoidably generated after integrating out � are directly
correlated with T̂ via the coupling �:

cH = �4

2
�

M
4
�

✓
�H�

8
� �

◆
= �4

T̂

v
2

✓
�H�

8
� �

◆
, (3.7)

6

2

h�i h�i

W+

W+

W+

W+

�++,�+
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b)

FIG. 1: Example Feynman diagrams for the a) tree-level con-
tribution of the triplet� to theW -boson mass from the triplet
vacuum expectation value; b) loop-level contribution induced
by non-degenerate triplet components. Similar diagrams exist
for the Z boson.

from Ref. [4] in the following and map them onto param-
eters of the triplet model.
At tree-level, the triplet seesaw model contributes only

to T , usually expressed through the ⇢ parameter [50] via
⇢ = 1 + ↵EMT ,

T ' �
2

↵EM

v
2
�

v2
' �4⇥ 10�3

⇣
v�

GeV

⌘2
, (7)

illustrated in Fig. 1 (a) [40]. This has the wrong sign,
making the tension with the CDF result even worse.
Luckily, at one-loop level (Fig. 1 (b)) we can obtain pos-
itive contributions to T that dominate over the tree-level
contribution, as long as we keep the latter small by de-
manding v� . 1GeV. The full expressions for S, T , and
U are given in Refs. [51, 52] and are used in our numer-
ical analysis, but let us briefly consider the approximate
limit of tiny �4 and heavy triplet masses, which gives [46]

S ' �
(2� 4s2

W
+ 5s4

W
)m2

Z

30⇡m2
H

+ �4
v
2

6⇡m2
H

, (8)

' 3⇥ 10�3 �4 � 0.04

(mH/TeV)2
,

T '
v
2
�
2
4

192⇡2↵EMm
2
H

'
4⇥ 10�3

(mH/TeV)2
�
2
4 , (9)

U '
(2� 4s2

W
+ 5s4

W
)m2

Z
� 2m2

W

30⇡m2
H

'
�2⇥ 10�5

(mH/TeV)2
.

(10)

These expressions already illustrate several important
points: i) the U parameter is suppressed compared to S;
ii) the T parameter is positive at one loop and hence con-
tributes positively to the W mass, as required by CDF;
iii) to keep S positive as well, as required for the fit, we
need �4 > 0. Albeit obvious, it bears emphasizing that
the oblique parameters vanish when the triplet is pushed
to very high masses, in accordance with the decoupling
theorem, which will in turn provide upper bounds on the
new masses when the CDF result is to be explained.

Using the full expressions for the oblique parame-
ters [51, 52] and neglecting the tree-level contribution

from Eq. (7) by making v� ⌧ v, we find the required
values in the �4–mH plane that resolve the mW anomaly
in Fig. 2 (top). Positive values �4 ⇠ 1 are required for the
desired mass splitting of the multiplet components, which
is well within the perturbative regime [46] and predicts
the hiearchy mH++ < mH+ < mH ' mA.1 The neutral
scalar H has to lie between 200 and 450GeV to accom-
modate the CDF measurement within 1� and the com-
mon mass-squared di↵erence m2

H
�m

2
H+ = m

2
H+�m

2
H++

is between (120GeV)2 for small mH and (200GeV)2 for
large mH , respectively. Trading the coupling �4 for the
mass splittings yields Fig. 2 (bottom). Notice that in
the region of interest, U/S ' 0.1–0.3, which should be
su�ciently small to indeed neglect U in the global fit,
although U is larger than naively expected for this light
triplet.
We have chosen v� ⌧ v for several reasons: 1) to

obtain small neutrino masses without tiny Yukawa cou-
plings; 2) to obtain correlated and predictive mass split-
tings in Eq. (5); 3) to be able to encode the triplet ef-
fects in the three Peskin–Takeuchi parameters S, T , and
U [48, 51]. A large v� furthermore requires finetuning
between the tree-level and one-loop contribution to T

that pushes �4 – and by extension mH – to even larger
values. We therefore consider v� ⌧ v the most natural
region of parameter space. Values for v� above GeV re-
quire a di↵erent renormalization scheme, as discussed in
Refs. [54, 55], but still allow for a resolution of CDF’s
mW result [53].
The electroweak fit, including Eq. (1), fixes the allowed

range of masses for the triplet scalars, but additional
constraints arise from lepton flavor violation and collider
searches. At 1�, the triplet masses are required to be be-
low 450GeV, even 350GeV for the doubly charged scalar
H

++. These scalars contribute to lepton-flavor-violating
decays, notably [46, 56]

BR(µ ! e�) '
↵EM

��(M†
⌫
M⌫)eµ

��2

48⇡G2
F
v
4
�

✓
1

m
2
H+

+
8

m
2
H++

◆2

,

(11)

BR(µ+
! e

+
e
�
e
+) ' 4

|(M⌫)ee(M⌫)µe|
2

G
2
F
v
4
�m

4
H++

. (12)

The combination
��(M†

⌫
M⌫)eµ

��2 only depends on known
neutrino oscillation parameters [57] and is limited from
below by (0.016 eV)4, using the 2� range from Ref. [58].
The current limit BR(µ ! e�) < 4.2 ⇥ 10�13 [59] then
yields a conservative bound v� > 10 eV in the preferred
parameter space of Fig. 2. A similar bound was derived
in Ref. [60]. µ ! 3e [61] naively gives stronger con-
straints on v� up to keV, but only assuming that all
entries in M⌫ are of similar order; if nature has picked
e.g. |(M⌫)ee| ⌧ |(M⌫)µe| instead – thus suppressing neu-
trinoless double-beta decay beyond testability – µ ! 3e

1 Negative values for S and �4 are only allowed at 2� in this fit [4]
and require rather large |�4| & 5; see Ref. [53] for a discussion of
the triplet model in this parameter region.
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which receives relatively large corrections due to Higgs
interactions with the scalar triplet.

II. MINIMAL SUL(2) TRIPLET EXTENSION:

MW -ANOMALY AND FOPT

The CDF-II measurement of the W boson mass MW sug-
gests an anomaly in the T̂ -parameter [28] (in particular,
under an assumption of Û = 0), namely

T̂ ' (0.84 ± 0.14) ⇥ 10�3
, (1)

cHD = �(0.17 ± 0.07/TeV)2 , (2)

with cHD being the coupling related to the E↵ective Field
Theory (EFT) operator expressed by

cHDOHD = cHD(H†
DµH)((DµH)†

H) , (3)

and the T̂ -parameter by

T̂ = �v
2

2
cHD . (4)

A possible simple explanation that has been suggested
is to introduce a new state, � = (1, 3, 0) of mass M�,
with charges given w.r.t. the SM gauge group SU(3)c ⇥
SU(2)L ⇥ U(1)Y, i.e. a real scalar triplet of SU(2)L that
is a color singlet and has no hypercharge [6]. This state
is coupled to the Higgs doublet via the interaction La-
grangian term

LT = �k�H
†� · �H + h.c. , (5)

where � denotes the Pauli matrices. Integrating out the
massive state �, the interaction term (5) directly gener-
ates negative coupling in the EFT operator 3

cHD = �2
k

2

�

M
4

�

, (6)

and hence leading to a positive T̂ contribution consistent
with the observed shift in the W mass,

T̂ =
k

2

�
v
2

M
4

�

= 0.84 ⇥ 10�3

✓
|k�|
M�

◆2 ✓8.5 TeV

M�

◆2

. (7)

This is a tree-level e↵ect suggesting that the SU(2)L
scalar triplet can be in a multi-TeV mass range. Nonethe-
less, saturating the perturbativity bound |k�|/M�  4⇡,
the triplet cannot exceed 100 TeV [6].

It is worth to notice that, after integrating out �, Eq. 5
generates an additional contribution to the quartic Higgs
self-interaction term of the form (k�/m�)2(H†

H)2. The
Higgs bare coupling constant �bare hence receives a tree-
level correction, according to � = �bare + (k�/m�)2. In
what follows, we consider the full Higgs quartic coupling
� = m

2
/2v2 (with m

2 being the Higgs mass parameter
in the Lagrangian and v ' 246 GeV – the Higgs vacuum

expectation value) rather than �bare, which appears in
the SM framework.

We may now focus on a Lagrangian term of the form

µ�

3
�3 + h.c. , (8)

where �3 ⌘ (�·�)(�·�)(�·�). Integrating out �-states,
Eqs. (5) and (8) generate the following six-dimensional
operator



⇤2
(H†

H)3 + h.c. (9)

in terms of the cuto↵ scale ⇤, where



⇤2
=

µ�k
3

�

3M6

�

. (10)

The latter recasts as

⇤p


=

p
3M3

�

p
µ�k

3/2
�

, (11)

with  . 4⇡ as a perturbativity bound. Note, the six-
dimensional operator (9) appears to be a crucial contri-
bution to determine the nature and the strength of the
EWPT.

In order to develop a consistent analysis of the EW
FOPT, it is convenient to choose the unitary gauge, such
that H = h/

p
2. The one-loop finite-temperature e↵ec-

tive potential then casts as

Ve↵(T, h) = Vtree(h) + V
(1)

T=0
(h) + �VT (h, T ) , (12)

where

Vtree(h) =
1

2
m

2
h

2 +
�

4
h

4 +


8⇤2
h

6 (13)

is the tree-level Higgs potential, V (1)

T=0
(h) is the Coleman-

Weinberg one-loop potential fixed at the EW scale at
zero temperature, and �VT (h, T ) is the thermal con-
tribution obtained through the daisy resummation tech-
nique [44, 45] and the use of dimensional reduction within
the context of EWPT thermodynamics [46–49].

At tree-level, the e↵ective Higgs potential acquires a
dominant thermal correction to the mass that reads as
CT

2
/2, where

C ' 1

16

⇣
g

02 + 3g2 + 4y2

t
+ 4

m
2

h

v2
+ 36

v
2

⇤2

⌘
, (14)

and where g
0
, g are, respectively, the U(1)Y and SU(2)L

gauge couplings, yt is the Yukawa coupling of the top
quark providing a leading contribution from the SM
fermion sector and mh is the Higgs boson mass which, at
tree-level, is given by m

2

h
= 2�v2+3v4

/⇤2. In this work,
we compute the Coleman-Weinberg contribution and per-
form the bounce action calculations and the search for
FOPTs using the CosmoTransitions package [62].
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Integrating out heavy new scalar triplet state yields both: 

a positive contribution to the T-parameter and a modification of the Higgs potential

Higgs quartic couplings receives  
a tree-level correction
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and where g
0
, g are, respectively, the U(1)Y and SU(2)L

gauge couplings, yt is the Yukawa coupling of the top
quark providing a leading contribution from the SM
fermion sector and mh is the Higgs boson mass which, at
tree-level, is given by m

2

h
= 2�v2+3v4

/⇤2. In this work,
we compute the Coleman-Weinberg contribution and per-
form the bounce action calculations and the search for
FOPTs using the CosmoTransitions package [62].

d=6 Higgs self-interaction term:

effective operator below the cutoff scale:

d=6 contribution to the Higgs potential is important for 
the nature and the strength of the EW phase transition

due to an adjoint VEV, we have
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I. INTRODUCTION

The CDF II Collaboration has recently reported a new
and quite unexpected result from the W boson mass
measurement [1], which lies 7.2� away from theoreti-
cal predictions of the Standard Model (SM) of particle
physics [2]. In order to explain this anomaly, several sce-
narios beyond the SM have been recently suggested in
the literature. In particular, new states have been in-
corporated including additional SU(2)L Higgs doublets,
vector-like fermion SU(2)L triplets, vector-like top part-
ners, leptoquarks, singlet-doublet fermion pairs, scalar
SU(2)L triplets and quadruplets, right-handed neutrinos,
Z

0 and extra vector bosons, FIMP dark matter modes,
U(1)Lµ�L⌧ modes, vectorlike quarks, canonical scoto-
genic neutrino-dark matter modes, U(1)Lµ�L⌧ vector-like
leptons — see e.g. Refs. [3–37]. Also a top-down moti-
vated model has been considered, in which extra states
come from a D3-brane [38]. Implications for electroweak
baryogenesis and Chameleon dark energy have been also
considered [39, 40], while the relevance of hadronic uncer-
tainty and electroweak precision tests for the correct in-
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terpretation of the result and the prospect on new physics
has been delved in [41–43].
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This large and statistically significant anomaly within
the Electro-Weak (EW) sector urges us to question what
are its possible implications for our understanding of the
EW phase transitions (EWPTs), and more in general
whether it can be related to a first-order phase transi-
tion (FOPT) in the early Universe. At the first sight,
a relation between the W mass anomaly and the order
of cosmological phase transitions may appear not so di-
rect and clear. Certainly, the answer would be model-
dependent.

In this short letter, we do not pretend to be exhaus-
tive in covering the wealth of phenomenologically allowed
models that address this broad research topic. We rather
seek to answer questions related to the aforementioned
relevant issues, focusing on a specific simplified frame-
work that relates the parameter space of EWPTs to a
possible explanation of the MW -anomaly. Specifically,
the model we consider is based on a minimal scalar-triplet
extension of the SM scalar sector providing a natural ex-
planation of the anomaly as suggested earlier in Ref. [6].
Even without providing here a detailed scan of the pa-
rameter space of the considered minimal model, this sim-
plified approach will nevertheless help us gain intuition

Other contributions to this operator
come from quartics:
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Table 1: New physics states which can yield a tree-level contribution to T̂ via d  4 interactions
with SM states. Highlighted in pink are the representations predicting a positive shift on T̂ .
The last column indicates whether a tree-level contribution to Ŝ is generated (X) or not (⇥).
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which has the correct sign to explain the MW anomaly.
When the � is not integrated out, the tree-level contribution to T̂ can be alternatively

understood to arise from the generation of a tree-level vacuum expectation value (VEV) for
�, that is h�i ⌘ v� = �v
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2) for a real (complex) representation and vS is the

VEV of the canonically normalized real scalar component of S. In the case S = � this yields
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The connection between this scalar triplet and electroweak precision measurements was
previously considered e.g. in Refs. [28–30]. Note that the perturbativity range of the massive
� parameter can be obtained by requiring that finite loop corrections to the trilinear scalar
vertex �H

†
H remain smaller than the tree-level value [31]. This yields |�|/M� . 4⇡ [32].

Hence, a scalar triplet well above the TeV scale and with perturbative couplings can explain
the value of T̂ while easily evading all direct collider searches. In particular, saturating the
perturbativity bound, it turns out that M� . 100 TeV.

Other coe�cients which are unavoidably generated after integrating out � are directly
correlated with T̂ via the coupling �:

cH = �4

2
�

M
4
�

✓
�H�

8
� �

◆
= �4

T̂

v
2

✓
�H�

8
� �

◆
, (3.7)

6

Field Spin SU(3)C SU(2)L U(1)Y sign(T̂ ) Ŝ
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I. INTRODUCTION

The CDF II Collaboration has recently reported a new
and quite unexpected result from the W boson mass
measurement [1], which lies 7.2� away from theoreti-
cal predictions of the Standard Model (SM) of particle
physics [2]. In order to explain this anomaly, several sce-
narios beyond the SM have been recently suggested in
the literature. In particular, new states have been in-
corporated including additional SU(2)L Higgs doublets,
vector-like fermion SU(2)L triplets, vector-like top part-
ners, leptoquarks, singlet-doublet fermion pairs, scalar
SU(2)L triplets and quadruplets, right-handed neutrinos,
Z

0 and extra vector bosons, FIMP dark matter modes,
U(1)Lµ�L⌧ modes, vectorlike quarks, canonical scoto-
genic neutrino-dark matter modes, U(1)Lµ�L⌧ vector-like
leptons — see e.g. Refs. [3–37]. Also a top-down moti-
vated model has been considered, in which extra states
come from a D3-brane [38]. Implications for electroweak
baryogenesis and Chameleon dark energy have been also
considered [39, 40], while the relevance of hadronic uncer-
tainty and electroweak precision tests for the correct in-
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In unitary gauge, one-loop
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and the T̂ -parameter by
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A possible simple explanation that has been suggested
is to introduce a new state, � = (1, 3, 0) of mass M�,
with charges given w.r.t. the SM gauge group SU(3)c ⇥
SU(2)L ⇥ U(1)Y, i.e. a real scalar triplet of SU(2)L that
is a color singlet and has no hypercharge [6]. This state
is coupled to the Higgs doublet via the interaction La-
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†� · �H + h.c. , (5)

where � denotes the Pauli matrices. Integrating out the
massive state �, the interaction term (5) directly gener-
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This is a tree-level e↵ect suggesting that the SU(2)L
scalar triplet can be in a multi-TeV mass range. Nonethe-
less, saturating the perturbativity bound |k�|/M�  4⇡,
the triplet cannot exceed 100 TeV [6].

It is worth to notice that, after integrating out �, Eq. 5
generates an additional contribution to the quartic Higgs
self-interaction term of the form (k�/m�)2(H†

H)2. The
Higgs bare coupling constant �bare hence receives a tree-
level correction, according to � = �bare + (k�/m�)2. In
what follows, we consider the full Higgs quartic coupling
� = m

2
/2v2 (with m

2 being the Higgs mass parameter
in the Lagrangian and v ' 246 GeV – the Higgs vacuum

expectation value) rather than �bare, which appears in
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We may now focus on a Lagrangian term of the form
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where �3 ⌘ (�·�)(�·�)(�·�). Integrating out �-states,
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that H = h/

p
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is the tree-level Higgs potential, V (1)

T=0
(h) is the Coleman-

Weinberg one-loop potential fixed at the EW scale at
zero temperature, and �VT (h, T ) is the thermal con-
tribution obtained through the daisy resummation tech-
nique [44, 45] and the use of dimensional reduction within
the context of EWPT thermodynamics [46–49].
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dominant thermal correction to the mass that reads as
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and where g
0
, g are, respectively, the U(1)Y and SU(2)L

gauge couplings, yt is the Yukawa coupling of the top
quark providing a leading contribution from the SM
fermion sector and mh is the Higgs boson mass which, at
tree-level, is given by m

2

h
= 2�v2+3v4

/⇤2. In this work,
we compute the Coleman-Weinberg contribution and per-
form the bounce action calculations and the search for
FOPTs using the CosmoTransitions package [62].
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cutoff scale

Limit on the d=6 operator imposed by  
the strongly 1st order EW phase 

transition requirement yields:

F. Huang et al, Phys. Rev. D94 (2016) 041702

[arXiv:1601.01640 [hep-ph]]

3

The ⇤/
p
 energy scale is limited in the range 480 ÷

840 GeV [51], yielding the following bound for the �-
sector:
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The FOPT conditions that must be satisfied are Tc > 0
and v(Tc)/Tc > 1, in terms of the critical temperature of
the phase transition, Tc. These lead to the range in the
cuto↵ scale ⇤m  ⇤  ⇤M, which in turn corresponds
to the observed Higgs mass mh = 125 GeV. This is
found employing the following relations for �, m param-
eters in the Higgs sector: m
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The bounds imposed by the FOPT conditions allow
for a scalar triplet to be in a multi-TeV mass range. Sat-
urating the perturbative bounds for the triplet mass M�

as |k�|/M� ' 4⇡ and |µ�|/M� ' 4⇡, the FOPT bounds
in Eq. (15) correspond to M� ' 5 ÷ 10 TeV.

A strong EW FOPT sources bubble nucleation via
quantum tunneling and thermal fluctuations from a
metastable false vacuum to the true vacuum. The dy-
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parameters. Here, T⇤ stands for the percolation tem-
perature, at which the probability of finding a point in
the false vacuum is 0.7 [60]. The ↵ parameter reads
↵ ⌘ ✏(T⇤)/⇢rad(T⇤), with ✏(T ) being the latent heat and
⇢rad(T ) – the primordial plasma thermal energy. The �

parameter is the characteristic time scale of the EWPT,
and is related to the size d of the bubble as d ' vb/�,
with vb being bubble wall expansion velocity. The key
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where SE(T ) denotes the bubble 3D Euclidean action
divided by the temperature and t⇤ is the cosmological
time at which T = T⇤, g⇤(T⇤) are the relativistic degrees
of freedom at T = T⇤ and �V
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di↵erence of the e↵ective potential before and after the
transition takes place at T⇤.

The T⇤, ↵, � parameters introduced above character-
ize the GW energy spectrum, which receives three main
contributions from bubble collisions [52], sound shock
waves [53] and turbulence [54, 55], all described by well-
known semi-analytical formulas. Simulations of FOPTs
from a specific field theory provide an input for the semi-
analytical formulas, which in turn generate the related
characteristics of GW spectra as output. Within this
analysis we deploy standard methods in accounting for
collision, turbulence and sound-wave contributions — see
e.g. Ref. [56, 57]).
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As shown in Fig. 2 one can notice that strong FOPTs
associated to the production of potentially visible GWs
at LISA and future interferometers restricts 

�1/2⇤ to
a narrow region of approximately [500, 510] GeV. Such
a result is rather tantalizing, not only because it cor-
responds to a TeV scale triplet, but, above all, this is
indeed the preferred region favoured by the CDF II W
mass anomaly.
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or slightly smaller as, e.g. the first point in Tab. I.

In Table I, we have listed three scenarios corresponding
to the generation of EWPT in the model under scrutiny.
We show that these FOPT branches can be promisingly
tested in space-based interferometers (see Fig. 4). As
we expected, for the three cases corresponding to the
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We suggest an appealing strategy to probe a large class of scenarios beyond the Standard Model
simultaneously explaining the recent CDF II measurement of the W boson mass and predicting
first-order phase transitions (FOPT) testable in future gravitational-wave (GW) experiments. Our
analysis deploys measurements from the GW channels and high energy particle colliders. We discuss
this methodology focusing on the specific example provided by an extension of the Standard Model
of particle physics that incorporates an additional scalar SU(2)L triplet coupled to the Higgs boson.
We show that within this scenario a strong electroweak FOPT is naturally realised consistently with
the measured W boson mass-shift. Potentially observable GW signatures imply the triplet mass
scale to be TeV-ish, consistently with the value preferred by the W mass anomaly. This model
can be tested in future space-based interferometers such as LISA, DECIGO, BBO, TianQin, TAIJI
projects and in future colliders such as FCC, ILC, CEPC.

I. INTRODUCTION

The CDF II Collaboration has recently reported a new
and quite unexpected result from the W boson mass
measurement [1], which lies 7.2� away from theoreti-
cal predictions of the Standard Model (SM) of particle
physics [2]. In order to explain this anomaly, several sce-
narios beyond the SM have been recently suggested in
the literature. In particular, new states have been in-
corporated including additional SU(2)L Higgs doublets,
vector-like fermion SU(2)L triplets, vector-like top part-
ners, leptoquarks, singlet-doublet fermion pairs, scalar
SU(2)L triplets and quadruplets, right-handed neutrinos,
Z

0 and extra vector bosons, FIMP dark matter modes,
U(1)Lµ�L⌧ modes, vectorlike quarks, canonical scoto-
genic neutrino-dark matter modes, U(1)Lµ�L⌧ vector-like
leptons — see e.g. Refs. [3–37]. Also a top-down moti-
vated model has been considered, in which extra states
come from a D3-brane [38]. Implications for electroweak
baryogenesis and Chameleon dark energy have been also
considered [39, 40], while the relevance of hadronic uncer-
tainty and electroweak precision tests for the correct in-
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terpretation of the result and the prospect on new physics
has been delved in [41–43].
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This large and statistically significant anomaly within
the Electro-Weak (EW) sector urges us to question what
are its possible implications for our understanding of the
EW phase transitions (EWPTs), and more in general
whether it can be related to a first-order phase transi-
tion (FOPT) in the early Universe. At the first sight,
a relation between the W mass anomaly and the order
of cosmological phase transitions may appear not so di-
rect and clear. Certainly, the answer would be model-
dependent.

In this short letter, we do not pretend to be exhaus-
tive in covering the wealth of phenomenologically allowed
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is the tree-level Higgs potential, V (1)

T=0
(h) is the Coleman-

Weinberg one-loop potential fixed at the EW scale at
zero temperature, and �VT (h, T ) is the thermal con-
tribution obtained through the daisy resummation tech-
nique [44, 45] and the use of dimensional reduction within
the context of EWPT thermodynamics [46–49].

At tree-level, the e↵ective Higgs potential acquires a
dominant thermal correction to the mass that reads as
CT

2
/2, where

C ' 1

16

⇣
g
02 + 3g2 + 4y2

t
+ 4

m
2

h

v2
+ 36

v
2

⇤2

⌘
, (19)

and where g
0
, g are, respectively, the U(1)Y and SU(2)L

gauge couplings, yt is the Yukawa coupling of the top
quark providing a leading contribution from the SM
fermion sector and mh is the Higgs boson mass which, at
tree-level, is given by m

2

h
= 2�v2+3v4/⇤2. In this work,

we compute the Coleman-Weinberg contribution and per-
form the bounce action calculations and the search for
FOPTs using the CosmoTransitions package [62].

As it was previously found in [44, 45, 51], the re-
quired condition to induce strong FOPTs in e↵ective ex-
tensions of the Higgs sector with dimension-6 operators
implies that the ⇤/

p
 energy scale is limited in the range

480÷840 GeV. In this article a concrete UV realization is
considered such that, using relation (16), one can recast
this range in terms of the �-sector parameters as
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which will be used as input in our numerical analysis.
The FOPT conditions that must be satisfied are Tc > 0
and v(Tc)/Tc > 1, in terms of the critical temperature of
the phase transition, Tc. These lead to the range in the
cuto↵ scale ⇤m  ⇤  ⇤M, which in turn corresponds
to the observed Higgs mass mh = 125 GeV. This is
found employing the following relations for �, m param-
eters in the Higgs sector: m
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/2⇤2) and
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and m
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, �SM being the SM counterparts.

The bounds imposed by the FOPT conditions allow for
a scalar triplet to be in a multi-TeV mass range. Saturat-
ing the perturbative bounds for the triplet mass M� as
|k�|/M� ' 4⇡, the FOPT bounds in Eq. (20) correspond
to M� ' 5 ÷ 10 TeV.

A strong EW FOPT sources bubble nucleation via
quantum tunneling and thermal fluctuations from a
metastable false vacuum to the true vacuum. The dy-
namics of phase transitions are characterized by T⇤, ↵, �
parameters. Here, T⇤ stands for the percolation tem-
perature, at which the probability of finding a point in
the false vacuum is 0.7 [60]. The ↵ parameter reads

↵ ⌘ ✏(T⇤)/⇢rad(T⇤), with ✏(T ) being the latent heat and
⇢rad(T ) – the primordial plasma thermal energy. The �

parameter is the characteristic time scale of the EWPT,
and is related to the size d of the bubble as d ' vb/�,
with vb being bubble wall expansion velocity. The key
parameters are all controlled by the e↵ective scalar po-
tential according to the following relations:
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where SE(T ) denotes the bubble 3D Euclidean action
divided by the temperature and t⇤ is the cosmological
time at which T = T⇤, g⇤(T⇤) are the relativistic degrees
of freedom at T = T⇤ and �V

min

e↵
(T, h) represents the

di↵erence of the e↵ective potential before and after the
transition takes place at T⇤.

The T⇤, ↵, � parameters introduced above character-
ize the GW energy spectrum, which receives three main
contributions from bubble collisions [52], sound shock
waves [53] and turbulence [54, 55], all described by well-
known semi-analytical formulas. Simulations of FOPTs
from a specific field theory provide an input for the semi-
analytical formulas, which in turn generate the related
characteristics of GW spectra as output. Within this
analysis we deploy standard methods in accounting for
collision, turbulence and sound-wave contributions — see
e.g. Ref. [56, 57]).

We have performed a parametric scan by varying ⇤/
p


in the range [480, 840] GeV using a numerical routine
based on CosmoTransitions [62] to calculate the phase
transition parameters ↵ and �, as well as the GW’s peak
amplitude (h2⌦peak

GW
) and frequency (fpeak). As shown

in Fig. 1 one can notice that strong FOPTs associated
to the production of potentially visible GWs at LISA
and future interferometers restricts ⇤/

p
 to a narrow

region of approximately [500, 510] GeV. Such a result is
rather tantalizing, not only because it corresponds to a
TeV scale triplet, but, above all, this is indeed the pre-
ferred region favoured by the CDF II W mass anomaly.
In particular, expressing the parametric scan in term of
T̂ , which is related to ⇤/

p
 through Eq. (13), we have

found that higher values of the parameter T̂ , related to
lower values of the energy range of ⇤/

p
, correspond to

higher intensities of the GWs stochastic background that
would be originated, as Fig. 1 and Fig. 2 clearly depict.
Therefore, to higher values of the parameter T̂ measured
by CDF II correspond higher values of the amplitude of
the GWs signal and of the related signal-to-noise ratio
(SNR).

Varying T̂ within the same range [0.76, 0.84]⇥10�3, we
can show in Fig. 2 the SNR that corresponds to points
detectable by LISA. In particular, for SNR greater than
20, one obtains T̂ = 0.844 ⇥ 10�3, e.g. the first point in
Tab. I, which corresponds to ⇤/

p
 ⇠ 500 GeV.
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As it was previously found in [44, 45, 51], the re-
quired condition to induce strong FOPTs in e↵ective ex-
tensions of the Higgs sector with dimension-6 operators
implies that the ⇤/

p
 energy scale is limited in the range

480÷840 GeV. In this article a concrete UV realization is
considered such that, using relation (16), one can recast
this range in terms of the �-sector parameters as
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which will be used as input in our numerical analysis.
The FOPT conditions that must be satisfied are Tc > 0
and v(Tc)/Tc > 1, in terms of the critical temperature of
the phase transition, Tc. These lead to the range in the
cuto↵ scale ⇤m  ⇤  ⇤M, which in turn corresponds
to the observed Higgs mass mh = 125 GeV. This is
found employing the following relations for �, m param-
eters in the Higgs sector: m
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, �SM being the SM counterparts.

The bounds imposed by the FOPT conditions allow for
a scalar triplet to be in a multi-TeV mass range. Saturat-
ing the perturbative bounds for the triplet mass M� as
|k�|/M� ' 4⇡, the FOPT bounds in Eq. (20) correspond
to M� ' 5 ÷ 10 TeV.

A strong EW FOPT sources bubble nucleation via
quantum tunneling and thermal fluctuations from a
metastable false vacuum to the true vacuum. The dy-
namics of phase transitions are characterized by T⇤, ↵, �
parameters. Here, T⇤ stands for the percolation tem-
perature, at which the probability of finding a point in
the false vacuum is 0.7 [60]. The ↵ parameter reads

↵ ⌘ ✏(T⇤)/⇢rad(T⇤), with ✏(T ) being the latent heat and
⇢rad(T ) – the primordial plasma thermal energy. The �

parameter is the characteristic time scale of the EWPT,
and is related to the size d of the bubble as d ' vb/�,
with vb being bubble wall expansion velocity. The key
parameters are all controlled by the e↵ective scalar po-
tential according to the following relations:

↵ =
30

⇡g⇤(T⇤)T 4
⇤

h
T

4

d�V
min

e↵
(T, h)

dT
� �V

min

e↵
(T, h)

i

T=T⇤
,

(21)

� = �dSE

dt

���
t=t⇤

, (22)

where SE(T ) denotes the bubble 3D Euclidean action
divided by the temperature and t⇤ is the cosmological
time at which T = T⇤, g⇤(T⇤) are the relativistic degrees
of freedom at T = T⇤ and �V

min

e↵
(T, h) represents the

di↵erence of the e↵ective potential before and after the
transition takes place at T⇤.

The T⇤, ↵, � parameters introduced above character-
ize the GW energy spectrum, which receives three main
contributions from bubble collisions [52], sound shock
waves [53] and turbulence [54, 55], all described by well-
known semi-analytical formulas. Simulations of FOPTs
from a specific field theory provide an input for the semi-
analytical formulas, which in turn generate the related
characteristics of GW spectra as output. Within this
analysis we deploy standard methods in accounting for
collision, turbulence and sound-wave contributions — see
e.g. Ref. [56, 57]).

We have performed a parametric scan by varying ⇤/
p


in the range [480, 840] GeV using a numerical routine
based on CosmoTransitions [62] to calculate the phase
transition parameters ↵ and �, as well as the GW’s peak
amplitude (h2⌦peak

GW
) and frequency (fpeak). As shown

in Fig. 1 one can notice that strong FOPTs associated
to the production of potentially visible GWs at LISA
and future interferometers restricts ⇤/

p
 to a narrow

region of approximately [500, 510] GeV. Such a result is
rather tantalizing, not only because it corresponds to a
TeV scale triplet, but, above all, this is indeed the pre-
ferred region favoured by the CDF II W mass anomaly.
In particular, expressing the parametric scan in term of
T̂ , which is related to ⇤/

p
 through Eq. (13), we have

found that higher values of the parameter T̂ , related to
lower values of the energy range of ⇤/

p
, correspond to

higher intensities of the GWs stochastic background that
would be originated, as Fig. 1 and Fig. 2 clearly depict.
Therefore, to higher values of the parameter T̂ measured
by CDF II correspond higher values of the amplitude of
the GWs signal and of the related signal-to-noise ratio
(SNR).

Varying T̂ within the same range [0.76, 0.84]⇥10�3, we
can show in Fig. 2 the SNR that corresponds to points
detectable by LISA. In particular, for SNR greater than
20, one obtains T̂ = 0.844 ⇥ 10�3, e.g. the first point in
Tab. I, which corresponds to ⇤/

p
 ⇠ 500 GeV.
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3

The ⇤/
p
 energy scale is limited in the range 480 ÷

840 GeV [51], yielding the following bound for the �-
sector:
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The FOPT conditions that must be satisfied are Tc > 0
and v(Tc)/Tc > 1, in terms of the critical temperature of
the phase transition, Tc. These lead to the range in the
cuto↵ scale ⇤m  ⇤  ⇤M, which in turn corresponds
to the observed Higgs mass mh = 125 GeV. This is
found employing the following relations for �, m param-
eters in the Higgs sector: m
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The bounds imposed by the FOPT conditions allow
for a scalar triplet to be in a multi-TeV mass range. Sat-
urating the perturbative bounds for the triplet mass M�

as |k�|/M� ' 4⇡ and |µ�|/M� ' 4⇡, the FOPT bounds
in Eq. (15) correspond to M� ' 5 ÷ 10 TeV.

A strong EW FOPT sources bubble nucleation via
quantum tunneling and thermal fluctuations from a
metastable false vacuum to the true vacuum. The dy-
namics of phase transitions are characterized by T⇤, ↵, �
parameters. Here, T⇤ stands for the percolation tem-
perature, at which the probability of finding a point in
the false vacuum is 0.7 [60]. The ↵ parameter reads
↵ ⌘ ✏(T⇤)/⇢rad(T⇤), with ✏(T ) being the latent heat and
⇢rad(T ) – the primordial plasma thermal energy. The �

parameter is the characteristic time scale of the EWPT,
and is related to the size d of the bubble as d ' vb/�,
with vb being bubble wall expansion velocity. The key
parameters are all controlled by the e↵ective scalar po-
tential according to the following relations:
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where SE(T ) denotes the bubble 3D Euclidean action
divided by the temperature and t⇤ is the cosmological
time at which T = T⇤, g⇤(T⇤) are the relativistic degrees
of freedom at T = T⇤ and �V

min

e↵
(T, h) represents the

di↵erence of the e↵ective potential before and after the
transition takes place at T⇤.

The T⇤, ↵, � parameters introduced above character-
ize the GW energy spectrum, which receives three main
contributions from bubble collisions [52], sound shock
waves [53] and turbulence [54, 55], all described by well-
known semi-analytical formulas. Simulations of FOPTs
from a specific field theory provide an input for the semi-
analytical formulas, which in turn generate the related
characteristics of GW spectra as output. Within this
analysis we deploy standard methods in accounting for
collision, turbulence and sound-wave contributions — see
e.g. Ref. [56, 57]).
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FIG. 1: The GW spectra for the three benchmark FOPTS

solution listed in Table I have been plotted in a frequency domain

that allows to make comparisons with the sensitivity curves of

LISA, BBO and u-DECIGO.

FIG. 2: Parametric scan realized by varying �1/2
⇤ the range

[480, 840] GeV.

We have performed a parametric scan by varying


�1/2⇤ in the range [480, 840] GeV using a numerical
routine based on CosmoTransitions [62] to calculate
the phase transition parameters ↵ and �, as well as the
GW’s peak amplitude (h2⌦peak

GW
) and frequency (fpeak).

As shown in Fig. 2 one can notice that strong FOPTs
associated to the production of potentially visible GWs
at LISA and future interferometers restricts 

�1/2⇤ to
a narrow region of approximately [500, 510] GeV. Such
a result is rather tantalizing, not only because it cor-
responds to a TeV scale triplet, but, above all, this is
indeed the preferred region favoured by the CDF II W
mass anomaly.

Varying 
�1/2⇤ within the same range [480, 840] GeV,

we can show in Fig. 3 the signal-to-noise (SNR) ratio that
corresponds to points detectable by LISA. In particular,
for SNR greater than 10, one obtains 

�1/2⇤ ⇠ 500GeV
or slightly smaller as, e.g. the first point in Tab. I.

In Table I, we have listed three scenarios corresponding
to the generation of EWPT in the model under scrutiny.
We show that these FOPT branches can be promisingly
tested in space-based interferometers (see Fig. 4). As
we expected, for the three cases corresponding to the
benchmarks in Table I, we find that non-runaway bubble

4

FIG. 3: Scatter plots displaying the signal-to-noise (SNR) ratio

for the points detectable by LISA. The color bar denotes the

intensity of GW signals.

T⇤(GeV) ↵ �/H⇤ 
�1/2⇤(GeV) ��hz (%)

43.8 0.30 36.37 498.12 1.8
55.6 0.12 180.94 502.40 2.1
64.2 0.07 394.14 508.38 2.2

TABLE I: Benchmark FOPT solutions that can be
detected in future GW space/based interferometers.

solutions and sound shock wave and turbulence contribu-
tions are predominant with respect to bubbles’ collision
ones. We decided to focus on these three examples, since
not only they evade LHC bounds on direct searches and
trilinear Higgs coupling, but they can also be tested at
CEPC. Indeed, in the model we are considering the Higgs
trilinear coupling �3h is expressed by

�3h = �(1 + �h)
Ah

3

6
, (18)

where A = 3m2

h/v and �h = 2⇤m/⇤. Here �h varies
within the range 0.66 ÷ 2, the values of which can be
compared with the hZ cross section data �hZ , with pre-
cision ��hZ = ��hZ/�hZ . CEPC can achieve the pre-
cision ��hZ ' 1.6% at

p
s = 240GeV collision energy,

corresponding to �h( = 1) = 0.25 for integrated lumi-
nosity of 10 ab�1 — see e.g. Refs.[51, 58]. Thus CEPC
can directly probe the model we considered testing both
EWPT and MW -anomaly from heavy scalar triplet —
see Fig. 1 and Fig. 2.

Note that the measurement of the triple Higgs coupling
can achieve the statistical significance of 4.5� at a poten-
tial high-energy 27 TeV LHC (HE-LHC) upgrade [59].
This, together with the observed W -mass anomaly and a
possible primordial GWs detection, o↵ers a striking op-
portunity for probing the considered triplet extension of
the SM in a not too distant future.

FIG. 4: Parametric regions of the mass of the triplet M�[TeV]

and ⇣[TeV ] = (µD)
1/3k

2/3
D /(3)

1/3
allowing FOPT (Green) and

GW detectable in LISA, u-DECIGO, BBO (Blue), in comparison

with CEPC test capability (orange). The exclusion region from

the perturbativity bound for �-couplings is displayed (Red).

III. CONCLUSION

In this Letter, we have explored an interplay between the
recently observed anomaly detected in the W -mass mea-
surement by the CDF-II Collaboration and the dynamics
of the strong first-order Electro-Weak (EW) phase transi-
tions. For this purpose, we have considered an insightful
example of a model for new physics containing a scalar
SU(2)L triplet with only three adjustable free parameters
on top of those of the Standard Model (SM): a triplet
mass term and its trilinear self-coupling as well as a tri-
linear coupling to the Higgs boson. We have found that
even in this simplified framework one can naturally ex-
plain the observed new physics correction to the W mass
while sourcing a strong first-order EW phase transition
that potentially generates observable primordial gravita-
tional wave (GW) signatures in cosmology. The consid-
ered minimal extension of the SM shares common fea-
tures with a large class of more elaborate Beyond SM
scenarios that realise first-order phase transitions in the
EW sector and, simultaneously, enables to describe the
CDF-II W mass anomaly. Our analysis shows that the
existence of potentially observable GW signatures implies
the triplet mass scale to be TeV-ish, which in turn is close
to the value preferred by the W mass anomaly. With this
example, our analysis explicitly demonstrates that such
a class of models can be probed by future GWs inter-
ferometers such as LISA, DECIGO, TianQin and TAIJI,
around the mHZ frequency scale, as well as from mea-
surements of the trilinear Higgs coupling in future linear
or circular colliders.
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tures with a large class of more elaborate Beyond SM
scenarios that realise first-order phase transitions in the
EW sector and, simultaneously, enables to describe the
CDF-II W mass anomaly. Our analysis shows that the
existence of potentially observable GW signatures implies
the triplet mass scale to be TeV-ish, which in turn is close
to the value preferred by the W mass anomaly. With this
example, our analysis explicitly demonstrates that such
a class of models can be probed by future GWs inter-
ferometers such as LISA, DECIGO, TianQin and TAIJI,
around the mHZ frequency scale, as well as from mea-
surements of the trilinear Higgs coupling in future linear
or circular colliders.
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solutions and sound shock wave and turbulence contribu-
tions are predominant with respect to bubbles’ collision
ones. We decided to focus on these three examples, since
not only they evade LHC bounds on direct searches and
trilinear Higgs coupling, but they can also be tested at
CEPC. Indeed, in the model we are considering the Higgs
trilinear coupling �3h is expressed by
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where A = 3m2

h/v and �h = 2⇤m/⇤. Here �h varies
within the range 0.66 ÷ 2, the values of which can be
compared with the hZ cross section data �hZ , with pre-
cision ��hZ = ��hZ/�hZ . CEPC can achieve the pre-
cision ��hZ ' 1.6% at

p
s = 240GeV collision energy,

corresponding to �h( = 1) = 0.25 for integrated lumi-
nosity of 10 ab�1 — see e.g. Refs.[51, 58]. Thus CEPC
can directly probe the model we considered testing both
EWPT and MW -anomaly from heavy scalar triplet —
see Fig. 1 and Fig. 2.

Note that the measurement of the triple Higgs coupling
can achieve the statistical significance of 4.5� at a poten-
tial high-energy 27 TeV LHC (HE-LHC) upgrade [59].
This, together with the observed W -mass anomaly and a
possible primordial GWs detection, o↵ers a striking op-
portunity for probing the considered triplet extension of
the SM in a not too distant future.
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recently observed anomaly detected in the W -mass mea-
surement by the CDF-II Collaboration and the dynamics
of the strong first-order Electro-Weak (EW) phase transi-
tions. For this purpose, we have considered an insightful
example of a model for new physics containing a scalar
SU(2)L triplet with only three adjustable free parameters
on top of those of the Standard Model (SM): a triplet
mass term and its trilinear self-coupling as well as a tri-
linear coupling to the Higgs boson. We have found that
even in this simplified framework one can naturally ex-
plain the observed new physics correction to the W mass
while sourcing a strong first-order EW phase transition
that potentially generates observable primordial gravita-
tional wave (GW) signatures in cosmology. The consid-
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tures with a large class of more elaborate Beyond SM
scenarios that realise first-order phase transitions in the
EW sector and, simultaneously, enables to describe the
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existence of potentially observable GW signatures implies
the triplet mass scale to be TeV-ish, which in turn is close
to the value preferred by the W mass anomaly. With this
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a class of models can be probed by future GWs inter-
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around the mHZ frequency scale, as well as from mea-
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recently observed anomaly detected in the W -mass mea-
surement by the CDF-II Collaboration and the dynamics
of the strong first-order Electro-Weak (EW) phase transi-
tions. For this purpose, we have considered an insightful
example of a model for new physics containing a scalar
SU(2)L triplet with only three adjustable free parameters
on top of those of the Standard Model (SM): a triplet
mass term and its trilinear self-coupling as well as a tri-
linear coupling to the Higgs boson. We have found that
even in this simplified framework one can naturally ex-
plain the observed new physics correction to the W mass
while sourcing a strong first-order EW phase transition
that potentially generates observable primordial gravita-
tional wave (GW) signatures in cosmology. The consid-
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EW sector and, simultaneously, enables to describe the
CDF-II W mass anomaly. Our analysis shows that the
existence of potentially observable GW signatures implies
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The ⇤/
p
 energy scale is limited in the range 480 ÷

840 GeV [51], yielding the following bound for the �-
sector:

480 GeV .
p

3M3

�

p
µ�k

3/2
�

. 840 GeV . (15)

The FOPT conditions that must be satisfied are Tc > 0
and v(Tc)/Tc > 1, in terms of the critical temperature of
the phase transition, Tc. These lead to the range in the
cuto↵ scale ⇤m  ⇤  ⇤M, which in turn corresponds
to the observed Higgs mass mh = 125 GeV. This is
found employing the following relations for �, m param-
eters in the Higgs sector: m

2 = m
2

SM
(1 � ⇤2

M
/2⇤2) and

� = �SM(1 � ⇤2

M
/⇤2), with ⇤M =

p
3⇤m =

p
3v2

/m
2,

and m
2

SM
, �SM being the SM counterparts.

The bounds imposed by the FOPT conditions allow
for a scalar triplet to be in a multi-TeV mass range. Sat-
urating the perturbative bounds for the triplet mass M�

as |k�|/M� ' 4⇡ and |µ�|/M� ' 4⇡, the FOPT bounds
in Eq. (15) correspond to M� ' 5 ÷ 10 TeV.

A strong EW FOPT sources bubble nucleation via
quantum tunneling and thermal fluctuations from a
metastable false vacuum to the true vacuum. The dy-
namics of phase transitions are characterized by T⇤, ↵, �
parameters. Here, T⇤ stands for the percolation tem-
perature, at which the probability of finding a point in
the false vacuum is 0.7 [60]. The ↵ parameter reads
↵ ⌘ ✏(T⇤)/⇢rad(T⇤), with ✏(T ) being the latent heat and
⇢rad(T ) – the primordial plasma thermal energy. The �

parameter is the characteristic time scale of the EWPT,
and is related to the size d of the bubble as d ' vb/�,
with vb being bubble wall expansion velocity. The key
parameters are all controlled by the e↵ective scalar po-
tential according to the following relations:

↵ =
30

⇡g⇤(T⇤)T 4
⇤

h
T

4

d�V
min

e↵
(T, h)

dT
� �V

min

e↵
(T, h)

i

T=T⇤
,

(16)

� = �dSE

dt

���
t=t⇤

, (17)

where SE(T ) denotes the bubble 3D Euclidean action
divided by the temperature and t⇤ is the cosmological
time at which T = T⇤, g⇤(T⇤) are the relativistic degrees
of freedom at T = T⇤ and �V

min

e↵
(T, h) represents the

di↵erence of the e↵ective potential before and after the
transition takes place at T⇤.

The T⇤, ↵, � parameters introduced above character-
ize the GW energy spectrum, which receives three main
contributions from bubble collisions [52], sound shock
waves [53] and turbulence [54, 55], all described by well-
known semi-analytical formulas. Simulations of FOPTs
from a specific field theory provide an input for the semi-
analytical formulas, which in turn generate the related
characteristics of GW spectra as output. Within this
analysis we deploy standard methods in accounting for
collision, turbulence and sound-wave contributions — see
e.g. Ref. [56, 57]).

FIG. 1: The GW spectra for the three benchmark FOPTS

solution listed in Table I have been plotted in a frequency domain

that allows to make comparisons with the sensitivity curves of

LISA, BBO and u-DECIGO.
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FIG. 2: Parametric scan realized by varying �1/2
⇤ the range

[480, 840] GeV.

We have performed a parametric scan by varying


�1/2⇤ in the range [480, 840] GeV using a numerical
routine based on CosmoTransitions [62] to calculate
the phase transition parameters ↵ and �, as well as the
GW’s peak amplitude (h2⌦peak

GW
) and frequency (fpeak).

As shown in Fig. 2 one can notice that strong FOPTs
associated to the production of potentially visible GWs
at LISA and future interferometers restricts 

�1/2⇤ to
a narrow region of approximately [500, 510] GeV. Such
a result is rather tantalizing, not only because it cor-
responds to a TeV scale triplet, but, above all, this is
indeed the preferred region favoured by the CDF II W
mass anomaly.

Varying 
�1/2⇤ within the same range [480, 840] GeV,

we can show in Fig. 3 the signal-to-noise (SNR) ratio that
corresponds to points detectable by LISA. In particular,
for SNR greater than 10, one obtains 

�1/2⇤ ⇠ 500GeV
or slightly smaller as, e.g. the first point in Tab. I.

In Table I, we have listed three scenarios corresponding
to the generation of EWPT in the model under scrutiny.
We show that these FOPT branches can be promisingly
tested in space-based interferometers (see Fig. 4). As
we expected, for the three cases corresponding to the
benchmarks in Table I, we find that non-runaway bubble
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FIG. 3: Scatter plots displaying the signal-to-noise (SNR) ratio

for the points detectable by LISA. The color bar denotes the

intensity of GW signals.

T⇤(GeV) ↵ �/H⇤ 
�1/2⇤(GeV) ��hz (%)

43.8 0.30 36.37 498.12 1.8
55.6 0.12 180.94 502.40 2.1
64.2 0.07 394.14 508.38 2.2

TABLE I: Benchmark FOPT solutions that can be
detected in future GW space/based interferometers.

solutions and sound shock wave and turbulence contribu-
tions are predominant with respect to bubbles’ collision
ones. We decided to focus on these three examples, since
not only they evade LHC bounds on direct searches and
trilinear Higgs coupling, but they can also be tested at
CEPC. Indeed, in the model we are considering the Higgs
trilinear coupling �3h is expressed by

�3h = �(1 + �h)
Ah

3

6
, (18)

where A = 3m2

h/v and �h = 2⇤m/⇤. Here �h varies
within the range 0.66 ÷ 2, the values of which can be
compared with the hZ cross section data �hZ , with pre-
cision ��hZ = ��hZ/�hZ . CEPC can achieve the pre-
cision ��hZ ' 1.6% at

p
s = 240GeV collision energy,

corresponding to �h( = 1) = 0.25 for integrated lumi-
nosity of 10 ab�1 — see e.g. Refs.[51, 58]. Thus CEPC
can directly probe the model we considered testing both
EWPT and MW -anomaly from heavy scalar triplet —
see Fig. 1 and Fig. 2.

Note that the measurement of the triple Higgs coupling
can achieve the statistical significance of 4.5� at a poten-
tial high-energy 27 TeV LHC (HE-LHC) upgrade [59].
This, together with the observed W -mass anomaly and a
possible primordial GWs detection, o↵ers a striking op-
portunity for probing the considered triplet extension of
the SM in a not too distant future.

FIG. 4: Parametric regions of the mass of the triplet M�[TeV]

and ⇣[TeV ] = (µD)
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GW detectable in LISA, u-DECIGO, BBO (Blue), in comparison
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the perturbativity bound for �-couplings is displayed (Red).

III. CONCLUSION

In this Letter, we have explored an interplay between the
recently observed anomaly detected in the W -mass mea-
surement by the CDF-II Collaboration and the dynamics
of the strong first-order Electro-Weak (EW) phase transi-
tions. For this purpose, we have considered an insightful
example of a model for new physics containing a scalar
SU(2)L triplet with only three adjustable free parameters
on top of those of the Standard Model (SM): a triplet
mass term and its trilinear self-coupling as well as a tri-
linear coupling to the Higgs boson. We have found that
even in this simplified framework one can naturally ex-
plain the observed new physics correction to the W mass
while sourcing a strong first-order EW phase transition
that potentially generates observable primordial gravita-
tional wave (GW) signatures in cosmology. The consid-
ered minimal extension of the SM shares common fea-
tures with a large class of more elaborate Beyond SM
scenarios that realise first-order phase transitions in the
EW sector and, simultaneously, enables to describe the
CDF-II W mass anomaly. Our analysis shows that the
existence of potentially observable GW signatures implies
the triplet mass scale to be TeV-ish, which in turn is close
to the value preferred by the W mass anomaly. With this
example, our analysis explicitly demonstrates that such
a class of models can be probed by future GWs inter-
ferometers such as LISA, DECIGO, TianQin and TAIJI,
around the mHZ frequency scale, as well as from mea-
surements of the trilinear Higgs coupling in future linear
or circular colliders.
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FIG. 1: Parametric scan displayed in T̂ , which varies within the
range [0.76, 0.84] ⇥ 10�3.

FIG. 2: Scatter plots displaying the SNR for the points
detectable by LISA. The color bar denotes the value of T̂ . Higher

values of the range of T̂ correspond to higher intensities of the
GW signals.

In Tab. I, we have listed three scenarios corresponding
to the generation of EWPT in the model under scrutiny.
We show that these FOPT branches can be promisingly
tested in space-based interferometers (see Fig. 3). As
we expected, for the three cases corresponding to the
benchmarks in Tab. I, we find that non-runaway bubble
solutions and sound shock wave and turbulence contribu-
tions are predominant with respect to bubbles’ collision
ones. We decided to focus on these three examples, since
not only they evade LHC bounds on direct searches and
trilinear Higgs coupling, but they can also be tested at
CEPC. Indeed, in the model we are considering the Higgs
trilinear coupling �3h is expressed by

�3h = �(1 + �h)
Ah

3

6
, (23)

where A = 3m2

h
/v and �h = 2⇤m/⇤. Here �h varies

within the range 0.66 ÷ 2, the values of which can be
compared with the hZ cross section data �hZ , with pre-
cision ��hZ = ��hZ/�hZ . CEPC can achieve the pre-
cision ��hZ ' 1.6% at

p
s = 240GeV collision energy,

corresponding to �h( = 1) = 0.25 for integrated lumi-
nosity of 10 ab�1 — see e.g. Refs.[51, 58]. Thus CEPC

FIG. 3: The GW spectra for the three benchmark FOPTS
solution listed in Table I have been plotted in a frequency domain

that allows to make comparisons with the sensitivity curves of
LISA, BBO and u-DECIGO.

T⇤(GeV) ↵ �/H⇤ T̂ ��hz (%)
43.8 0.30 36.37 0.844⇥ 10�3 3.02
55.6 0.12 180.94 0.835⇥ 10�3 2.97
64.2 0.07 394.14 0.822⇥ 10�3 2.90

TABLE I: Benchmark FOPT solutions that can be
detected in future GW space-based interferometers.

can directly probe the model we considered testing both
EWPT and MW -anomaly from heavy scalar triplet —
see Fig. 3 and Fig. 4.

Note that the measurement of the triple Higgs coupling
can achieve the statistical significance of 4.5� at a poten-
tial high-energy 27 TeV LHC (HE-LHC) upgrade [59].
This, together with the observed W -mass anomaly and a
possible primordial GWs detection, o↵ers a striking op-
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2

could come from renormalizable extensions of the SM,
namely, models with vector-like quarks and a triplet
Higgs [20] or with additional scalar fields [7, 8]. Note
that, the last operator is able to realize a SFOPT and
the first two can induce a sizable CP violation.

To investigate the EWPT, it is convenient to work with
the unitary gauge � = h/

p
2. Accordingly, the tree-level

Higgs potential becomes:

Vtree(h) =
1

2
µ
2
h
2 +

�

4
h
4 +



8⇤2
h
6
, (1)

and the one-loop finite-temperature e↵ective potential
can be written as Ve↵(h, T ) = Vtree(h) + V

T=0
1 (h) +

�V
T 6=0
1 (h, T ), with V

T=0
1 (h) being the one-loop Coleman-

Weinberg potential at T = 0, and �V
T 6=0
1 (h) the thermal

contribution with the daisy resummation [26]. In this
type of model the dominant contribution for the EWPT
is from the tree-level barrier, and hence, the e↵ective
potential with finite temperature e↵ects approximately
takes Ve↵(h, T ) ⇡


8⇤2h

6 + �
4h

4 + 1
2 (µ

2 + c T
2)h2

, with

c = 1
16 (�12v2

⇤2 + g
02 + 3g2 + 4y2t + 4m2

h
v2 ), where the

coe�cients g
0 and g are the U(1)Y and SU(2)L gauge

couplings, respectively, and yt is the top quark Yukawa
coupling in the SM. From the standard analysis of the
EW baryogenesis, the critical temperature Tc > 0 and the
washout factor v(Tc)/Tc > 1 give the constraints on the
cuto↵ scale ⇤min < ⇤ < ⇤max, with ⇤max ⌘

p
3v2/mh

and ⇤min ⌘ ⇤max/
p
3 =

p
v

2
/mh. To fix the observed

Higgs mass mh = 125 GeV and the vacuum expecta-
tion value v, the parameters � and µ

2 satisfy the rela-

tions: � = �SM

�
1 �

⇤2
max
⇤2

�
and µ

2 = µ
2
SM

�
1 �

⇤2
max
2⇤2

�
,

with ⇤max ⌘
p
3v2/mh. In addition, the perturbativity

requires that  < 4⇡. If one chooses a larger , how-
ever, a larger bound for ⇤max may be achieved. For
mh = 125 GeV, there is 480 GeV < ⇤/

p
 < 840 GeV,

as required by the SFOPT.
A novel consequence of this e↵ective theory is that

the requirement of the SFOPT can lead to an obvious
modification of the trilinear Higgs coupling as Lhhh =
�

1
6 (1 + �h)Ahh

3
, with Ah = 3m2

h/v being the trilinear
Higgs coupling in the SM and �h = 2⇤2

min/⇤
2. In our

model �h varies from 2/3 to 2. It turns out that one can
test the EW baryogenesis by probing the deviation of
the trilinear Higgs coupling at colliders. For the Large
Hadron Collider (LHC), such a deviation leads to di↵erent
invariant mass distribution from the SM one. However,
due to the challenge of suppressing the large backgrounds
at hadron colliders, the trilinear Higgs coupling is di�cult
to be pinned down at the 14 TeV LHC. Interestingly, for
lepton colliders, namely, the International Linear Collider
(ILC) and CEPC, the trilinear Higgs coupling could be
measured precisely. In particular, at the CEPC with

p
s =

240 GeV, the one-loop contribution to hZ cross section
(�hZ) beyond the SM will be dominated by the modified
trilinear Higgs coupling [20]. Therefore, a deviation of

⇤ T⇤ ↵ �/H⇤

590 GeV 40.62 GeV 0.66 138.1

600 GeV 51.94 GeV 0.29 346.1

650 GeV 75.42 GeV 0.09 1696.1

700 GeV 87.60 GeV 0.05 7980.7

750 GeV 96.08 GeV 0.03 26486.2

TABLE I: The derived parameters of EWPT for di↵erent
cuto↵ scales ⇤.

�hZ , which is defined as ��hZ ⌘ �hZ/�
SM
hZ � 1, can be

induced and it is approximately proportional to �h as
��hZ ' 1.6% �h at

p
s = 240 GeV. Thus, for  = 1,

one gets ��hZ ' 7514.17 GeV2
/⇤2

. For the CEPC with
an integrated luminosity of 10 ab�1, the precision of
�hZ could be 0.4% [27], which corresponds to |�h| ⇠

25%. In our scenario, �h 2 (2/3, 2), and hence, the
associated signals could be observable at the CEPC. More
connections between the Higgs trilinear coupling can be
found in [28, 29].

GW signals of EW baryogenesis.— For the Higgs po-
tential responsible for EW baryogenesis, there exists a
potential barrier between the metastable false vacuum
and the true one. If the EWPT is strong enough, vac-
uum bubbles are nucleated via quantum tunneling. The
temperature goes down along with the cosmic expan-
sion, and the nucleation probability of one bubble per
one horizon volume becomes larger and larger. The
EWPT completes when the probability is of O(1) at
the transition temperature, i.e., �(T⇤) ' H

4
⇤ , and then,

we obtain S3(T⇤)/T⇤ = 4 ln(T⇤/100GeV) + 137, where
S3 ⌘

R
d
3
r[ 12 (

~rh)2 + Ve↵(h, T )] is the three dimensional
Euclidean action.

The properties of the EWPT and of the bubbles are
determined by two key parameters ↵ and �. Note that, ↵
is defined by ↵ ⌘

✏(T⇤)
⇢rad(T⇤)

at the transition temperature
T⇤, which depicts the ratio of the false vacuum energy
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represents the variation of the bubble nucleation rate
with �0(T ) / T

4. The parameter ↵ gives a measure of
the strength of the EWPT, namely, a larger value for
↵ corresponds to a stronger EWPT. Furthermore, ��1

corresponds to the typical time scale of the EWPT and its
product with the bubble wall velocity �
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vb(↵) represents

the size of the bubble. These derived parameters for
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It is known that there exist three major sources for
producing GW during SFOPT, which respectively are
collisions of the vacuum bubbles [30], sound waves [31]
and MHD turbulence [32, 33] in the plasma after col-

2

could come from renormalizable extensions of the SM,
namely, models with vector-like quarks and a triplet
Higgs [20] or with additional scalar fields [7, 8]. Note
that, the last operator is able to realize a SFOPT and
the first two can induce a sizable CP violation.

To investigate the EWPT, it is convenient to work with
the unitary gauge � = h/
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2. Accordingly, the tree-level

Higgs potential becomes:
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potential with finite temperature e↵ects approximately
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coe�cients g
0 and g are the U(1)Y and SU(2)L gauge

couplings, respectively, and yt is the top quark Yukawa
coupling in the SM. From the standard analysis of the
EW baryogenesis, the critical temperature Tc > 0 and the
washout factor v(Tc)/Tc > 1 give the constraints on the
cuto↵ scale ⇤min < ⇤ < ⇤max, with ⇤max ⌘

p
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with ⇤max ⌘
p
3v2/mh. In addition, the perturbativity

requires that  < 4⇡. If one chooses a larger , how-
ever, a larger bound for ⇤max may be achieved. For
mh = 125 GeV, there is 480 GeV < ⇤/

p
 < 840 GeV,

as required by the SFOPT.
A novel consequence of this e↵ective theory is that

the requirement of the SFOPT can lead to an obvious
modification of the trilinear Higgs coupling as Lhhh =
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1
6 (1 + �h)Ahh

3
, with Ah = 3m2

h/v being the trilinear
Higgs coupling in the SM and �h = 2⇤2

min/⇤
2. In our

model �h varies from 2/3 to 2. It turns out that one can
test the EW baryogenesis by probing the deviation of
the trilinear Higgs coupling at colliders. For the Large
Hadron Collider (LHC), such a deviation leads to di↵erent
invariant mass distribution from the SM one. However,
due to the challenge of suppressing the large backgrounds
at hadron colliders, the trilinear Higgs coupling is di�cult
to be pinned down at the 14 TeV LHC. Interestingly, for
lepton colliders, namely, the International Linear Collider
(ILC) and CEPC, the trilinear Higgs coupling could be
measured precisely. In particular, at the CEPC with

p
s =

240 GeV, the one-loop contribution to hZ cross section
(�hZ) beyond the SM will be dominated by the modified
trilinear Higgs coupling [20]. Therefore, a deviation of
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Hadron Collider (LHC), such a deviation leads to di↵erent
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to be pinned down at the 14 TeV LHC. Interestingly, for
lepton colliders, namely, the International Linear Collider
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measured precisely. In particular, at the CEPC with
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model �h varies from 2/3 to 2. It turns out that one can
test the EW baryogenesis by probing the deviation of
the trilinear Higgs coupling at colliders. For the Large
Hadron Collider (LHC), such a deviation leads to di↵erent
invariant mass distribution from the SM one. However,
due to the challenge of suppressing the large backgrounds
at hadron colliders, the trilinear Higgs coupling is di�cult
to be pinned down at the 14 TeV LHC. Interestingly, for
lepton colliders, namely, the International Linear Collider
(ILC) and CEPC, the trilinear Higgs coupling could be
measured precisely. In particular, at the CEPC with
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240 GeV, the one-loop contribution to hZ cross section
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tential responsible for EW baryogenesis, there exists a
potential barrier between the metastable false vacuum
and the true one. If the EWPT is strong enough, vac-
uum bubbles are nucleated via quantum tunneling. The
temperature goes down along with the cosmic expan-
sion, and the nucleation probability of one bubble per
one horizon volume becomes larger and larger. The
EWPT completes when the probability is of O(1) at
the transition temperature, i.e., �(T⇤) ' H
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⇤ , and then,
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4. The parameter ↵ gives a measure of
the strength of the EWPT, namely, a larger value for
↵ corresponds to a stronger EWPT. Furthermore, ��1

corresponds to the typical time scale of the EWPT and its
product with the bubble wall velocity �

�1
vb(↵) represents

the size of the bubble. These derived parameters for
di↵erent cuto↵ scales ⇤ are listed in Table I.
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could come from renormalizable extensions of the SM,
namely, models with vector-like quarks and a triplet
Higgs [20] or with additional scalar fields [7, 8]. Note
that, the last operator is able to realize a SFOPT and
the first two can induce a sizable CP violation.

To investigate the EWPT, it is convenient to work with
the unitary gauge � = h/
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couplings, respectively, and yt is the top quark Yukawa
coupling in the SM. From the standard analysis of the
EW baryogenesis, the critical temperature Tc > 0 and the
washout factor v(Tc)/Tc > 1 give the constraints on the
cuto↵ scale ⇤min < ⇤ < ⇤max, with ⇤max ⌘

p
3v2/mh
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requires that  < 4⇡. If one chooses a larger , how-
ever, a larger bound for ⇤max may be achieved. For
mh = 125 GeV, there is 480 GeV < ⇤/

p
 < 840 GeV,

as required by the SFOPT.
A novel consequence of this e↵ective theory is that

the requirement of the SFOPT can lead to an obvious
modification of the trilinear Higgs coupling as Lhhh =
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3
, with Ah = 3m2

h/v being the trilinear
Higgs coupling in the SM and �h = 2⇤2
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model �h varies from 2/3 to 2. It turns out that one can
test the EW baryogenesis by probing the deviation of
the trilinear Higgs coupling at colliders. For the Large
Hadron Collider (LHC), such a deviation leads to di↵erent
invariant mass distribution from the SM one. However,
due to the challenge of suppressing the large backgrounds
at hadron colliders, the trilinear Higgs coupling is di�cult
to be pinned down at the 14 TeV LHC. Interestingly, for
lepton colliders, namely, the International Linear Collider
(ILC) and CEPC, the trilinear Higgs coupling could be
measured precisely. In particular, at the CEPC with

p
s =

240 GeV, the one-loop contribution to hZ cross section
(�hZ) beyond the SM will be dominated by the modified
trilinear Higgs coupling [20]. Therefore, a deviation of
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GW/Collider probes for New Physics: 

Example II: Dynamical EWSB



Dynamical EWSB

✓  EWSB is triggered by a new strongly-coupled dynamics  
     (more than one confinement scale in Nature?) 

✓  No fundamental scalars  
     (composite Higgs?) 

✓  No hierarchy problem, no fine-tuning  
     (best alternative to SUSY?) 

✓  A plenty of new hadron-like objects, difficult to find/treat though 
     (composite Dark Matter? LHC phenomenology?)

Many attractive features….

Evolutions of DEWSB ideas/realizations….
Technicolor 
                      Extended TC 
                                               Walking TC 
                                                                       Bosonic TC 
                                                                                              Composite Higgs… 
                                                                                                                                 ???
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Toy-model of DEWSB: SU(2)LxSU(2)R LσM

pseudoscalar T-pions 
(adjoint rep.)

scalar T-sigma 
(singlet rep.)

Kinetic terms:

lightest 
T-glueball

collective excitation 
of T-quark condensate

8

  LσM in QCD hadron physics: 

a model for constituent  
quark-meson interactions

To the first order in δ ! 1, the transformation between the gauge eigenstates {η̃′, ζ̃, η̃, π̃0}
and the corresponding mass eigestates {η′, ζ , η, π0} reads

η̃′ = η′ +
χ1 δ√
2M2

η′(0)

(η + π0) +O(δ2) , ζ̃ =
η + π0

√
2

−
δ

M2
π(0)

(

2χ1 η
′ +

χ2

2
√
2
ζ
)

+O(δ2) ,

η̃ = −
1

2
ζ −

1

2

√

3

2
(η − π0) , π̃0 =

√
3

2
ζ −

1

2
√
2
(η − π0) ,

and the corresponding physical mass spectrum is

M2
η′ = M2

η′(0) +O(δ2) , M2
ζ = M2

π(0) +O(δ2) ,

M2
η = M2

π(0) −
χ2

2

√

3

2
δ +O(δ2) , M2

π = M2
π(0) +

χ2

2

√

3

2
δ +O(δ2) . (5.16)

The quadratic mass form of charged pseudoscalar π±, K± fields (only the first-order
terms in δ ! 1 are shown) read

M2
π(0)(π̃

+π̃− + K̃+K̃−) +
δ

2

√

3

2
(M2

H(0) −M2
π(0)) (π̃

+K̃− + K̃+π̃−) . (5.17)

The transformations to the mass basis

π̃± =
1√
2

(

π± +K±) , K̃± =
1√
2

(

−π± +K±) (5.18)

in the EW broken phase lead to the states {π±, K±} with definite physical masses squared

M2
π± = M2

π(0) −
δ

2

√

3

2
(M2

H(0) −M2
π(0)) +O(δ2) ,

M2
K± = M2

π(0) +
δ

2

√

3

2
(M2

H(0) −M2
π(0)) +O(δ2) .

(5.19)

3. T-quarks

Q̄Q → 〈Q̄Q〉+ Q̄Q

−gTCQ̄(S + iγ5P
a)Q → −gTC

(
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the source term

global chiral SSB

QGC formation

model developed in this work we keep the SM Higgs mechanism of the EWSB and the
one-Higgs-doublet SM untouched, and simply add extra technifermion sector (2.2) in con-
finement. As an essential part of the CSTC model, we introduce the interaction terms
between the standard Higgs doublet H, and the new Pa and S states which are allowed
by the local SU(2)W symmetry. As will be demonstrated below, such extra terms lead to
a mixing between the scalar Higgs and technisigma fields. The most general form of the
Lagrangian corresponding to the scalar self-interactions including µ-terms as follows [41]

LCSTC
U, self =

1

2
µ2
S(S

2 + P 2) + µ2
HH2 − 1

4
λTC(S

2 + P 2)2 − λHH4 + λH2(S2 + P 2) , (2.6)

and the extra linear “source” term which appears after averaging over the technifermion
vacuum fluctuations and describes interactions of the scalar singlet S field with scalar modes
of the technifermion condensate, i.e.

LCSTC
U, source = −gTC S 〈 ¯̃QQ̃〉 . (2.7)

The potential part of the GLTσM Lagrangian is then given by

LCSTC
U = LCSTC

U, self + LCSTC
U, source . (2.8)

In Eq. (2.6) we defined P 2 ≡
∑

a PaPa = π̃0π̃0 + 2π̃+π̃−, whereas gauge-Higgs interaction
terms are the same as in the SM.

U, D

W, Z

σ̃ h
U, D

W, Z

S, Pa H

HS, Pa

FIG. 2: Typical radiative corrections to the quartic Higgs-TC coupling λ (in particular, giving rise
to the hσ̃-mixing) before the EWSB (left) and after the EWSB (right).

The mixing between the Higgs boson and scalar technisigma fields is governed by the
quartic Higgs-TC coupling λ in Eq. (2.6). Such a mixing is one of the characteristic effects
of the chiral-symmetric Technicolor. In a sense, this effect is indeed one of the motivations
of the model under discussion. It has to be taken into consideration if the precision LHC
measurements uncover possibly small deviations of the Higgs-like 126 GeV boson (especially,
in the γγ decay channel) from the standard Higgs boson. The quartic coupling λ controls
such a mixing and á priori is allowed by the gauge symmetry of the initial Lagrangian,
thus, cannot be identically equal to zero. Indeed, any terms which are allowable by the
initial symmetry of the model, even being equal to zero at the tree level, necessarily appear
in divergent radiative corrections. In order to renormalize such divergencies one has to
introduce corresponding counterterms. So if at a given scale µ0 the coupling λ(µ0) →
0 vanishes it will reappear at another scale. In particular, before the spontaneous EW
symmetry breaking the operator ∼ H2(S2 + P 2) is supported by the two-loop box-box
diagram illustrated in Fig. 2 (left) with incoming initial S and Pa fields and outgoing initial
Higgs field H. This operator thus contributes to remormalization of λ coupling. After
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the EWSB, the resulting physical hσ̃ mixing is renormalized by two-loop triangle-triangle
diagram shown in Fig. 2 (right)5. In extended SUL(Nf ) ⊗ SUR(Nf ) models mentioned
above the corresponding quartic Higgs-TC operator which mixes physical h and σ̃ appears
automatically from the main invariant of the linear σ-model and cannot be eliminated.

In order to provide the EWSB and the chiral symmetry breaking in the simplest way,
the Higgs H and technisigma S fields get vevs and corresponding physical scalar degrees of
freedom are mixed up, i.e.

H =
1√
2

( √
2iφ−

H + iφ0

)
, H = v + hcθ − σ̃sθ , 〈H〉 = 1√

2

(
0
v

)
,

v =
2MW

g
& 246GeV , S = u+ hsθ + σ̃cθ , 〈S〉 = u ! v , (2.9)

where MW is the W boson mass, v, u are the Higgs boson and technisigma σ̃ vevs; h, σ̃
are the corresponding physical fields with positively definite masses Mh, Mσ̃, respectively;
cθ ≡ cos θ, sθ ≡ sin θ, and θ is the mixing angle, which diagonalizes the respective scalar
mass form. We therefore end up with the physical Lagrangian which describes new types
of interactions, namely, between Higgs boson, technipions and technisigma, Yukawa tech-
nifermion interactions, as well as mixing effects between the Higgs boson and technisigma
fields, relevant for the LHC phenomenology.

As it is well-known, in the SM framework we deal with two energy scales of a completely
different nature. The first one is the scale of quark-gluon condensate which has a quantum-
topological nature. The second one given by the amplitude of the constant Higgs field
(vev) has classical (non-quantum) origin. In the framework of the CSTC model we suggest
another interpretation of the classical Higgs mechanism in which the nature of all energy
scales (including the Higgs vev) is quantum-topological, in the essence of original TC and
compositeness models of the DEWSB. The simplest way to realize this idea is to introduce
into the scalar potential an “external source” term (the first term in Lagrangian (2.8) linear
in S field) which describes interactions between technifermion condensate with the singlet
scalar S field [41]. As will be demonstrated below, in the framework of the CSTC model
this term leads to a close connection between the Higgs and technifermion condensates. A
possible experimental verification of the CSTC model at the LHC relies on our assumption
that both EW and TC scales are relatively close to each other, within the LHC energy scales.
Indeed, in this case it is natural to assume that the Higgs and technifermion condensates
(v and u, respectively) may have the same origin. Our specific goal is to study possible
observable effects of such a phenomenon related, in particular, to the Higgs boson properties
as well as to lightest technihadron phenomenology at the LHC energy scales.

C. Parameter space of the CSTC model

As was mentioned above, in the framework of CSTC scenario it is assumed that the
EWSB in the SM sector (via ordinary Higgs mechanism by the Higgs vev, v) and the chiral
symmetry breaking in the TC sector (via the scalar technisigma field vev, u) may happen

5 In addition, there is an extra one-loop contribution to the hσ̃-mixing which is going via a technipion loop.

The latter correction exists for non-zeroth tree-level λtree (= 0 only.
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by the gluon one (2.22). Clearly, low energy hadron physics based upon the effective GLσM
should reproduce the non-perturbative QCD predictions. On the other hand, it is well-
known that in the limit of small current quark masses mq → 0 (the chiral limit), the QCD
Lagrangian restores the conformal symmetry. Similarly, the σ-model as an effective model of
non-perturbative QCD should obey the conformal symmetry in the chiral QCD limit. In this
case, the µS-term corresponding to the σ field is forbidden by the conformal symmetry. In
a realistic case, the conformal symmetry in QCD is broken due to non-zeroth current quark
masses. However, the current up- and down-quark masses are small compared to the value of
the quark condensate 〈qq̄〉 or, equivalently, the pion mass, i.e. mu,d $ mπ, so it is meaningful
to assume that an induced µS-term, if exists, should also be small µS $ mπ. In this case,
since 〈GG〉, 〈qq̄〉 and small current masses mu,d $ mπ are the only physical parameters in
non-perturbative QCD, the σ vev u ∼ mπ has quantum-topological nature, so it should be
expressed only through these parameters and given by e.g. 〈qq̄〉 or, equivalently, mπ. Of
course, this logic is rather naive since the σ-model does not have status of a fundamental
theory, but rather serves as an effective low-energy phenomenological model with its own
limitations and constraints. Note, a dynamical theory of the QCD vacuum does not exists
yet, and our understanding of non-perturbative effects is very limited and one cannot make
any strong claims here.

The above line of naive arguments can be naturally extended to the technifermion sec-
tor in confinement adopting a direct analogy between non-perturbative QCD and techni-
QCD. Looking at the Eqs. (2.9) we notice that for not very large scalar self-couplings
|λ|, |λTC|, λH ∼ 0.1 − 10 in the potential (2.8), the technisigma vev u can be expressed
through the technifermion condensate, or mπ̃, for small µS $ mπ̃ which can be valid in the
nearly conformal limit of chiral techni-QCD mU,D $ mπ̃ if and only if the Higgs boson vev
is also small compared to the techni-confinement scale, i.e. µH $ mπ̃. The latter means
that both the vacua, the Higgs and technisigma vevs, have the same quantum-topological
nature and completely determined by the technifermion condensate. This theoretically ap-
pealing scenario would be rigorous and strictly valid in the exact chiral techni-QCD limit
with vanishing current technifermion masses mU,D → 0. In the nearly-conformal limit there
is a weak or no running of the strong techni-QCD coupling. This is in accordance with
the analytic QCD (see e.g. Ref. [42]) or other phenomenological approaches predicting a
rather slow bounded or even “frozen” behavior of the strong QCD coupling in the infrared
domain while non-perturbative QCD contributions are strongly dominated over the pertur-
bative ones in the constituent quark-meson interactions at small Q2. To this end, in the
nearly-conformal limit all the µ-terms can be neglected in the Lagrangian (2.8) without
affecting the SM Higgs mechanism itself, which then would be triggered completely by the
technifermion condensate, giving rise to even more restricted parameter space of the model.
Let us look into this non-trivial possibility, which is simply a particular case of the more
general CSTC model described above, in some more detail.

The solutions of the two tadpole equations (2.10) can then be written w.r.t vevs as follows

u =

(
λH

δ

)1/3

ḡ1/3TC , v =

(
ξλ

λH

)1/2 (λH

δ

)1/3

ḡ1/3TC , (2.31)

where δ = λHλTC − λ2, ḡTC = gTC|〈 ¯̃QQ̃〉| > 0 and the sign factor ξ = sign(M2
σ̃ − 3m2

π̃) such
that ξλ ≡ |λ| ≥ 0 and λH > 0 always. From relations (2.31) it follows that both vevs (and
hence both the EWSB and the chiral symmetry breaking) are induced by the technifermion

condensate since u, v ∼ |〈 ¯̃QQ̃〉|1/3. So, our choice of the potential part of the TC Lagrangian
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•   Both chiral and EW SSB are dynamically linked to T-quark condensate
•   T-pion gets mass via T-sigma interaction with T-quark condensate
•   T-pions remain physical, the Higgs-like mechanism becomes effective

perturbative effects in technihadron dynamics at low energies. We will further refer to it
below as the gauged linear technisigma model, or GLTσM. In the simplest version of this
model, the non-perturbative effects are accounted for by an effective NJL-type theory of
constituent technifermion interactions with the lightest technihadron states only [39] – tech-
nipions and technisigma. In the context of GLTσM we suggest the following hypothesis,
which will be studied below: the energy scales of the EWSB and techni-confinement have a
common quantum-topological nature and are determined by a non-perturbative dynamics of
the technifermion-technigluon condensate. In particular, we would like to find specific condi-
tions on the model parameters under which the latter hypothesis is validated. As was noted
above, the technipion d.o.f. π̃a are the pseudo-Goldstone fields which are usually considered
as collective fluctuations of the technifermion-technigluon vacuum, while technisigma σ̃ is
the lightest techniglueball state – these states are not usual bound Q̃ ¯̃Q states and thus play
a special role in the GLTσM [36–38].

From the point of view of the GLTσM, the spontaneous breaking of the global chiral
symmetry group in the technifermion sector happens in the chiral-symmetric (vector-like)
way in a complete analogy with the chiral symmetry breaking in GNJL models [35, 38] as
follows

SU(2)L ⊗ SU(2)R → SU(2)V≡L+R ≡ SU(2)W , (2.1)

where the subsequent gauging of the resulting unbroken vector subgroup SU(2)V and its
identification with the weak gauge group of the SM are performed. Such gauging and identi-
fication procedures are not forbidden theoretically and lead to specific properties of the tech-
nifermion sector, which thereby make it to be very different from the chiral-nonsymmetric
SM fermion sectors. It therefore means that after the chiral symmetry breaking in the tech-
nifermion sector the left and right components of the original Dirac technifermion fields can
interact with the SM weak SU(2)W gauge bosons with vector-like couplings, in opposition
to ordinary SM fermions, which interact under SU(2)W by means of their left-handed com-
ponents only. Note, analogous vector-like gauge interactions are rather common and appear
e.g. in the chargino sector of the MSSM.

Note, the above procedure (2.1) should be understood in exactly the same way as is done
in the QCD hadron physics at low energies. There, the fundamental gauge group of color
SU(3)c is vector-like i.e. acts on left-handed qL and right-handed qR quarks in exactly the
same way, which makes it possible to introduce the global chiral group SU(3)L ⊗ SU(3)R.
The latter is typically broken down to the vector-like subgroup SU(3)V≡L+R by the σ-vev. If
one gauges it, one recovers that its properties are identical to the color group SU(3)c in the
low energy limit. This leads to a low-energy effective field theory where interaction properties
of elementary and composite fields are effectively described by the same gauge group with
renormalized local gauge couplings (as limiting values of corresponding form factors valid at
small momentum transfers). Similarly, vector-like weak interactions of technifermions make
it possible to introduce the chiral group whose gauged subgroup has properties identical to
the weak isospin group (2.1). Most importantly, the latter procedure is valid only in the
phenomenologically interesting low energy limit of the theory. When typical momentum
transfers become comparable to the techniconfinement scale or larger Q2 ! Λ2

TC the global
chiral symmetry is fully restored, while fundamental EW gauge interactions of technifermions
remain vector-like (similarly to QCD interactions of quarks in perturbative limit).

So, in this scenario the sector of initial (current) technifermions transforms according to
the local gauge SU(2)W ⊗ UY(1) symmetry group, and, therefore, interacts only with SM
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To the first order in δ ! 1, the transformation between the gauge eigenstates {η̃′, ζ̃, η̃, π̃0}
and the corresponding mass eigestates {η′, ζ , η, π0} reads

η̃′ = η′ +
χ1 δ√
2M2

η′(0)

(η + π0) +O(δ2) , ζ̃ =
η + π0

√
2

−
δ

M2
π(0)

(

2χ1 η
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χ2

2
√
2
ζ
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√
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2
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√
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2
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√
2
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and the corresponding physical mass spectrum is

M2
η′ = M2

η′(0) +O(δ2) , M2
ζ = M2

π(0) +O(δ2) ,

M2
η = M2

π(0) −
χ2

2

√

3

2
δ +O(δ2) , M2

π = M2
π(0) +

χ2

2

√

3

2
δ +O(δ2) . (5.16)

The quadratic mass form of charged pseudoscalar π±, K± fields (only the first-order
terms in δ ! 1 are shown) read

M2
π(0)(π̃

+π̃− + K̃+K̃−) +
δ

2

√

3

2
(M2

H(0) −M2
π(0)) (π̃

+K̃− + K̃+π̃−) . (5.17)

The transformations to the mass basis

π̃± =
1√
2

(

π± +K±) , K̃± =
1√
2

(

−π± +K±) (5.18)

in the EW broken phase lead to the states {π±, K±} with definite physical masses squared

M2
π± = M2
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δ
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√
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(M2

H(0) −M2
π(0)) +O(δ2) ,

M2
K± = M2

π(0) +
δ

2

√

3

2
(M2

H(0) −M2
π(0)) +O(δ2) .

(5.19)

3. T-quarks

Q̄Q → 〈Q̄Q〉+ Q̄Q

−gTCQ̄(S + iγ5P
a)Q → −gTC

(

〈Q̄Q〉S + Q̄(S + iγ5P
aτa)Q

)

S = 〈S〉+ σ

mQ ! mπ =

Acknowledgments
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at energy scales relatively close to each other, i.e. u ∼ ΛTC ∼ 0.1− 1 TeV. In what follows,
we adopt this limiting case where one may expect possible specific signatures of the chiral-
symmetric strongly coupled sectors potentially observable at the LHC.

Minimizing the potential (2.8) using expressions (2.9) one arrives at the set of tadpole
equations for the vacuum expectation values

〈δLCSTC
U /δH〉 = v

(
µ2
H − λHv

2 + λu2
)
= 0 ,

〈δLCSTC
U /δS〉 = u

(
µ2
S −

gTC〈Q̄Q〉
u

− λTCu
2 + λv2

)
= 0 .

(2.10)

The solution of the above equations with respect to scalar fields vevs has the following form

v2 =
λTCµ2

H + λ(µ2
S +m2

π̃)

λTCλH − λ2
,

u2 =
λH(µ2

S +m2
π̃) + λµ2

H

λTCλH − λ2
,

(2.11)

where

m2
π̃ = −gTC〈 ¯̃QQ̃〉

u
, 〈 ¯̃QQ̃〉 < 0 , gTC > 0 (2.12)

is the technipion mass squared proportional to the (negative-valued) technifermion conden-

sate 〈 ¯̃QQ̃〉, similarly to that in low-energy hadron physics. The vacuum stability is ensured
by the minimum of the potential U = −LCSTC

U (2.8), i.e. by

∆ ≡
〈δ2LCSTC

U

δHδS

〉2

−
〈δ2LCSTC

U

δH2

〉〈δ2LCSTC
U

δS2

〉
< 0 ,

〈δ2LCSTC
U

δH2

〉
< 0 ,

〈δ2LCSTC
U

δS2

〉
< 0 ,

leading to

λTC > −m2
π̃

2u2
, λH > 0 , (2.13)

which are automatically satisfied for the positively defined scalar mass form, i.e. for M2
σ̃ > 0

and M2
h > 0.

Notice that in the limiting case of µS,H & mπ̃ which, in principle, is not forbidden (while
origin of µ-terms is generally unclear in the SM theory) and even can be motivated in the
nearly conformal limit of new strongly coupled dynamics (see below), both vevs v and u
are expressed in terms of the technifermion condensate, having thereby the same dynamical
origin. The extra confined TC sector is now responsible for the EWSB in the CSTC model, so
the role of extra µ-terms, which are usually required for the classical Higgs mechanism in the
rigorous SM formulation, is taken over by the technifermion condensate. This observation
thus supports the above argument about the common quantum-topological nature of the
EWSB and the chiral symmetry breaking mechanisms in the considering CSTC model. In
what follows, we discuss both cases. In the first case, for the sake of generality, we keep the
scalar µ-terms permitted by the gauge symmetry as free independent parameters. In the
second theoretically motivated limiting case µS,H & mπ̃, we will also consider the minimal
CSTC model neglecting the small µ-terms below.
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in the EW broken phase lead to the states {π±, K±} with definite physical masses squared
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3. T-quarks

Q̄Q → 〈Q̄Q〉+ Q̄Q

−gTCQ̄(S + iγ5P
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(

〈Q̄Q〉S + Q̄(S + iγ5P
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To the first order in δ ! 1, the transformation between the gauge eigenstates {η̃′, ζ̃, η̃, π̃0}
and the corresponding mass eigestates {η′, ζ , η, π0} reads
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ζ
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2

√

3

2
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√
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ζ −

1

2
√
2
(η − π0) ,

and the corresponding physical mass spectrum is
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The quadratic mass form of charged pseudoscalar π±, K± fields (only the first-order
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3. T-quarks
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−gTCQ̄(S + iγ5P
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(

〈Q̄Q〉S + Q̄(S + iγ5P
aτa)Q

)
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the source term

global chiral SSB

QGC formation

model developed in this work we keep the SM Higgs mechanism of the EWSB and the
one-Higgs-doublet SM untouched, and simply add extra technifermion sector (2.2) in con-
finement. As an essential part of the CSTC model, we introduce the interaction terms
between the standard Higgs doublet H, and the new Pa and S states which are allowed
by the local SU(2)W symmetry. As will be demonstrated below, such extra terms lead to
a mixing between the scalar Higgs and technisigma fields. The most general form of the
Lagrangian corresponding to the scalar self-interactions including µ-terms as follows [41]

LCSTC
U, self =

1

2
µ2
S(S

2 + P 2) + µ2
HH2 − 1

4
λTC(S

2 + P 2)2 − λHH4 + λH2(S2 + P 2) , (2.6)

and the extra linear “source” term which appears after averaging over the technifermion
vacuum fluctuations and describes interactions of the scalar singlet S field with scalar modes
of the technifermion condensate, i.e.

LCSTC
U, source = −gTC S 〈 ¯̃QQ̃〉 . (2.7)

The potential part of the GLTσM Lagrangian is then given by

LCSTC
U = LCSTC

U, self + LCSTC
U, source . (2.8)

In Eq. (2.6) we defined P 2 ≡
∑

a PaPa = π̃0π̃0 + 2π̃+π̃−, whereas gauge-Higgs interaction
terms are the same as in the SM.

U, D

W, Z

σ̃ h
U, D

W, Z

S, Pa H

HS, Pa

FIG. 2: Typical radiative corrections to the quartic Higgs-TC coupling λ (in particular, giving rise
to the hσ̃-mixing) before the EWSB (left) and after the EWSB (right).

The mixing between the Higgs boson and scalar technisigma fields is governed by the
quartic Higgs-TC coupling λ in Eq. (2.6). Such a mixing is one of the characteristic effects
of the chiral-symmetric Technicolor. In a sense, this effect is indeed one of the motivations
of the model under discussion. It has to be taken into consideration if the precision LHC
measurements uncover possibly small deviations of the Higgs-like 126 GeV boson (especially,
in the γγ decay channel) from the standard Higgs boson. The quartic coupling λ controls
such a mixing and á priori is allowed by the gauge symmetry of the initial Lagrangian,
thus, cannot be identically equal to zero. Indeed, any terms which are allowable by the
initial symmetry of the model, even being equal to zero at the tree level, necessarily appear
in divergent radiative corrections. In order to renormalize such divergencies one has to
introduce corresponding counterterms. So if at a given scale µ0 the coupling λ(µ0) →
0 vanishes it will reappear at another scale. In particular, before the spontaneous EW
symmetry breaking the operator ∼ H2(S2 + P 2) is supported by the two-loop box-box
diagram illustrated in Fig. 2 (left) with incoming initial S and Pa fields and outgoing initial
Higgs field H. This operator thus contributes to remormalization of λ coupling. After
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the EWSB, the resulting physical hσ̃ mixing is renormalized by two-loop triangle-triangle
diagram shown in Fig. 2 (right)5. In extended SUL(Nf ) ⊗ SUR(Nf ) models mentioned
above the corresponding quartic Higgs-TC operator which mixes physical h and σ̃ appears
automatically from the main invariant of the linear σ-model and cannot be eliminated.

In order to provide the EWSB and the chiral symmetry breaking in the simplest way,
the Higgs H and technisigma S fields get vevs and corresponding physical scalar degrees of
freedom are mixed up, i.e.

H =
1√
2

( √
2iφ−

H + iφ0

)
, H = v + hcθ − σ̃sθ , 〈H〉 = 1√

2

(
0
v

)
,

v =
2MW

g
& 246GeV , S = u+ hsθ + σ̃cθ , 〈S〉 = u ! v , (2.9)

where MW is the W boson mass, v, u are the Higgs boson and technisigma σ̃ vevs; h, σ̃
are the corresponding physical fields with positively definite masses Mh, Mσ̃, respectively;
cθ ≡ cos θ, sθ ≡ sin θ, and θ is the mixing angle, which diagonalizes the respective scalar
mass form. We therefore end up with the physical Lagrangian which describes new types
of interactions, namely, between Higgs boson, technipions and technisigma, Yukawa tech-
nifermion interactions, as well as mixing effects between the Higgs boson and technisigma
fields, relevant for the LHC phenomenology.

As it is well-known, in the SM framework we deal with two energy scales of a completely
different nature. The first one is the scale of quark-gluon condensate which has a quantum-
topological nature. The second one given by the amplitude of the constant Higgs field
(vev) has classical (non-quantum) origin. In the framework of the CSTC model we suggest
another interpretation of the classical Higgs mechanism in which the nature of all energy
scales (including the Higgs vev) is quantum-topological, in the essence of original TC and
compositeness models of the DEWSB. The simplest way to realize this idea is to introduce
into the scalar potential an “external source” term (the first term in Lagrangian (2.8) linear
in S field) which describes interactions between technifermion condensate with the singlet
scalar S field [41]. As will be demonstrated below, in the framework of the CSTC model
this term leads to a close connection between the Higgs and technifermion condensates. A
possible experimental verification of the CSTC model at the LHC relies on our assumption
that both EW and TC scales are relatively close to each other, within the LHC energy scales.
Indeed, in this case it is natural to assume that the Higgs and technifermion condensates
(v and u, respectively) may have the same origin. Our specific goal is to study possible
observable effects of such a phenomenon related, in particular, to the Higgs boson properties
as well as to lightest technihadron phenomenology at the LHC energy scales.

C. Parameter space of the CSTC model

As was mentioned above, in the framework of CSTC scenario it is assumed that the
EWSB in the SM sector (via ordinary Higgs mechanism by the Higgs vev, v) and the chiral
symmetry breaking in the TC sector (via the scalar technisigma field vev, u) may happen

5 In addition, there is an extra one-loop contribution to the hσ̃-mixing which is going via a technipion loop.

The latter correction exists for non-zeroth tree-level λtree (= 0 only.
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Spontaneous  
EWSB

by the gluon one (2.22). Clearly, low energy hadron physics based upon the effective GLσM
should reproduce the non-perturbative QCD predictions. On the other hand, it is well-
known that in the limit of small current quark masses mq → 0 (the chiral limit), the QCD
Lagrangian restores the conformal symmetry. Similarly, the σ-model as an effective model of
non-perturbative QCD should obey the conformal symmetry in the chiral QCD limit. In this
case, the µS-term corresponding to the σ field is forbidden by the conformal symmetry. In
a realistic case, the conformal symmetry in QCD is broken due to non-zeroth current quark
masses. However, the current up- and down-quark masses are small compared to the value of
the quark condensate 〈qq̄〉 or, equivalently, the pion mass, i.e. mu,d $ mπ, so it is meaningful
to assume that an induced µS-term, if exists, should also be small µS $ mπ. In this case,
since 〈GG〉, 〈qq̄〉 and small current masses mu,d $ mπ are the only physical parameters in
non-perturbative QCD, the σ vev u ∼ mπ has quantum-topological nature, so it should be
expressed only through these parameters and given by e.g. 〈qq̄〉 or, equivalently, mπ. Of
course, this logic is rather naive since the σ-model does not have status of a fundamental
theory, but rather serves as an effective low-energy phenomenological model with its own
limitations and constraints. Note, a dynamical theory of the QCD vacuum does not exists
yet, and our understanding of non-perturbative effects is very limited and one cannot make
any strong claims here.

The above line of naive arguments can be naturally extended to the technifermion sec-
tor in confinement adopting a direct analogy between non-perturbative QCD and techni-
QCD. Looking at the Eqs. (2.9) we notice that for not very large scalar self-couplings
|λ|, |λTC|, λH ∼ 0.1 − 10 in the potential (2.8), the technisigma vev u can be expressed
through the technifermion condensate, or mπ̃, for small µS $ mπ̃ which can be valid in the
nearly conformal limit of chiral techni-QCD mU,D $ mπ̃ if and only if the Higgs boson vev
is also small compared to the techni-confinement scale, i.e. µH $ mπ̃. The latter means
that both the vacua, the Higgs and technisigma vevs, have the same quantum-topological
nature and completely determined by the technifermion condensate. This theoretically ap-
pealing scenario would be rigorous and strictly valid in the exact chiral techni-QCD limit
with vanishing current technifermion masses mU,D → 0. In the nearly-conformal limit there
is a weak or no running of the strong techni-QCD coupling. This is in accordance with
the analytic QCD (see e.g. Ref. [42]) or other phenomenological approaches predicting a
rather slow bounded or even “frozen” behavior of the strong QCD coupling in the infrared
domain while non-perturbative QCD contributions are strongly dominated over the pertur-
bative ones in the constituent quark-meson interactions at small Q2. To this end, in the
nearly-conformal limit all the µ-terms can be neglected in the Lagrangian (2.8) without
affecting the SM Higgs mechanism itself, which then would be triggered completely by the
technifermion condensate, giving rise to even more restricted parameter space of the model.
Let us look into this non-trivial possibility, which is simply a particular case of the more
general CSTC model described above, in some more detail.

The solutions of the two tadpole equations (2.10) can then be written w.r.t vevs as follows

u =

(
λH

δ

)1/3

ḡ1/3TC , v =

(
ξλ

λH

)1/2 (λH

δ

)1/3

ḡ1/3TC , (2.31)

where δ = λHλTC − λ2, ḡTC = gTC|〈 ¯̃QQ̃〉| > 0 and the sign factor ξ = sign(M2
σ̃ − 3m2

π̃) such
that ξλ ≡ |λ| ≥ 0 and λH > 0 always. From relations (2.31) it follows that both vevs (and
hence both the EWSB and the chiral symmetry breaking) are induced by the technifermion

condensate since u, v ∼ |〈 ¯̃QQ̃〉|1/3. So, our choice of the potential part of the TC Lagrangian
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•   Both chiral and EW SSB are dynamically linked to T-quark condensate
•   T-pion gets mass via T-sigma interaction with T-quark condensate
•   T-pions remain physical, the Higgs-like mechanism becomes effective

perturbative effects in technihadron dynamics at low energies. We will further refer to it
below as the gauged linear technisigma model, or GLTσM. In the simplest version of this
model, the non-perturbative effects are accounted for by an effective NJL-type theory of
constituent technifermion interactions with the lightest technihadron states only [39] – tech-
nipions and technisigma. In the context of GLTσM we suggest the following hypothesis,
which will be studied below: the energy scales of the EWSB and techni-confinement have a
common quantum-topological nature and are determined by a non-perturbative dynamics of
the technifermion-technigluon condensate. In particular, we would like to find specific condi-
tions on the model parameters under which the latter hypothesis is validated. As was noted
above, the technipion d.o.f. π̃a are the pseudo-Goldstone fields which are usually considered
as collective fluctuations of the technifermion-technigluon vacuum, while technisigma σ̃ is
the lightest techniglueball state – these states are not usual bound Q̃ ¯̃Q states and thus play
a special role in the GLTσM [36–38].

From the point of view of the GLTσM, the spontaneous breaking of the global chiral
symmetry group in the technifermion sector happens in the chiral-symmetric (vector-like)
way in a complete analogy with the chiral symmetry breaking in GNJL models [35, 38] as
follows

SU(2)L ⊗ SU(2)R → SU(2)V≡L+R ≡ SU(2)W , (2.1)

where the subsequent gauging of the resulting unbroken vector subgroup SU(2)V and its
identification with the weak gauge group of the SM are performed. Such gauging and identi-
fication procedures are not forbidden theoretically and lead to specific properties of the tech-
nifermion sector, which thereby make it to be very different from the chiral-nonsymmetric
SM fermion sectors. It therefore means that after the chiral symmetry breaking in the tech-
nifermion sector the left and right components of the original Dirac technifermion fields can
interact with the SM weak SU(2)W gauge bosons with vector-like couplings, in opposition
to ordinary SM fermions, which interact under SU(2)W by means of their left-handed com-
ponents only. Note, analogous vector-like gauge interactions are rather common and appear
e.g. in the chargino sector of the MSSM.

Note, the above procedure (2.1) should be understood in exactly the same way as is done
in the QCD hadron physics at low energies. There, the fundamental gauge group of color
SU(3)c is vector-like i.e. acts on left-handed qL and right-handed qR quarks in exactly the
same way, which makes it possible to introduce the global chiral group SU(3)L ⊗ SU(3)R.
The latter is typically broken down to the vector-like subgroup SU(3)V≡L+R by the σ-vev. If
one gauges it, one recovers that its properties are identical to the color group SU(3)c in the
low energy limit. This leads to a low-energy effective field theory where interaction properties
of elementary and composite fields are effectively described by the same gauge group with
renormalized local gauge couplings (as limiting values of corresponding form factors valid at
small momentum transfers). Similarly, vector-like weak interactions of technifermions make
it possible to introduce the chiral group whose gauged subgroup has properties identical to
the weak isospin group (2.1). Most importantly, the latter procedure is valid only in the
phenomenologically interesting low energy limit of the theory. When typical momentum
transfers become comparable to the techniconfinement scale or larger Q2 ! Λ2

TC the global
chiral symmetry is fully restored, while fundamental EW gauge interactions of technifermions
remain vector-like (similarly to QCD interactions of quarks in perturbative limit).

So, in this scenario the sector of initial (current) technifermions transforms according to
the local gauge SU(2)W ⊗ UY(1) symmetry group, and, therefore, interacts only with SM
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To the first order in δ ! 1, the transformation between the gauge eigenstates {η̃′, ζ̃, η̃, π̃0}
and the corresponding mass eigestates {η′, ζ , η, π0} reads

η̃′ = η′ +
χ1 δ√
2M2

η′(0)

(η + π0) +O(δ2) , ζ̃ =
η + π0

√
2

−
δ

M2
π(0)

(

2χ1 η
′ +

χ2

2
√
2
ζ
)

+O(δ2) ,
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1

2
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1

2

√

3

2
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√
3

2
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1

2
√
2
(η − π0) ,

and the corresponding physical mass spectrum is

M2
η′ = M2

η′(0) +O(δ2) , M2
ζ = M2

π(0) +O(δ2) ,

M2
η = M2

π(0) −
χ2

2

√

3

2
δ +O(δ2) , M2

π = M2
π(0) +

χ2

2

√

3

2
δ +O(δ2) . (5.16)

The quadratic mass form of charged pseudoscalar π±, K± fields (only the first-order
terms in δ ! 1 are shown) read

M2
π(0)(π̃

+π̃− + K̃+K̃−) +
δ

2

√

3

2
(M2

H(0) −M2
π(0)) (π̃

+K̃− + K̃+π̃−) . (5.17)

The transformations to the mass basis
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1√
2

(

π± +K±) , K̃± =
1√
2

(

−π± +K±) (5.18)

in the EW broken phase lead to the states {π±, K±} with definite physical masses squared

M2
π± = M2

π(0) −
δ

2

√

3

2
(M2

H(0) −M2
π(0)) +O(δ2) ,

M2
K± = M2

π(0) +
δ

2

√

3

2
(M2

H(0) −M2
π(0)) +O(δ2) .

(5.19)

3. T-quarks

Q̄Q → 〈Q̄Q〉+ Q̄Q

−gTCQ̄(S + iγ5P
a)Q → −gTC

(

〈Q̄Q〉S + Q̄(S + iγ5P
aτa)Q

)

S = 〈S〉+ σ

mQ ! mπ =

Acknowledgments
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at energy scales relatively close to each other, i.e. u ∼ ΛTC ∼ 0.1− 1 TeV. In what follows,
we adopt this limiting case where one may expect possible specific signatures of the chiral-
symmetric strongly coupled sectors potentially observable at the LHC.

Minimizing the potential (2.8) using expressions (2.9) one arrives at the set of tadpole
equations for the vacuum expectation values

〈δLCSTC
U /δH〉 = v

(
µ2
H − λHv

2 + λu2
)
= 0 ,

〈δLCSTC
U /δS〉 = u

(
µ2
S −

gTC〈Q̄Q〉
u

− λTCu
2 + λv2

)
= 0 .

(2.10)

The solution of the above equations with respect to scalar fields vevs has the following form

v2 =
λTCµ2

H + λ(µ2
S +m2

π̃)

λTCλH − λ2
,

u2 =
λH(µ2

S +m2
π̃) + λµ2

H

λTCλH − λ2
,

(2.11)

where

m2
π̃ = −gTC〈 ¯̃QQ̃〉

u
, 〈 ¯̃QQ̃〉 < 0 , gTC > 0 (2.12)

is the technipion mass squared proportional to the (negative-valued) technifermion conden-

sate 〈 ¯̃QQ̃〉, similarly to that in low-energy hadron physics. The vacuum stability is ensured
by the minimum of the potential U = −LCSTC

U (2.8), i.e. by

∆ ≡
〈δ2LCSTC

U

δHδS

〉2

−
〈δ2LCSTC

U

δH2

〉〈δ2LCSTC
U

δS2

〉
< 0 ,

〈δ2LCSTC
U

δH2

〉
< 0 ,

〈δ2LCSTC
U

δS2

〉
< 0 ,

leading to

λTC > −m2
π̃

2u2
, λH > 0 , (2.13)

which are automatically satisfied for the positively defined scalar mass form, i.e. for M2
σ̃ > 0

and M2
h > 0.

Notice that in the limiting case of µS,H & mπ̃ which, in principle, is not forbidden (while
origin of µ-terms is generally unclear in the SM theory) and even can be motivated in the
nearly conformal limit of new strongly coupled dynamics (see below), both vevs v and u
are expressed in terms of the technifermion condensate, having thereby the same dynamical
origin. The extra confined TC sector is now responsible for the EWSB in the CSTC model, so
the role of extra µ-terms, which are usually required for the classical Higgs mechanism in the
rigorous SM formulation, is taken over by the technifermion condensate. This observation
thus supports the above argument about the common quantum-topological nature of the
EWSB and the chiral symmetry breaking mechanisms in the considering CSTC model. In
what follows, we discuss both cases. In the first case, for the sake of generality, we keep the
scalar µ-terms permitted by the gauge symmetry as free independent parameters. In the
second theoretically motivated limiting case µS,H & mπ̃, we will also consider the minimal
CSTC model neglecting the small µ-terms below.
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is the technipion mass squared proportional to the (negative-valued) technifermion conden-

sate 〈 ¯̃QQ̃〉, similarly to that in low-energy hadron physics. The vacuum stability is ensured
by the minimum of the potential U = −LCSTC

U (2.8), i.e. by

∆ ≡
〈δ2LCSTC

U

δHδS

〉2

−
〈δ2LCSTC

U

δH2

〉〈δ2LCSTC
U

δS2

〉
< 0 ,

〈δ2LCSTC
U

δH2

〉
< 0 ,

〈δ2LCSTC
U

δS2

〉
< 0 ,

leading to

λTC > −m2
π̃

2u2
, λH > 0 , (2.13)

which are automatically satisfied for the positively defined scalar mass form, i.e. for M2
σ̃ > 0

and M2
h > 0.

Notice that in the limiting case of µS,H & mπ̃ which, in principle, is not forbidden (while
origin of µ-terms is generally unclear in the SM theory) and even can be motivated in the
nearly conformal limit of new strongly coupled dynamics (see below), both vevs v and u
are expressed in terms of the technifermion condensate, having thereby the same dynamical
origin. The extra confined TC sector is now responsible for the EWSB in the CSTC model, so
the role of extra µ-terms, which are usually required for the classical Higgs mechanism in the
rigorous SM formulation, is taken over by the technifermion condensate. This observation
thus supports the above argument about the common quantum-topological nature of the
EWSB and the chiral symmetry breaking mechanisms in the considering CSTC model. In
what follows, we discuss both cases. In the first case, for the sake of generality, we keep the
scalar µ-terms permitted by the gauge symmetry as free independent parameters. In the
second theoretically motivated limiting case µS,H & mπ̃, we will also consider the minimal
CSTC model neglecting the small µ-terms below.
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To the first order in δ ! 1, the transformation between the gauge eigenstates {η̃′, ζ̃, η̃, π̃0}
and the corresponding mass eigestates {η′, ζ , η, π0} reads

η̃′ = η′ +
χ1 δ√
2M2

η′(0)

(η + π0) +O(δ2) , ζ̃ =
η + π0

√
2

−
δ

M2
π(0)

(

2χ1 η
′ +

χ2

2
√
2
ζ
)

+O(δ2) ,

η̃ = −
1

2
ζ −

1

2

√

3

2
(η − π0) , π̃0 =

√
3

2
ζ −

1

2
√
2
(η − π0) ,

and the corresponding physical mass spectrum is

M2
η′ = M2

η′(0) +O(δ2) , M2
ζ = M2

π(0) +O(δ2) ,

M2
η = M2

π(0) −
χ2

2

√

3

2
δ +O(δ2) , M2

π = M2
π(0) +

χ2

2

√

3

2
δ +O(δ2) . (5.16)

The quadratic mass form of charged pseudoscalar π±, K± fields (only the first-order
terms in δ ! 1 are shown) read

M2
π(0)(π̃

+π̃− + K̃+K̃−) +
δ

2

√

3

2
(M2

H(0) −M2
π(0)) (π̃

+K̃− + K̃+π̃−) . (5.17)

The transformations to the mass basis

π̃± =
1√
2

(

π± +K±) , K̃± =
1√
2

(

−π± +K±) (5.18)

in the EW broken phase lead to the states {π±, K±} with definite physical masses squared

M2
π± = M2

π(0) −
δ

2

√

3

2
(M2

H(0) −M2
π(0)) +O(δ2) ,

M2
K± = M2

π(0) +
δ

2

√

3

2
(M2

H(0) −M2
π(0)) +O(δ2) .

(5.19)

3. T-quarks

Q̄Q → 〈Q̄Q〉+ Q̄Q

−gTCQ̄(S + iγ5P
a)Q → −gTC

(

〈Q̄Q〉S + Q̄(S + iγ5P
aτa)Q

)

S = u+ σ

mQ ! mπ =

Acknowledgments
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3. T-quarks

Q̄Q → 〈Q̄Q〉+ Q̄Q

−gTCQ̄(S + iγ5P
a)Q → −gTC

(

〈Q̄Q〉S + Q̄(S + iγ5P
aτa)Q

)
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3. T-quarks
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the source term

global chiral SSB

QGC formation

model developed in this work we keep the SM Higgs mechanism of the EWSB and the
one-Higgs-doublet SM untouched, and simply add extra technifermion sector (2.2) in con-
finement. As an essential part of the CSTC model, we introduce the interaction terms
between the standard Higgs doublet H, and the new Pa and S states which are allowed
by the local SU(2)W symmetry. As will be demonstrated below, such extra terms lead to
a mixing between the scalar Higgs and technisigma fields. The most general form of the
Lagrangian corresponding to the scalar self-interactions including µ-terms as follows [41]

LCSTC
U, self =

1

2
µ2
S(S

2 + P 2) + µ2
HH2 − 1

4
λTC(S

2 + P 2)2 − λHH4 + λH2(S2 + P 2) , (2.6)

and the extra linear “source” term which appears after averaging over the technifermion
vacuum fluctuations and describes interactions of the scalar singlet S field with scalar modes
of the technifermion condensate, i.e.

LCSTC
U, source = −gTC S 〈 ¯̃QQ̃〉 . (2.7)

The potential part of the GLTσM Lagrangian is then given by

LCSTC
U = LCSTC

U, self + LCSTC
U, source . (2.8)

In Eq. (2.6) we defined P 2 ≡
∑

a PaPa = π̃0π̃0 + 2π̃+π̃−, whereas gauge-Higgs interaction
terms are the same as in the SM.

U, D

W, Z

σ̃ h
U, D

W, Z

S, Pa H

HS, Pa

FIG. 2: Typical radiative corrections to the quartic Higgs-TC coupling λ (in particular, giving rise
to the hσ̃-mixing) before the EWSB (left) and after the EWSB (right).

The mixing between the Higgs boson and scalar technisigma fields is governed by the
quartic Higgs-TC coupling λ in Eq. (2.6). Such a mixing is one of the characteristic effects
of the chiral-symmetric Technicolor. In a sense, this effect is indeed one of the motivations
of the model under discussion. It has to be taken into consideration if the precision LHC
measurements uncover possibly small deviations of the Higgs-like 126 GeV boson (especially,
in the γγ decay channel) from the standard Higgs boson. The quartic coupling λ controls
such a mixing and á priori is allowed by the gauge symmetry of the initial Lagrangian,
thus, cannot be identically equal to zero. Indeed, any terms which are allowable by the
initial symmetry of the model, even being equal to zero at the tree level, necessarily appear
in divergent radiative corrections. In order to renormalize such divergencies one has to
introduce corresponding counterterms. So if at a given scale µ0 the coupling λ(µ0) →
0 vanishes it will reappear at another scale. In particular, before the spontaneous EW
symmetry breaking the operator ∼ H2(S2 + P 2) is supported by the two-loop box-box
diagram illustrated in Fig. 2 (left) with incoming initial S and Pa fields and outgoing initial
Higgs field H. This operator thus contributes to remormalization of λ coupling. After
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Potential

the EWSB, the resulting physical hσ̃ mixing is renormalized by two-loop triangle-triangle
diagram shown in Fig. 2 (right)5. In extended SUL(Nf ) ⊗ SUR(Nf ) models mentioned
above the corresponding quartic Higgs-TC operator which mixes physical h and σ̃ appears
automatically from the main invariant of the linear σ-model and cannot be eliminated.

In order to provide the EWSB and the chiral symmetry breaking in the simplest way,
the Higgs H and technisigma S fields get vevs and corresponding physical scalar degrees of
freedom are mixed up, i.e.

H =
1√
2

( √
2iφ−

H + iφ0

)
, H = v + hcθ − σ̃sθ , 〈H〉 = 1√

2

(
0
v

)
,

v =
2MW

g
& 246GeV , S = u+ hsθ + σ̃cθ , 〈S〉 = u ! v , (2.9)

where MW is the W boson mass, v, u are the Higgs boson and technisigma σ̃ vevs; h, σ̃
are the corresponding physical fields with positively definite masses Mh, Mσ̃, respectively;
cθ ≡ cos θ, sθ ≡ sin θ, and θ is the mixing angle, which diagonalizes the respective scalar
mass form. We therefore end up with the physical Lagrangian which describes new types
of interactions, namely, between Higgs boson, technipions and technisigma, Yukawa tech-
nifermion interactions, as well as mixing effects between the Higgs boson and technisigma
fields, relevant for the LHC phenomenology.

As it is well-known, in the SM framework we deal with two energy scales of a completely
different nature. The first one is the scale of quark-gluon condensate which has a quantum-
topological nature. The second one given by the amplitude of the constant Higgs field
(vev) has classical (non-quantum) origin. In the framework of the CSTC model we suggest
another interpretation of the classical Higgs mechanism in which the nature of all energy
scales (including the Higgs vev) is quantum-topological, in the essence of original TC and
compositeness models of the DEWSB. The simplest way to realize this idea is to introduce
into the scalar potential an “external source” term (the first term in Lagrangian (2.8) linear
in S field) which describes interactions between technifermion condensate with the singlet
scalar S field [41]. As will be demonstrated below, in the framework of the CSTC model
this term leads to a close connection between the Higgs and technifermion condensates. A
possible experimental verification of the CSTC model at the LHC relies on our assumption
that both EW and TC scales are relatively close to each other, within the LHC energy scales.
Indeed, in this case it is natural to assume that the Higgs and technifermion condensates
(v and u, respectively) may have the same origin. Our specific goal is to study possible
observable effects of such a phenomenon related, in particular, to the Higgs boson properties
as well as to lightest technihadron phenomenology at the LHC energy scales.

C. Parameter space of the CSTC model

As was mentioned above, in the framework of CSTC scenario it is assumed that the
EWSB in the SM sector (via ordinary Higgs mechanism by the Higgs vev, v) and the chiral
symmetry breaking in the TC sector (via the scalar technisigma field vev, u) may happen

5 In addition, there is an extra one-loop contribution to the hσ̃-mixing which is going via a technipion loop.

The latter correction exists for non-zeroth tree-level λtree (= 0 only.
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Spontaneous  
EWSB

by the gluon one (2.22). Clearly, low energy hadron physics based upon the effective GLσM
should reproduce the non-perturbative QCD predictions. On the other hand, it is well-
known that in the limit of small current quark masses mq → 0 (the chiral limit), the QCD
Lagrangian restores the conformal symmetry. Similarly, the σ-model as an effective model of
non-perturbative QCD should obey the conformal symmetry in the chiral QCD limit. In this
case, the µS-term corresponding to the σ field is forbidden by the conformal symmetry. In
a realistic case, the conformal symmetry in QCD is broken due to non-zeroth current quark
masses. However, the current up- and down-quark masses are small compared to the value of
the quark condensate 〈qq̄〉 or, equivalently, the pion mass, i.e. mu,d $ mπ, so it is meaningful
to assume that an induced µS-term, if exists, should also be small µS $ mπ. In this case,
since 〈GG〉, 〈qq̄〉 and small current masses mu,d $ mπ are the only physical parameters in
non-perturbative QCD, the σ vev u ∼ mπ has quantum-topological nature, so it should be
expressed only through these parameters and given by e.g. 〈qq̄〉 or, equivalently, mπ. Of
course, this logic is rather naive since the σ-model does not have status of a fundamental
theory, but rather serves as an effective low-energy phenomenological model with its own
limitations and constraints. Note, a dynamical theory of the QCD vacuum does not exists
yet, and our understanding of non-perturbative effects is very limited and one cannot make
any strong claims here.

The above line of naive arguments can be naturally extended to the technifermion sec-
tor in confinement adopting a direct analogy between non-perturbative QCD and techni-
QCD. Looking at the Eqs. (2.9) we notice that for not very large scalar self-couplings
|λ|, |λTC|, λH ∼ 0.1 − 10 in the potential (2.8), the technisigma vev u can be expressed
through the technifermion condensate, or mπ̃, for small µS $ mπ̃ which can be valid in the
nearly conformal limit of chiral techni-QCD mU,D $ mπ̃ if and only if the Higgs boson vev
is also small compared to the techni-confinement scale, i.e. µH $ mπ̃. The latter means
that both the vacua, the Higgs and technisigma vevs, have the same quantum-topological
nature and completely determined by the technifermion condensate. This theoretically ap-
pealing scenario would be rigorous and strictly valid in the exact chiral techni-QCD limit
with vanishing current technifermion masses mU,D → 0. In the nearly-conformal limit there
is a weak or no running of the strong techni-QCD coupling. This is in accordance with
the analytic QCD (see e.g. Ref. [42]) or other phenomenological approaches predicting a
rather slow bounded or even “frozen” behavior of the strong QCD coupling in the infrared
domain while non-perturbative QCD contributions are strongly dominated over the pertur-
bative ones in the constituent quark-meson interactions at small Q2. To this end, in the
nearly-conformal limit all the µ-terms can be neglected in the Lagrangian (2.8) without
affecting the SM Higgs mechanism itself, which then would be triggered completely by the
technifermion condensate, giving rise to even more restricted parameter space of the model.
Let us look into this non-trivial possibility, which is simply a particular case of the more
general CSTC model described above, in some more detail.

The solutions of the two tadpole equations (2.10) can then be written w.r.t vevs as follows

u =

(
λH

δ

)1/3

ḡ1/3TC , v =

(
ξλ

λH

)1/2 (λH

δ

)1/3

ḡ1/3TC , (2.31)

where δ = λHλTC − λ2, ḡTC = gTC|〈 ¯̃QQ̃〉| > 0 and the sign factor ξ = sign(M2
σ̃ − 3m2

π̃) such
that ξλ ≡ |λ| ≥ 0 and λH > 0 always. From relations (2.31) it follows that both vevs (and
hence both the EWSB and the chiral symmetry breaking) are induced by the technifermion

condensate since u, v ∼ |〈 ¯̃QQ̃〉|1/3. So, our choice of the potential part of the TC Lagrangian
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•   Both chiral and EW SSB are dynamically linked to T-quark condensate
•   T-pion gets mass via T-sigma interaction with T-quark condensate
•   T-pions remain physical, the Higgs-like mechanism becomes effective

perturbative effects in technihadron dynamics at low energies. We will further refer to it
below as the gauged linear technisigma model, or GLTσM. In the simplest version of this
model, the non-perturbative effects are accounted for by an effective NJL-type theory of
constituent technifermion interactions with the lightest technihadron states only [39] – tech-
nipions and technisigma. In the context of GLTσM we suggest the following hypothesis,
which will be studied below: the energy scales of the EWSB and techni-confinement have a
common quantum-topological nature and are determined by a non-perturbative dynamics of
the technifermion-technigluon condensate. In particular, we would like to find specific condi-
tions on the model parameters under which the latter hypothesis is validated. As was noted
above, the technipion d.o.f. π̃a are the pseudo-Goldstone fields which are usually considered
as collective fluctuations of the technifermion-technigluon vacuum, while technisigma σ̃ is
the lightest techniglueball state – these states are not usual bound Q̃ ¯̃Q states and thus play
a special role in the GLTσM [36–38].

From the point of view of the GLTσM, the spontaneous breaking of the global chiral
symmetry group in the technifermion sector happens in the chiral-symmetric (vector-like)
way in a complete analogy with the chiral symmetry breaking in GNJL models [35, 38] as
follows

SU(2)L ⊗ SU(2)R → SU(2)V≡L+R ≡ SU(2)W , (2.1)

where the subsequent gauging of the resulting unbroken vector subgroup SU(2)V and its
identification with the weak gauge group of the SM are performed. Such gauging and identi-
fication procedures are not forbidden theoretically and lead to specific properties of the tech-
nifermion sector, which thereby make it to be very different from the chiral-nonsymmetric
SM fermion sectors. It therefore means that after the chiral symmetry breaking in the tech-
nifermion sector the left and right components of the original Dirac technifermion fields can
interact with the SM weak SU(2)W gauge bosons with vector-like couplings, in opposition
to ordinary SM fermions, which interact under SU(2)W by means of their left-handed com-
ponents only. Note, analogous vector-like gauge interactions are rather common and appear
e.g. in the chargino sector of the MSSM.

Note, the above procedure (2.1) should be understood in exactly the same way as is done
in the QCD hadron physics at low energies. There, the fundamental gauge group of color
SU(3)c is vector-like i.e. acts on left-handed qL and right-handed qR quarks in exactly the
same way, which makes it possible to introduce the global chiral group SU(3)L ⊗ SU(3)R.
The latter is typically broken down to the vector-like subgroup SU(3)V≡L+R by the σ-vev. If
one gauges it, one recovers that its properties are identical to the color group SU(3)c in the
low energy limit. This leads to a low-energy effective field theory where interaction properties
of elementary and composite fields are effectively described by the same gauge group with
renormalized local gauge couplings (as limiting values of corresponding form factors valid at
small momentum transfers). Similarly, vector-like weak interactions of technifermions make
it possible to introduce the chiral group whose gauged subgroup has properties identical to
the weak isospin group (2.1). Most importantly, the latter procedure is valid only in the
phenomenologically interesting low energy limit of the theory. When typical momentum
transfers become comparable to the techniconfinement scale or larger Q2 ! Λ2

TC the global
chiral symmetry is fully restored, while fundamental EW gauge interactions of technifermions
remain vector-like (similarly to QCD interactions of quarks in perturbative limit).

So, in this scenario the sector of initial (current) technifermions transforms according to
the local gauge SU(2)W ⊗ UY(1) symmetry group, and, therefore, interacts only with SM
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To the first order in δ ! 1, the transformation between the gauge eigenstates {η̃′, ζ̃, η̃, π̃0}
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and the corresponding physical mass spectrum is
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2
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The quadratic mass form of charged pseudoscalar π±, K± fields (only the first-order
terms in δ ! 1 are shown) read
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δ
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The transformations to the mass basis
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in the EW broken phase lead to the states {π±, K±} with definite physical masses squared
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3

2
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H(0) −M2
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(5.19)

3. T-quarks

Q̄Q → 〈Q̄Q〉+ Q̄Q

−gTCQ̄(S + iγ5P
a)Q → −gTC

(

〈Q̄Q〉S + Q̄(S + iγ5P
aτa)Q

)

S = 〈S〉+ σ

mQ ! mπ =

Acknowledgments
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at energy scales relatively close to each other, i.e. u ∼ ΛTC ∼ 0.1− 1 TeV. In what follows,
we adopt this limiting case where one may expect possible specific signatures of the chiral-
symmetric strongly coupled sectors potentially observable at the LHC.

Minimizing the potential (2.8) using expressions (2.9) one arrives at the set of tadpole
equations for the vacuum expectation values

〈δLCSTC
U /δH〉 = v

(
µ2
H − λHv

2 + λu2
)
= 0 ,

〈δLCSTC
U /δS〉 = u

(
µ2
S −

gTC〈Q̄Q〉
u

− λTCu
2 + λv2

)
= 0 .

(2.10)

The solution of the above equations with respect to scalar fields vevs has the following form

v2 =
λTCµ2

H + λ(µ2
S +m2

π̃)

λTCλH − λ2
,

u2 =
λH(µ2

S +m2
π̃) + λµ2

H

λTCλH − λ2
,

(2.11)

where

m2
π̃ = −gTC〈 ¯̃QQ̃〉

u
, 〈 ¯̃QQ̃〉 < 0 , gTC > 0 (2.12)

is the technipion mass squared proportional to the (negative-valued) technifermion conden-

sate 〈 ¯̃QQ̃〉, similarly to that in low-energy hadron physics. The vacuum stability is ensured
by the minimum of the potential U = −LCSTC

U (2.8), i.e. by

∆ ≡
〈δ2LCSTC

U

δHδS

〉2

−
〈δ2LCSTC

U

δH2

〉〈δ2LCSTC
U

δS2

〉
< 0 ,

〈δ2LCSTC
U

δH2

〉
< 0 ,

〈δ2LCSTC
U

δS2

〉
< 0 ,

leading to

λTC > −m2
π̃

2u2
, λH > 0 , (2.13)

which are automatically satisfied for the positively defined scalar mass form, i.e. for M2
σ̃ > 0

and M2
h > 0.

Notice that in the limiting case of µS,H & mπ̃ which, in principle, is not forbidden (while
origin of µ-terms is generally unclear in the SM theory) and even can be motivated in the
nearly conformal limit of new strongly coupled dynamics (see below), both vevs v and u
are expressed in terms of the technifermion condensate, having thereby the same dynamical
origin. The extra confined TC sector is now responsible for the EWSB in the CSTC model, so
the role of extra µ-terms, which are usually required for the classical Higgs mechanism in the
rigorous SM formulation, is taken over by the technifermion condensate. This observation
thus supports the above argument about the common quantum-topological nature of the
EWSB and the chiral symmetry breaking mechanisms in the considering CSTC model. In
what follows, we discuss both cases. In the first case, for the sake of generality, we keep the
scalar µ-terms permitted by the gauge symmetry as free independent parameters. In the
second theoretically motivated limiting case µS,H & mπ̃, we will also consider the minimal
CSTC model neglecting the small µ-terms below.
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To the first order in δ ! 1, the transformation between the gauge eigenstates {η̃′, ζ̃, η̃, π̃0}
and the corresponding mass eigestates {η′, ζ , η, π0} reads

η̃′ = η′ +
χ1 δ√
2M2

η′(0)

(η + π0) +O(δ2) , ζ̃ =
η + π0

√
2

−
δ

M2
π(0)

(

2χ1 η
′ +

χ2

2
√
2
ζ
)

+O(δ2) ,

η̃ = −
1

2
ζ −

1

2

√

3

2
(η − π0) , π̃0 =

√
3

2
ζ −

1

2
√
2
(η − π0) ,

and the corresponding physical mass spectrum is

M2
η′ = M2

η′(0) +O(δ2) , M2
ζ = M2

π(0) +O(δ2) ,

M2
η = M2

π(0) −
χ2

2

√

3

2
δ +O(δ2) , M2

π = M2
π(0) +

χ2

2

√

3

2
δ +O(δ2) . (5.16)

The quadratic mass form of charged pseudoscalar π±, K± fields (only the first-order
terms in δ ! 1 are shown) read

M2
π(0)(π̃

+π̃− + K̃+K̃−) +
δ

2

√

3

2
(M2

H(0) −M2
π(0)) (π̃

+K̃− + K̃+π̃−) . (5.17)

The transformations to the mass basis

π̃± =
1√
2

(

π± +K±) , K̃± =
1√
2

(

−π± +K±) (5.18)

in the EW broken phase lead to the states {π±, K±} with definite physical masses squared

M2
π± = M2

π(0) −
δ

2

√

3

2
(M2

H(0) −M2
π(0)) +O(δ2) ,

M2
K± = M2

π(0) +
δ

2

√

3

2
(M2

H(0) −M2
π(0)) +O(δ2) .

(5.19)

3. T-quarks

Q̄Q → 〈Q̄Q〉+ Q̄Q

−gTCQ̄(S + iγ5P
a)Q → −gTC

(

〈Q̄Q〉S + Q̄(S + iγ5P
aτa)Q

)

S = u+ σ

mQ ! mπ =

Acknowledgments
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2

II. THE CSTC MODEL

The structure of the CSTC model is inspired by the
gauged linear �-model [30–33]. Here, considering the
simplest case with two Dirac techniflavours in confine-
ment, the global chiral symmetry gets spontaneously bro-
ken down to a chiral-symmetric subgroup, subsequently
identified as the weak gauge group of the SM, i.e.

SU(2)L ⇥ SU(2)R ! SU(2)V⌘L+R ⌘ SU(2)W . (1)

This scheme is analogical to the low-energy effective the-
ory of QCD, where the 3-flavour global chiral group
breaks down to a chiral-symmetric (vector) subgroup
that can be viewed effectively as indistinguishable from
the color group SU(3)c in the non-perturbative domain
of the theory. For phenomenological purposes it is then
convenient to adhere our model as much as possible to
the standard QCD, but with the confinement energy scale
⇤TC chosen to be at a GeV energy scale.

As the simplest realization of the CSTC model, we
focus on the first generation of the Dirac technifermion
doublet

Q̃ =

✓
Ũ

D̃

◆
, (2)

having a constituent mass m
Q̃

⇠ ⇤TC. Besides this, the
lightest physical states such as the technisigma �̃, which
comes from a singlet scalar field S in the gauge basis,
and the technipions ⇡̃a, which originate from a triplet of
gauge-basis pseudoscalar fields Pa, a = 1, 2, 3, are also
introduced [29]. Then, as the standard Linear �̃-Model
(L�̃M) suggests, the relevant part of the Lagrangian for
the Yukawa interactions can be written as

LY = �YTC
¯̃
Q(S + ı�5⌧aPa)Q̃ , (3)

where ⌧a denotes the Pauli matrices, and YTC stands for
the effective coupling constant of �̃-Model, representing
here a free parameter the value of which we will be as-
sume to be in the perturbative regime, i.e. YTC <

p
4⇡,

in the loop-calculation for the effective potential1.
The potential (renormalisable) part of the scalar self-

interactions reads, in general,

Vself(H,S, P )

=
1

2
µ
2
S
(S2 + P

2) +
1

4
�TC(S2 + P

2)2

+ µ
2
H
H

†
H + �H(H†

H)2 � �(H†
H)(S2 + P

2) ,

(4)

1
The assumption that YTC is in a perturbative regime is compat-

ible with a temperatures’ domain that fulfills T <<⇤TC. Indeed,

at temperatures well below the confinement scale ⇤TC, the condi-

tions for a dilute-gas approximation outside the Fermi-scale can

be justified moving from the technimesons’ interaction term (3),

and the finite-temperature analysis can be assumed to remain in

the perturbative regime.

and an extra linear source term providing a pseudo-
Goldstone mass to the physical technipions is also in-
troduced in the potential, i.e.

Vsource(S) = YTCS

D
¯̃
QQ̃

E
. (5)

Then, the scalar potential of the CSTC model should be
written as

V0(H,S, P ) = Vself + Vsource . (6)

In the previous expressions, the scalar fields H and S are
represented by the following expressions,

H =
1

p
2

✓
G + iG

0

�h + h
0 + i⌘

◆
, S = ��̃ + s

0
, (7)

where h
0, ⌘, G, G

0, s
0 are real scalars. The h

0 and s
0

fields are quantum fluctuations around the classical back-
ground fields �h and ��̃, which obtain their VEVs in the
zero temperature limit, namely, �h ⌘ v = 246 GeV, and
��̃ ⌘ u at T = 0. Thus, we have identified the lighter
physical CP-even scalar states as the SM-like Higgs bo-
son, with a possible mixing with another field. De-
spite the Higgs field being an elementary in this sim-
plest scheme, the linear (in S) source term in Eq. (6)
implies a novel quantum-topological origin of the Higgs
and S VEVs, v and u, connecting them to the tech-
nifermion condensate in the near-conformal limit of the
theory µ

2
H,S

! 0 and, hence, implying a dynamical ori-
gin of EWSB in this limit [29, 34]. In this work we will
focus on the generic case with no-vanishing µ

2
H,S

, for a
more general study.

For the hierarchy of masses of the two CP-even scalar
particles, there exist two possibilities: either the lightest
scalar state is the technisigma, namely mh > m�̃, or the
Higgs boson is the lightest one, i.e. mh < m�̃. Con-
sistently with Ref. [29], we only consider the latter case
in our analysis. The technipions obtain masses through
the linear condensate term, while masses of constituent
technifermions come from the VEV of technisigma field
S, which can be expressed as

m
2
⇡̃

= �

YTC

D
¯̃
QQ̃

E

u
, m

Q̃
= YTCu . (8)

Note that in analogy to the low-energy hadron physics,
in what follows we consider the degenerate technifermion
masses scenario where m

Q̃
⌘ m

Ũ
= m

D̃
. Within this

scenario, the Higgs-technisigma mixing can be cast as

tan 2✓ =
4�uv

2�TCu
2 + m

2
⇡̃

� 2�Hv2
. (9)

In developing our phenomenological analysis, we use
physical parameters as inputs. In other words, additional
parameters in the CSTC model are expressed in terms of
five independent quantities, i.e.

m�̃ , m⇡̃ , m
Q̃
, YTC , ✓ . (10)

to be randomly sampled within certain physically moti-
vated intervals in numerical scans as discussed below.

Techniquark weak-SU(2) doublet:
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Higgs signal rates
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FIG. 15: Typical one-loop contributions to the h, σ̃ → γγ decay channel in the CSTC.

As was mentioned above, the Higgs couplings to SM fermions and vector bosons in the
considering scenario contain extra cθ factor compared to the SM ones, so in the resonance
region we have for decay widths and branching fractions to a good accuracy

Γh,mod
tot

Γh,SM
tot

" c2θ,
Brmod(h → XY )

BrSM(h → XY )
" 1, XY = ff̄ , WW ∗, ZZ∗ , (4.4)

i.e. for all Born-level Higgs/technisigma decays which strongly dominate in the total decay
width. This reveals the fact that the Higgs branching ratios, in fact, in the SM and in the
considering CSTC scenario are the same. Thus, according to Eq. (4.3) the ratio between
the resonant cross sections in the considering model to the SM one is close to unity

µres
ff̄ , ZZ,WW =

σmod(V V → h(q) → f̄f, ZZ∗, WW ∗)

σSM(V V → h(q) → f̄f, ZZ∗, WW ∗)
" 1, q2 " M2

h . (4.5)

which are essentially the Higgs boson signal strengths in respective channels which were
measured earlier at the LHC and no significant deviations from the SM have been found.

In fact, experimentally one never measures events exactly at the resonance peak position
q2 = M2

h , but one rather has a smearing of the resonance by e.g. detector conditions. In
this case, a more precise estimation of the Higgs boson signal strength is given by the ratio
of the cross sections integrated (or averaged) over the energy resolution of an experiment
δE which can be comparable or exceeds the small Higgs boson decay width in the SM,
δE ≥ Γh,SM

tot " 4.03 MeV (at Mh " 125 GeV) [12], i.e.

µXY(δE) =

∫Mh+δE

Mh−δE σmod
XY (q)dq

∫Mh+δE

Mh−δE σSM
XY(q)dq

" Γmod(h → ab)Γmod(h → XY )

ΓSM(h → ab)ΓSM(h → XY )

×
∫Mh+δE

Mh−δE [(q2 −M2
h)

2 + q2(Γh,SM
tot )2]dq

∫Mh+δE

Mh−δE [(q2 −M2
h)

2 + q2(Γh,mod
tot )2]dq

, (4.6)

whose values have to be compared to the measured ones. The last part of the formula above
is fulfilled approximately and valid to a good accuracy for δE & Γh,SM

tot which is the case in
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FIG. 18: Dependence of the Higgs boson signal strength in the resonance given by Eq. (4.7)
in the minimal CSTC model (with scalar µS,H -terms excluded), µres

γγ , on Mσ̃ for different sets
of the physical parameters: (top-left) gTC = 8, MQ̃ = 300 GeV, and mπ̃ = 150, 250, 350 GeV,
corresponding to dashed, dash-dotted and solid lines, respectively; (top-right) gTC = 8, mπ̃ =
350 GeV, and MQ̃ = 400, 500, 700 GeV, corresponding to dashed, dash-dotted and solid lines,
respectively; (bottom-left) mπ̃ = 350 GeV, MQ̃ = 500 GeV, and gTC = 2, 8, 15, corresponding
to dashed, dash-dotted and solid lines, respectively. Finally, bottom-right figure corresponds to
smeared µγγ(δE) given by Eq. (4.6) as a function of Mσ̃ for fixed mπ̃ = 350 GeV, MQ̃ = 500 GeV,

gTC = 8 and with different smearing parameters: no smearing δE = 0 (dashed line), δE = Γh,SM
tot !

4.03 MeV (dash-dotted line), and δE = 1 GeV (solid line).

where α = α(MZ) = 1/127.93 is the fine structure constant adopted in all numerical calcula-
tions, and the individual contributions from W , top-quark, π̃ and Q̃ loops read, respectively,

FW =
1

8
g cθ

Mh

MW
·
[
2 + 3βW + 3βW (2− βW )f(βW )

]
,

Ftop = −4

3
g cθ

m2
top

MhMW

[
1 + (1− βtop)f(βtop)

]
,

Fπ̃ = − ghπ̃
2Mh

[
1− βπ̃f(βπ̃)

]
, ghπ̃ = −2(λTC usθ − λ vcθ) , (4.9)

FQ̃ = −2NTC(q
2
U + q2D) gTC sθ

MQ̃

Mh

[
1 + (1− βQ̃)f(βQ̃)

]
,

where we take the number of technicolors NTC = 3 in numerical calculations below, qU,D are
the techni-up and techni-down fermion charges, and

f(β) = arcsin2 1√
β

βX =
4m2

X

M2
h

, X = W, top, π̃, Q̃ . (4.10)
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FIG. 1: The loop-induced light technipion couplings to the gauge bosons through constituent

techniquark loops. In the case of YQ != 0, the technipion is coupled to two gauge bosons to the
lowest order π̃V1V2 via techniquark triangle diagrams (left), while for the YQ = 0 case the technipion

is coupled only to three gauge bosons π̃V1V2V3 via a box diagram (right). The latter case is much
more involved and will not be considered here.
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where α = e2/4π is the fine structure constant.
Now the two-body technipion decay width in a vector boson channel can be represented
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In Fig. 1 (right) we show the leading-order contribution to single technipion-gauge bosons
coupling for YQ = 0 (relevant in the case of an even SU(NTC)TC group of confinement,
e.g. SU(2)TC [24]). In the latter case, a single technipion can be produced in V1V2 fusion
only in association with an extra gauge boson V3 while produced technipion should further
decay either into three gauge bosons π̃ → V ′

1V
′
2V

′
3 or into a pair of Higgs bosons π̃ → hh.

Such processes would be rather suppressed and difficult to study experimentally while they
give rise to the only observable signatures of technipions in the case of SU(2)TC group of
confinement in the vector-like Technicolor scenario so will be studied elsewhere.
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order box-induced contributions – the QCD (Durham) diffractive mechanism via gg → γγ
shown in Fig. 4 (left) and the QED (light-by-light) scattering mechanism γγ → γγ shown
in Fig. 4 (right). Below, we discuss both of them in detail.

p1

p2 p′2

p′1

q0

q1

q2 γ

γ

γ

γ
γ

γ

u, d

FIG. 4: Irreducible non-resonant background processes for the central exclusive technipion π̃0 →
γγ production in pp collisions at the LHC: the QCD diffractive γγ pair production (left) and

the QED-initiated γγ pair production (right). In the latter case, only a part of contributions
corresponding to quark boxes is shown here for illustration while in actual calculations the full set
of SM contributions including quark, lepton and W boson loops is taken into account.

A. Durham QCD mechanism

A schematic diagram for central exclusive production of γγ pairs in proton-proton scat-
tering pp → p(γγ)p with relevant kinematics notations is shown in Fig. 4 (left). In what
follows, we use the standard theoretical description of CEP processes developed by the
Durham group for the exclusive production of Higgs boson in Ref. [3]. The details of the
kinematics for the central exclusive production processes can be found e.g. in Ref. [1]. Here
we only sketch basic notations used in our calculations, which are similar to those in our
previous paper on the central exclusive production of W+W− pairs [8].

The momenta of intermediate gluons are given by Sudakov decomposition in terms of the
incoming proton four-momenta p1,2

q1 = x1p1 + q1⊥, q2 = x2p2 + q2⊥, 0 < x1,2 < 1,

q0 = x′p1 − x′p2 + q0⊥ $ q0⊥, x′ % x1,2, (6.1)

where x1,2, x′ are the longitudinal momentum fractions for active (fusing) and color screening
gluons, respectively, such that q2⊥ $ −|q⊥|2.

The QCD factorisation of the process at the hard scale µF is provided by the large
invariant mass of the γγ pair Mγγ , i.e.

µ2
F ≡ s x1x2 $ M2

γγ . (6.2)

It is convenient to introduce the Sudakov expansion for photon momenta as follows

k3 = x+
1 p1 + x+

2 p2 + k3⊥, k4 = x−
1 p1 + x−

2 p2 + k4⊥ (6.3)

leading to

x1,2 = x+
1,2 + x−

1,2, x+
1,2 =

|k3,4⊥|√
s

e±y3 , x−
1,2 =

|k3,4⊥|√
s

e±y4 (6.4)
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present analysis we concentrate on the search for technipion so we ignore effects beyond the
Standard Model as far as the background is considered.

VII. RESULTS

Before discussing results for exclusive production of neutral technipion, we would like
to summarize the inclusive π̃0 production in association with two forward jets. In Fig. 6
we show the total inclusive cross section as a function of technipion (left) and techniquark
(right) masses, mπ̃ and MQ̃, respectively, and integrated over the full phase space. The
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FIG. 6: Inclusive π̃0 production cross section in association with two forward jets as a function

of technipion mass (left panel) and as a function of techniquark mass (right panel) for fixed values
of the gtc coupling constant at the nominal LHC energy

√
s = 14 TeV.

calculation was performed in the collinear QCD factorization with hard (parton-level) 2 →
3 subprocess (4.1) including t-channel exchanges of γ and Z0 bosons as illustrated in Fig. 3
(left) (for more details we refer to Ref. [23]). This calculation includes all the light quark and
antiquark flavors in the initial state with respective quark PDFs. As can be seen from Fig. 6
the photon-photon γγ fusion mechanism dominates, while Zγ and ZZ fusion contributions
are always small (suppressed by a large mass of Z boson in propagators). The cross section
for the vector-like TC model parameters and CTEQ5L quark PDFs [41] chosen as indicated
in the figure is of the order of 100 fb.

Now let us look into the parameter dependence of the exclusive production cross section.
This calculation is performed in the same way as the calculation for the exclusive production
of usual pion π0 studied recently by two of us in Ref. [29]. In particular, Fig. 7 shows a
2D map of the full phase space integrated cross section as a function of technipion and
techniquark masses. A kinematical limit mπ̃ = 2MQ̃ is clearly visible. We obtain the cross
section of the order of 1 fb for the same parameters as used in the calculation of the inclusive
cross section. This is about two orders of magnitude less than in the inclusive case. The
signal-to-background ratio, as will be discussed later is, however, more advantageous in the
exclusive case than in the inclusive one.

In Fig. 8 we show one-dimensional dependencies on technipion (left) and techniquark
(middle) masses. These dependencies can be compared to those in Fig. 6. Finally in Fig. 8
(right) we show dependence on technipion mass for fixed ratio of techniquark-to-technipion
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FIG. 3: Hadron-level technipion production channels in VBF mechanism and the leading γγ

decay channel: inclusive π̃0,± production in association with two quark jets (left) and the central
exclusive π̃0 production in the γγ fusion (right).

compared to the Higgs boson production rate, which along with extremely narrow technipion
resonance makes it rather hard to study experimentally. So, even light technipions down to
W boson mass may be not excluded yet by LEP II and LHC studies, and the latter point is
an interesting subject for further investigations.

V. EXCLUSIVE TECHNIPION PRODUCTION: THE VBF MECHANISM

Now we consider the central exclusive pp → ppπ̃0 process illustrated in Fig. 3 (right).
Similarly to the inclusive case discussed above, this process is determined by the colorless
VBF subprocess. We take into account only for dominating γγ → π̃0 fusion reaction and
omit γZ → π̃0, Zγ → π̃0 and ZZ → π̃0 subprocesses which turn out to be numerically very
small being suppressed by large masses in propagators. The corresponding matrix element
for the hadron-level 2 → 3 process can be written as:

Mpp→ppπ̃0

λaλb→λ1λ2
= V µ1

λa→λ1

(−igµ1ν1)

t1
Fγγ(MQ, mπ̃)ε

ν1ν2αβq1,αq2,β
(−igµ2ν2)

t2
V µ2

λb→λ2
, (5.1)

where the parton-level triangle amplitude Fγγ(MQ, mπ̃) is given by Eq. (3.4), and the vertex
functions Vµ1,2

can be approximated in the spin conserving case relevant at high energies as
follows

V µ1

λa→λ1
# F1(t1)ū(λ1)iγ

µ1u(λa) , V µ2

λb→λ2
# F1(t2)ū(λ2)iγ

µ2u(λb) , (5.2)

where F1(t) is the electromagnetic proton form factor. The natural limitation for a light
pseudo-Goldstone technipion

mπ̃

2MQ
< 1 (5.3)

is implied. The matrix element specified above is used in a three-body calculation precisely
as for the usual exclusive pion production in the pp → ppπ0 process considered in Ref. [29].

VI. EXCLUSIVE γγ BACKGROUND: QCD VS QED MECHANISMS

In order to estimate the feasibility of exclusive technipion production studies we need to
analyze carefully the exclusive γγ background. There are two basic non-resonant leading

8

Signal Background

 0.01

 0.1

 1

 150  200  250  300  350  400  450  500

BR
(π~0

 ->
 V

V)

mπ~ (GeV)

T-pion branching ratios

MQ~ = 300 GeV

γγ
γZ
ZZ

 0.01

 0.1

 1

 300  400  500  600  700  800

BR
(π~0

 ->
 V

V)

MQ~ (GeV)

T-pion branching ratios

mπ~ = 200 GeV

γγ
γZ
ZZ

FIG. 11: Branching fractions of technipion decays into γγ, γZ and ZZ final states as a function
of technipion mass mπ̃ for a fixed value of techniquark mass (left) and as a function of techniquark

mass MQ̃ for a fixed value of technipion mass (right).
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FIG. 12: Distribution in invariant mass of the two-photon system for the Durham QCDmechanism

(black lines) and QED γγ fusion mechanism (blue lines). We present results without cuts (solid
line) and with extra cuts on photon transverse momenta p⊥,γ > 20, 50 GeV (long dashed, dashed
lines, respectively) were imposed for illustration.

for the QED γγ fusion mechanism calculated based upon the parton-model formula (6.11).
At relatively low masses, the Durham mechanism dominates. However, above Mγγ > 200
GeV the photon-photon mechanism takes over. The later is therefore the most important
potential background for the technipion signal if observed in the γγ decay channel. For the
pQCD background we have also shown a result without Sudakov formfactors. As can bee
seen from the figure the Sudakov formfactors strongly damp the cross section, especially at
larger photon-photon invariant masses. Assuming the experimental resolution in invariant
γγ mass of about 5 GeV or so, the background turns out to be by two orders of magnitude
smaller than the corresponding technipion signal for the whole range of vector-like TC model
parameters considered in the present paper. To summarize, the signal-to-background ratio
in exclusive technipion production process is by far better than that in inclusive technipion
production [23]. The latter is clear from comparing the corresponding inclusive γγ back-
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FIG. 7: Exclusive cross section as a 2D function of technipion mass (mπ̃) and techniquark mass

(MQ̃) for a fixed value of gTC = 10.

mass ratio. The latter dependence looks, however, steeper as an artifact of parameter
correlations.

In the exclusive case, the integration in proton transverse momenta requires a special
care. Instead of integration over p1⊥ and p2⊥ we integrate over: ξ1 = log10(p1⊥/1GeV) and
ξ2 = log10(p2⊥/1GeV). The resulting cross section in the auxiliary quantities is shown in
Fig. 9.

Now let us consider some important differential distributions. In Fig. 10 we show a
distribution in technipion rapidity (left panel) and azimuthal angle between outgoing protons
(right panel). The larger the technipion mass the smaller the cross section. The technipions
are produced dominantly at midrapidities as expected.

Up to now we have discussed cross sections and differential distributions for technipion
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at the LHC, Yukawa and gauge couplings as well as constituent masses and degeneration of
the mass spectrum of the technifermions, etc.
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FIG. 21: The technipion decay widths in the loop-induced γγ, γZ, γW , ZZ and ZW channels in
the non-minimal CSTC (with scalar µS,H -terms included) as functions of physical parameters of
the model. The parameters in each figure are set as follows: (left) MQ̃ = 300 GeV, c2θ = 0.8, and
gTC = 8; (middle) MQ̃ = 300 GeV, mπ̃ = 200 GeV, and c2θ = 0.8; (right) mπ̃ = 200 GeV, c2θ = 0.8,
and gTC = 8. These results do not depend on Mσ̃.
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FIG. 22: The neutral and charged technipion branching ratios of the loop-induced γγ, γZ, γW ,
ZZ and ZW channels in the non-minimal CSTC (with scalar µS,H -terms included) as functions of
mπ̃ for fixed MQ̃ = 300 GeV, c2θ = 0.8, and gTC = 8.

It is of special interest for collider phenomenology to study π̃ decays into vector bosons
and, in principle, into a pair Higgs bosons whose diagrams are represented as generic 2- and
3-body technifermion loop-induced processes in Fig. 20. In the case of the mass-degenerated
technifermion doublet, it turns out that in the simplest case with YQ̃ = 0 the 2-body techni-
pion vector boson decay modes are always forbidden by symmetry encoded in the structure
of vertices, whereas allowed for generic YQ̃ != 0 cases. The σ̃ decays would manifest them-
selves as multi-lepton final states with a large lepton multiplicity – up to twelve leptons
from technipion pair decay in the case of YQ̃ = 0 or up to eight leptons for YQ̃ = 1/3 in the
final state from technisigma decay (six and four leptons coming from each technipion in the
above cases, respectively), which would be rather challenging but very interesting to study.

In general, one would deal with many possible four-vector V V V V , four-Higgs hhhh or
mixed hhV V final states in order to reconstruct the technisigma mass, and this procedure
gets even more complicated due a very large σ̃ width. If there are no visible deviations of
the Higgs boson properties from the SM ones, the technipion/technisigma phenomenology,
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Appendix A: Thermal Masses

The T
2 term in the high-T expansion of the one-loop

thermal corrections �V (T ) in the finite-temperature ef-
fective potential (11) suggests the perturbation theory
will break down near the critical temperature. Tradi-
tionally this problem is relieved, but not solved, through
the performance of an all-order resummation of daisy
diagrams [38, 39] . As a result, we need to introduce
temperature-dependent corrections to the mass terms in
the potential as
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where g and g
0 are the weak gauge couplings and yf de-

notes the Yukawa coupling of the fermion f in the SM.
Besides, in the early universe one needs to consider

finite-temperature effects on the whole physical system.
Similar to the quark condensate in QCD, we also in-
troduce the finite-temperature corrections to our tech-
niquark condensate. Following the same formulism for
hadron physics in Ref. [40, 41], at the leading order we
assume the techniquark condensate term similarly takes

the finite-temperature form as
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where the technipion decay constant reads
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completely analogous with the Gell-Mann-Oakes-Renner
relation in QCD.

Appendix B: Renormalization Conditions

The counterterm part in the finite-temperature effec-
tive potential can be written as
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From Eq. (11) one can see that VEVs and physical
masses at zero temperature are shifted from their tree-
level values by the one-loop CW potential V

(1)
CW. The

counterterm potential Vct is hence determined by the
requirement that the one-loop effective potential repro-
duces the same tree-level values at zero temperature [68].
Then renormalization conditions can be expressed as
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The T
2 term in the high-T expansion of the one-loop

thermal corrections �V (T ) in the finite-temperature ef-
fective potential (11) suggests the perturbation theory
will break down near the critical temperature. Tradi-
tionally this problem is relieved, but not solved, through
the performance of an all-order resummation of daisy
diagrams [38, 39] . As a result, we need to introduce
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where g and g
0 are the weak gauge couplings and yf de-

notes the Yukawa coupling of the fermion f in the SM.
Besides, in the early universe one needs to consider

finite-temperature effects on the whole physical system.
Similar to the quark condensate in QCD, we also in-
troduce the finite-temperature corrections to our tech-
niquark condensate. Following the same formulism for
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assume the techniquark condensate term similarly takes
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completely analogous with the Gell-Mann-Oakes-Renner
relation in QCD.
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Ũ

+ m
D̃

)
D

¯̃
QQ̃

E

m
2
⇡̃

(A4)

completely analogous with the Gell-Mann-Oakes-Renner
relation in QCD.

Appendix B: Renormalization Conditions

The counterterm part in the finite-temperature effec-
tive potential can be written as

Vct =
1

2
�µ

2
S
�
2
�̃

+
1

2
�µ

2
H
�
2
h

(B1)

+
1

4
��TC�

4
�̃

+
1

4
��H�

4
h

�
1

2
���

2
h
�
2
�̃
, (B2)
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where g and g
0 are the weak gauge couplings and yf de-

notes the Yukawa coupling of the fermion f in the SM.
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Appendix A: Thermal Masses

The T
2 term in the high-T expansion of the one-loop

thermal corrections �V (T ) in the finite-temperature ef-
fective potential (11) suggests the perturbation theory
will break down near the critical temperature. Tradi-
tionally this problem is relieved, but not solved, through
the performance of an all-order resummation of daisy
diagrams [38, 39] . As a result, we need to introduce
temperature-dependent corrections to the mass terms in
the potential as
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where g and g
0 are the weak gauge couplings and yf de-

notes the Yukawa coupling of the fermion f in the SM.
Besides, in the early universe one needs to consider

finite-temperature effects on the whole physical system.
Similar to the quark condensate in QCD, we also in-
troduce the finite-temperature corrections to our tech-
niquark condensate. Following the same formulism for
hadron physics in Ref. [40, 41], at the leading order we
assume the techniquark condensate term similarly takes

the finite-temperature form as
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where the technipion decay constant reads
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completely analogous with the Gell-Mann-Oakes-Renner
relation in QCD.

Appendix B: Renormalization Conditions

The counterterm part in the finite-temperature effec-
tive potential can be written as
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From Eq. (11) one can see that VEVs and physical
masses at zero temperature are shifted from their tree-
level values by the one-loop CW potential V

(1)
CW. The

counterterm potential Vct is hence determined by the
requirement that the one-loop effective potential repro-
duces the same tree-level values at zero temperature [68].
Then renormalization conditions can be expressed as
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4

A. Parameter space

In the QCD-like TC paradigm, it is quite natural to ex-
pect that characteristic masses of TC particles scale with
respect to the corresponding masses of states in standard
hadronic physics by the factor ⇠ ⇠ ⇤TC/⇤QCD & 1000.
Hence, we set accordingly a lower bound for the masses
in (10), i.e.

m⇡̃ & 140GeV , m�̃ & 500GeV , m
Q̃
& 300GeV , (16)

in our numerical study.
One of the phenomenological advantages of the CSTC

model, able to fulfil strict EW constraints, comes from
its large parameter space, in contrast with conventional
TC models. As shown in Ref. [29], generally the Peskin-
Takeuchi (PT) parameters, characterising the complete
EW precision tests, are strongly suppressed and weakly
rely on all the physical parameters, except for the mixing
angle ✓. Furthermore, the parameter space is mainly con-
strained by the T parameter. Indeed, for the degenerate
case where m

Ũ
= m

D̃
, which we focus at here, the EW

precision measurements impose a rather small value for
the �̃ � h mixing angle. In the following analysis, we set
a relatively conservative bound on the Higgs-technisigma
mixing, namely, |cos ✓| > 0.85.

Moreover, the coupling constants in the tree-level po-
tential should be restricted by the tree-level perturba-
tivity. In our numerical study, we limit these latter di-
mensionless parameters within the range |�i| < 8 and
YTC < 3, accounting for corrections from both quantum
and finite temperature effects.

B. Gravitational waves spectra

In order to develop the phenomenology of the CSTC
model with GW interferometers, we primarily focus on
the parameter space giving rise to signals accessible by
future experiments. Fulfilling the restrictions previously
discussed, the CSTC model is still capable to generate
strong FOPTs in the early universe and leave subsequent
visible GWs within the reach of planned missions. In
Fig. 1 we present the GW spectrum as a function of cos ✓,
in order to illustrate the impact of this (most constricted)
parameter when all the other parameters are fixed. Fig. 1
depicts the peak amplitude of the GW signals h

2⌦peak
GW

versus its peak frequency fpeak represented in logarithmic
scale, with the color bar denoting corresponding values of
the parameter cos ✓. Displayed along with result points,
within Fig. 1 and following figures, there are three grey
curves that depict the peak integrated sensitivity curves
(PISCs) for sound waves as provided in Ref. [61]. In
Ref. [61] dashed, dash-dotted and dotted lines represent
PISCs of LISA [46, 47, 62], BBO [63] and u-DECIGO
[64] respectively.

Fortunately, we find that observable scenarios favor rel-
atively small, though not vanishing, mixing angle in our

results. By specifying one point above PISCs and vary-
ing its input ✓, it can be seen that gradual approach
to the no-mixing limit cos2 ✓ ! 1 enhances the inten-
sity of the peak amplitudes. This characteristic helps
detectable signals generated in our parameter space to
fulfill the stringent restrictions that arise from collider
experiments.
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Figure 1: The GW spectrum as a function of cos ✓, with other

model parameters fixed as m�̃ = 702.0GeV, m⇡̃ = 347.1GeV,

mQ̃ = 466.6GeV, YTC = 2.86. Scenarios with small mixing an-

gle ✓ can generate observable GW signals. Dashed, dash-dotted

and dotted lines represent PISCs for LISA, BBO and u-DECIGO

respectively.

On the other hand, the parameter YTC is constrained
to be small enough in order to avoid non-perturbative
effects in the theory. This input serves as a Yukawa-
type coupling in the part of the Lagrangian featured in
Eq. (3). In Fig. 2, we show again the peak amplitude of
GW signals h

2⌦peak
GW in terms of the corresponding peak

frequency, in logarithmic scale, but this time with the
color bar denoting values of the coupling YTC. It can be
seen that, leaving the other inputs unchanged, smaller
values than YTC ⇠ 3.0, individuating viable regions of
the parameter spaces, are able to generate strong FOPTs
and result in observable GW signals by future detectors.
In general, the strength of GW peak amplitude drops
as the value of YTC increases. However, a small varia-
tion ⇠ O(0.1) of YTC ⇠ 3.0 can give rise to variations of
the corresponding GW spectra as significant as 15 orders
of magnitude. In fact, YTC between 3.0 and 3.3 cannot
generate any FOPTs, while YTC & 3.3 will induce visible
ones2. As presented in the figure, starting off within the
reach of LISA, the peak amplitudes of GWs shift from
the upper-left to the bottom-right, across a large gap
in between, and finally end up far below sensitivities of
forthcoming experiments. This feature of YTC remark-
ably differs from the other parametric inputs in (10), the
resulting GWs peak signals of which, accordingly, un-
dergo continuous changes.

2
This relatively large gap also guarantees the stability of our re-

sults.

2

II. THE CSTC MODEL

The structure of the CSTC model is inspired by the
gauged linear �-model [30–33]. Here, considering the
simplest case with two Dirac techniflavours in confine-
ment, the global chiral symmetry gets spontaneously bro-
ken down to a chiral-symmetric subgroup, subsequently
identified as the weak gauge group of the SM, i.e.

SU(2)L ⇥ SU(2)R ! SU(2)V⌘L+R ⌘ SU(2)W . (1)

This scheme is analogical to the low-energy effective the-
ory of QCD, where the 3-flavour global chiral group
breaks down to a chiral-symmetric (vector) subgroup
that can be viewed effectively as indistinguishable from
the color group SU(3)c in the non-perturbative domain
of the theory. For phenomenological purposes it is then
convenient to adhere our model as much as possible to
the standard QCD, but with the confinement energy scale
⇤TC chosen to be at a GeV energy scale.

As the simplest realization of the CSTC model, we
focus on the first generation of the Dirac technifermion
doublet

Q̃ =

✓
Ũ

D̃

◆
, (2)

having a constituent mass m
Q̃

⇠ ⇤TC. Besides this, the
lightest physical states such as the technisigma �̃, which
comes from a singlet scalar field S in the gauge basis,
and the technipions ⇡̃a, which originate from a triplet of
gauge-basis pseudoscalar fields Pa, a = 1, 2, 3, are also
introduced [29]. Then, as the standard Linear �̃-Model
(L�̃M) suggests, the relevant part of the Lagrangian for
the Yukawa interactions can be written as

LY = �YTC
¯̃
Q(S + ı�5⌧aPa)Q̃ , (3)

where ⌧a denotes the Pauli matrices, and YTC stands for
the effective coupling constant of �̃-Model, representing
here a free parameter the value of which we will be as-
sume to be in the perturbative regime, i.e. YTC <

p
4⇡,

in the loop-calculation for the effective potential1.
The potential (renormalisable) part of the scalar self-

interactions reads, in general,

Vself(H,S, P )

=
1

2
µ
2
S
(S2 + P

2) +
1

4
�TC(S2 + P

2)2

+ µ
2
H
H

†
H + �H(H†

H)2 � �(H†
H)(S2 + P

2) ,

(4)

1
The assumption that YTC is in a perturbative regime is compat-

ible with a temperatures’ domain that fulfills T <<⇤TC. Indeed,

at temperatures well below the confinement scale ⇤TC, the condi-

tions for a dilute-gas approximation outside the Fermi-scale can

be justified moving from the technimesons’ interaction term (3),

and the finite-temperature analysis can be assumed to remain in

the perturbative regime.

and an extra linear source term providing a pseudo-
Goldstone mass to the physical technipions is also in-
troduced in the potential, i.e.

Vsource(S) = YTCS

D
¯̃
QQ̃

E
. (5)

Then, the scalar potential of the CSTC model should be
written as

V0(H,S, P ) = Vself + Vsource . (6)

In the previous expressions, the scalar fields H and S are
represented by the following expressions,

H =
1

p
2

✓
G + iG

0

�h + h
0 + i⌘

◆
, S = ��̃ + s

0
, (7)

where h
0, ⌘, G, G

0, s
0 are real scalars. The h

0 and s
0

fields are quantum fluctuations around the classical back-
ground fields �h and ��̃, which obtain their VEVs in the
zero temperature limit, namely, �h ⌘ v = 246 GeV, and
��̃ ⌘ u at T = 0. Thus, we have identified the lighter
physical CP-even scalar states as the SM-like Higgs bo-
son, with a possible mixing with another field. De-
spite the Higgs field being an elementary in this sim-
plest scheme, the linear (in S) source term in Eq. (6)
implies a novel quantum-topological origin of the Higgs
and S VEVs, v and u, connecting them to the tech-
nifermion condensate in the near-conformal limit of the
theory µ

2
H,S

! 0 and, hence, implying a dynamical ori-
gin of EWSB in this limit [29, 34]. In this work we will
focus on the generic case with no-vanishing µ

2
H,S

, for a
more general study.

For the hierarchy of masses of the two CP-even scalar
particles, there exist two possibilities: either the lightest
scalar state is the technisigma, namely mh > m�̃, or the
Higgs boson is the lightest one, i.e. mh < m�̃. Con-
sistently with Ref. [29], we only consider the latter case
in our analysis. The technipions obtain masses through
the linear condensate term, while masses of constituent
technifermions come from the VEV of technisigma field
S, which can be expressed as

m
2
⇡̃

= �

YTC

D
¯̃
QQ̃

E

u
, m

Q̃
= YTCu . (8)

Note that in analogy to the low-energy hadron physics,
in what follows we consider the degenerate technifermion
masses scenario where m

Q̃
⌘ m

Ũ
= m

D̃
. Within this

scenario, the Higgs-technisigma mixing can be cast as

tan 2✓ =
4�uv

2�TCu
2 + m

2
⇡̃

� 2�Hv2
. (9)

In developing our phenomenological analysis, we use
physical parameters as inputs. In other words, additional
parameters in the CSTC model are expressed in terms of
five independent quantities, i.e.

m�̃ , m⇡̃ , m
Q̃
, YTC , ✓ . (10)

to be randomly sampled within certain physically moti-
vated intervals in numerical scans as discussed below.

Scan parameters
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ing its input ✓, it can be seen that gradual approach
to the no-mixing limit cos2 ✓ ! 1 enhances the inten-
sity of the peak amplitudes. This characteristic helps
detectable signals generated in our parameter space to
fulfill the stringent restrictions that arise from collider
experiments.

Figure 1: The GW spectrum as a function of cos ✓, with other

model parameters fixed as m�̃ = 702.0GeV, m⇡̃ = 347.1GeV,

mQ̃ = 466.6GeV, YTC = 2.86. Scenarios with small mixing an-

gle ✓ can generate observable GW signals. Dashed, dash-dotted

and dotted lines represent PISCs for LISA, BBO and u-DECIGO

respectively.

On the other hand, the parameter YTC is constrained
to be small enough in order to avoid non-perturbative
effects in the theory. This input serves as a Yukawa-
type coupling in the part of the Lagrangian featured in
Eq. (3). In Fig. 2, we show again the peak amplitude of
GW signals h

2⌦peak
GW in terms of the corresponding peak

frequency, in logarithmic scale, but this time with the
color bar denoting values of the coupling YTC. It can be
seen that, leaving the other inputs unchanged, smaller
values than YTC ⇠ 3.0, individuating viable regions of
the parameter spaces, are able to generate strong FOPTs
and result in observable GW signals by future detectors.
In general, the strength of GW peak amplitude drops
as the value of YTC increases. However, a small varia-
tion ⇠ O(0.1) of YTC ⇠ 3.0 can give rise to variations of
the corresponding GW spectra as significant as 15 orders
of magnitude. In fact, YTC between 3.0 and 3.3 cannot
generate any FOPTs, while YTC & 3.3 will induce visible
ones2. As presented in the figure, starting off within the
reach of LISA, the peak amplitudes of GWs shift from
the upper-left to the bottom-right, across a large gap
in between, and finally end up far below sensitivities of
forthcoming experiments. This feature of YTC remark-
ably differs from the other parametric inputs in (10), the
resulting GWs peak signals of which, accordingly, un-
dergo continuous changes.
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sults.
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model, able to fulfil strict EW constraints, comes from
its large parameter space, in contrast with conventional
TC models. As shown in Ref. [29], generally the Peskin-
Takeuchi (PT) parameters, characterising the complete
EW precision tests, are strongly suppressed and weakly
rely on all the physical parameters, except for the mixing
angle ✓. Furthermore, the parameter space is mainly con-
strained by the T parameter. Indeed, for the degenerate
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strong FOPTs in the early universe and leave subsequent
visible GWs within the reach of planned missions. In
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in order to illustrate the impact of this (most constricted)
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versus its peak frequency fpeak represented in logarithmic
scale, with the color bar denoting corresponding values of
the parameter cos ✓. Displayed along with result points,
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results. By specifying one point above PISCs and vary-
ing its input ✓, it can be seen that gradual approach
to the no-mixing limit cos2 ✓ ! 1 enhances the inten-
sity of the peak amplitudes. This characteristic helps
detectable signals generated in our parameter space to
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experiments.
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to be small enough in order to avoid non-perturbative
effects in the theory. This input serves as a Yukawa-
type coupling in the part of the Lagrangian featured in
Eq. (3). In Fig. 2, we show again the peak amplitude of
GW signals h
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frequency, in logarithmic scale, but this time with the
color bar denoting values of the coupling YTC. It can be
seen that, leaving the other inputs unchanged, smaller
values than YTC ⇠ 3.0, individuating viable regions of
the parameter spaces, are able to generate strong FOPTs
and result in observable GW signals by future detectors.
In general, the strength of GW peak amplitude drops
as the value of YTC increases. However, a small varia-
tion ⇠ O(0.1) of YTC ⇠ 3.0 can give rise to variations of
the corresponding GW spectra as significant as 15 orders
of magnitude. In fact, YTC between 3.0 and 3.3 cannot
generate any FOPTs, while YTC & 3.3 will induce visible
ones2. As presented in the figure, starting off within the
reach of LISA, the peak amplitudes of GWs shift from
the upper-left to the bottom-right, across a large gap
in between, and finally end up far below sensitivities of
forthcoming experiments. This feature of YTC remark-
ably differs from the other parametric inputs in (10), the
resulting GWs peak signals of which, accordingly, un-
dergo continuous changes.

2
This relatively large gap also guarantees the stability of our re-

sults.

Example of a one-parametric scan: GW spectra for benchmark points
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No. m�̃ m⇡̃ mQ̃ YTC |cos ✓|
I [700, 750] [300, 350] [400, 450] [2.5, 3.0] [0.858, 0.887]
II [620, 670] [250, 300] [450, 500] [2.2, 2.8] [0.858, 0.868]

Table I: Two different intervals for scanning. Interval I

corresponds to the lower branch in Fig. 4 and the upper one in

Fig. 5, while Interval II corresponds to the upper (and rather

thinner) branch in Fig. 4 and the lower one in Fig. 5. All masses

are in units of GeV.

Figure 5: Scatter plots showing signal-to-noise (SNR) ratio corre-

sponding to points detectable by LISA, with the color bar denoting

the percolation temperature. Two branches correspond to two dif-

ferent scans.

To demonstrate the opportunity to detect those cases
we find within LISA reach, we also show the signal-to-
noise (SNR) ratio for the mission duration of three years
corresponding to these cases in Fig. 5. Note that results
from two intervals in Tab. I also form two branches. The
colored contours represent the expected SNR values de-
pendent on Tp, g⇤ and vb, while the dashed grey contours
display the shock formation time. The grey shaded re-
gion highlights where the sound wave treatment is mostly
solid, with the acoustic period longer than a Hubble time.
Notably, nearly all points detectable by LISA feature a
promising SNR more than 10, with a significant fraction
of them even more than 1000. This fascinating fact in-
dicates the feasibility to test the CSTC model through
the LISA experiment. Last but not least, it is worth
mentioning that the peak amplitude, or the SNR, can be
slightly amplified for a given combination of a different
choice of physical parameters, as is revealed in Tab. I.

On the other hand, one may extract from a GW sig-
nals event detected the underlying phase transition pa-
rameters for the corresponding GW spectra. Besides the
bubble wall velocity vb, which is set above the Chapman-
Jouguet limit as in supersonic detonations, the percola-
tion temperature Tp, the strength of the phase transition
↵ and the inverse time-scale �/H are also required to be
estimated for GW spectra. From Fig. 5, we find that in
both branches, an increase in ↵ and a decrease in �/H

will lead to the enhancement of SNR, with a decline of
Tp as well. Indeed, this trend of changes in phase tran-

sition parameters also results in higher peak amplitudes
and smaller peak frequencies. Furthermore, as studied
in Ref. [12, 65], there exist remarkable degeneracies in
the determination of Tp, ↵ and �/H for a given GW
spectrum. Resorting to the help of the Fisher matrix
analysis, one could accurately determine combinations
of the aforementioned phase transition parameters and
significantly reduce their uncertainties even for values of
SNR greater than 20. Our results, featuring large SNR
even higher than 1000, are hence capable enough to no-
tably lower their relative uncertainties. In particular, it
is safe to assume values of the percolation temperature
Tp < 60GeV in order to obtain scatter points for the
phase transitions consistently with a SNR larger than
50.
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(a) Benchmark GW spectra of the CSTC model. The red, green,

and blue curves represent benchmark set (BM) 1, 2, and 3 respec-

tively. Phase transition parameters and model parameters are given

in Tab. II and Tab. III.

(b) The theoretical uncertainty band of the GW spectrum of BM2

in Fig. 6a. The band shows the variation in the spectrum by varying

the renormalization scale by a factor of 3.

Figure 6: Benchmark GW spectra and their representative theo-

retical uncertainty of the CSTC model. Phase transition parame-

ters and model parameters are given in Tab. II and Tab. III.

In order to unveil the specific features of the GW spec-
tra predicted by the CSTC scenario, we choose three
benchmark sets and illustrate their GWs intensity spectra
in Fig. 6, along with the corresponding phase transition
parameters shown in Tab. II. For phenomenological pur-
poses, values of the model parameters are presented in
Tab. III as well. In Fig. 6a, benchmark set 1, 2 and 3 are

Benchmark points:

7

represented by red, green and blue curves respectively,
which are all single-peak scenarios. We also present the
theoretical uncertainties of our predictions through varia-
tions of the renormalization scale in Fig. 6b. As discussed
in the previous section, even the strongest peak in multi-
peak scenarios is inaccessible in the near future, so we de-
cided not to display them. From Fig. 6a, it is obvious that
scenarios with a larger ↵ parameter will retain stronger
signals of the GWs spectra. The red curve observable by
all the three experiments features ↵ ⇠ 1.23, while the al-
most hidden blue curve only has ↵ ⇠ 0.04. On the other
hand, in spite of different percolation temperatures, both
strong EW and chiral phase transitions happen in all vis-
ible cases, with �v/Tp > 1 and �u/Tp > 1. In Tab. III,
different values of the masses m�̃, m⇡̃ and m

Q̃
are able to

induce detectable GWs, under restrictions for small YTC

and small Higgs-technisigma mixing ✓. This fact sug-
gests a large viable parameter space for the phenomenol-
ogy on space-based interferometers, in complement to the
ground-based colliders.

More accurately, there exist indeed large theoreti-
cal uncertainties of GW peak amplitudes, mainly com-
ing from the renormalization scale dependence of our
finite-temperature effective potential Eq. (11) — see e.g.
[66, 67]. Varying the renormalization scale of a factor of 3
in terms of the benchmark set 2 (BM2), the peak ampli-
tude of which is near the limit of LISA, we emphasize the
detectability of our model in Fig. 6b. Although an over-
estimated O(103) uncertainty of the peak amplitude is
implied, most part of the uncertainty band of our bench-
mark 2 still falls in observable regions of LISA, BBO and
u-DECIGO. Since most of our points lie well within the
reach of future missions, this fact validates the potential
to test our model in these upcoming experiments.

Color Tp ↵ �/H �v/Tp �u/Tp

BM1 Red 46.36 1.23 124.50 5.47 1.86
BM2 Green 73.15 0.30 439.10 3.54 1.37
BM3 Blue 107.10 0.04 698.24 2.36 0.98

Table II: Phase transition parameters of three curves in
Fig. 6a. The percolation temperature Tp is given in

units of GeV.

Color m�̃ m⇡̃ mQ̃ YTC cos ✓ u

BM1 Red 785.4 239.9 591.8 2.85 0.884 207.9
BM2 Green 744.3 303.7 470.3 2.85 0.859 165.0
BM3 Blue 626.2 291.1 490.5 2.38 0.859 206.4

Table III: Model parameters of three curves in Fig. 6a.
The masses and VEV for the technisigma field u are

given in units of GeV.

V. CONCLUSIONS

We have studied the possible signatures for gravitational-
wave interferometers that are provided by the chiral-
symmetric technicolor model, where the global chiral
symmetry breaks down to a local chiral-symmetric stan-
dard model weak symmetry. Specifically, we have con-
sidered a model that accommodates a chiral-symmetric
(vector-like) technicolor scenario, involving a new sector
of technifermions in confinement that interact with the
standard model gauge bosons through vector-like gauge
couplings. The Higgs boson is accounted for as a separate
(fundamental or composite) scalar state, as for the stan-
dard model one-doublet. Nonetheless, the electro-weak
symmetry breaking can be originated dynamically by the
presence of the confined vector-like technifermion sector,
induced by the technifermion condensate at the techni-
confinement scale, if three orders of magnitude higher
than the electro-weak symmetry breaking scale in the
nearly conformal limit— see e.g. [29]. Thus, the model
encodes an effective standard model Higgs mechanism,
complemented with a dynamical electro-weak symmetry
breaking. In our work we have considered a more generic
case without near-conformal limit. The model is con-
sistent with electro-weak precision constraints and stan-
dard model like Higgs boson observations at the LHC,
in the limit of a small Higgs-technisigma mixing [29].
The model further predicts at the LHC energy scales the
existence of extra new lightest technihadron states, the
technipions and the technisigma, responsible for a rich
technicolor phenomenology, with detection prospects for
the new states, decay modes for technipion and the tech-
nisigma and technipion production cross-section previ-
ously discussed in [29], in which a physically reasonable
regions of the parameter space were individuated.

We have discovered rich patterns of phase transitions
induced by this model in the early Universe. More
importantly, in the experimentally allowed parameter
space, gravitational wave signals observable by forthcom-
ing gravitational interferometers with high SNR can be
generated. This allows the potential falsification of (a
vast region of the parameter space of) the CSTC model
with next-generation experiments, including LISA, BBO
and u-DECIGO. In fact, in the multi-messenger astron-
omy era, information coming from gravitational wave sig-
nals will remarkably strengthen the development of par-
ticle physics.
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No. m�̃ m⇡̃ mQ̃ YTC |cos ✓|
I [700, 750] [300, 350] [400, 450] [2.5, 3.0] [0.858, 0.887]
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corresponds to the lower branch in Fig. 4 and the upper one in

Fig. 5, while Interval II corresponds to the upper (and rather

thinner) branch in Fig. 4 and the lower one in Fig. 5. All masses

are in units of GeV.

Figure 5: Scatter plots showing signal-to-noise (SNR) ratio corre-

sponding to points detectable by LISA, with the color bar denoting

the percolation temperature. Two branches correspond to two dif-

ferent scans.

To demonstrate the opportunity to detect those cases
we find within LISA reach, we also show the signal-to-
noise (SNR) ratio for the mission duration of three years
corresponding to these cases in Fig. 5. Note that results
from two intervals in Tab. I also form two branches. The
colored contours represent the expected SNR values de-
pendent on Tp, g⇤ and vb, while the dashed grey contours
display the shock formation time. The grey shaded re-
gion highlights where the sound wave treatment is mostly
solid, with the acoustic period longer than a Hubble time.
Notably, nearly all points detectable by LISA feature a
promising SNR more than 10, with a significant fraction
of them even more than 1000. This fascinating fact in-
dicates the feasibility to test the CSTC model through
the LISA experiment. Last but not least, it is worth
mentioning that the peak amplitude, or the SNR, can be
slightly amplified for a given combination of a different
choice of physical parameters, as is revealed in Tab. I.

On the other hand, one may extract from a GW sig-
nals event detected the underlying phase transition pa-
rameters for the corresponding GW spectra. Besides the
bubble wall velocity vb, which is set above the Chapman-
Jouguet limit as in supersonic detonations, the percola-
tion temperature Tp, the strength of the phase transition
↵ and the inverse time-scale �/H are also required to be
estimated for GW spectra. From Fig. 5, we find that in
both branches, an increase in ↵ and a decrease in �/H

will lead to the enhancement of SNR, with a decline of
Tp as well. Indeed, this trend of changes in phase tran-

sition parameters also results in higher peak amplitudes
and smaller peak frequencies. Furthermore, as studied
in Ref. [12, 65], there exist remarkable degeneracies in
the determination of Tp, ↵ and �/H for a given GW
spectrum. Resorting to the help of the Fisher matrix
analysis, one could accurately determine combinations
of the aforementioned phase transition parameters and
significantly reduce their uncertainties even for values of
SNR greater than 20. Our results, featuring large SNR
even higher than 1000, are hence capable enough to no-
tably lower their relative uncertainties. In particular, it
is safe to assume values of the percolation temperature
Tp < 60GeV in order to obtain scatter points for the
phase transitions consistently with a SNR larger than
50.

(a) Benchmark GW spectra of the CSTC model. The red, green,

and blue curves represent benchmark set (BM) 1, 2, and 3 respec-

tively. Phase transition parameters and model parameters are given

in Tab. II and Tab. III.

(b) The theoretical uncertainty band of the GW spectrum of BM2

in Fig. 6a. The band shows the variation in the spectrum by varying

the renormalization scale by a factor of 3.

Figure 6: Benchmark GW spectra and their representative theo-

retical uncertainty of the CSTC model. Phase transition parame-

ters and model parameters are given in Tab. II and Tab. III.

In order to unveil the specific features of the GW spec-
tra predicted by the CSTC scenario, we choose three
benchmark sets and illustrate their GWs intensity spectra
in Fig. 6, along with the corresponding phase transition
parameters shown in Tab. II. For phenomenological pur-
poses, values of the model parameters are presented in
Tab. III as well. In Fig. 6a, benchmark set 1, 2 and 3 are

Uncertainties



Summary

• Primordial gravitational waves represent a complimentary 
source of information to the collider measurements 
 

• Combining collider constraints, future measurements (such 
as the triple Higgs coupling) with a possible observation of 
primordial GWs provides new opportunities for probing 
“simple” BSM scenarios such as scalar extensions and 
Technicolor


