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Stochastic GW backgrounds in the LISA band: brief recap
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—  [nstrumental noise
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— Power law SGWB signal

Power law with running SGWB signal

- Stochastic GW backgrounds of both astrophysical and ——  Gaussian bump SGWB signal

cosmological origin are predicted in the LISA band —— First order phase transition SGWB signal
1072 4

Galactic Binaries
» These signals appear effectively as an additional
source of noise in the detector

 We cannot measure the noise in LISA a la LIGO
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- We need to distinguish SGWB from instrumental

noise in the sensitive channels
» For the high SNR individual sources, it does not make a

big difference o
- Remember: LISA cannot use cross-correlation with

other detectors
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* Source: LISA Redbook and C. Caprine private conversation



15 pm/Hz/2

Metrology

Read-out

Laser noise
Clock noise
Spacecraft jitter
Tilt-to-Length

What does it mean LISA noise ?
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Free-falling
test mass

Actuation noise
Brownian noise

Stray Electrostatics Noise
Magnetic noise

Laser Pressure Noise
Temperature Force Noise
Gravitational Noise
TM-SC/MOSA coupling
Force Noise
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How to estimate the LISA noise ?
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Separation of instrumental noise
and stochastic backgrounds
requires assumptions

® \We use splines to model the noise uncertainty generic,
slowly varying, fluctuations in the PSD and CSD

e \We consider templates for SGWB

e \We look for optimal TDI combinations to do the analysis

(See M. Lilley talk)

S(F) = 8,100

O k are 13 equally spaced knots

O w are the weights

o 1 order of magnitude variation in the PSD/CSD

o fis the frequency

*Source: Muratore, Gair and Speri, in preparation
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Power law SGWB from sBHB binaries with SNR 43
with 4 years of data
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Power law with running (hon-standard inflation)
SNR 14 with 4 years of data
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First order phase transition with SNR 119 with 4

yvears of data
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Gaussian bump (primordial BHs generation) with
SNR 13 with 4 years of data
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SNR TDI A vs. 0 and
SNR TDI A vs. energy density
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Power law with running
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Conclusion and few Future activities
“caveats”

e Studying the case of un-modelled

SGWB (more likely PE precision will be

degradated
 Things are measurable as we are 9 )

allowing generic, slowly varying,

fluctuations in the PSD and CSD * Need a more flexible noise model: the

current model for the CSD (for instance)

would not be suitable to use when
e We have modelled SGWBs analysing the data

 Longer term plans is finding (and
« We don't know for sure that those

| | implementing) the best way to
assumptions are valid. So, would model noise uncertainties in the
be challenging to claim a

| framework of LISA data analysis and
detection of an SGWB. global fit
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Varying the prior uncertainty on the spline weights

Power law First order phase transition Power law and Foreground
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n n
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o To which accuracy we need to get to constrain the models (SNR =100) ?
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Measurement principle

Beam Propagation

from adjacent
optical bench 13
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Secondary noises in the TDI channels

Null channel
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We will not know the
iInstrumental noise

but generally we
can‘’establish”un
upper-bound
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Muratore et al. On the
effectiveness of null TDI
channels as instrument

noise monitors in LISA,
eprint : 2207.02138
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We can report a measured
spectral density in all
channels and translate that

into an upper limit on the
SGWB amplitude
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Pre-flight modelling
LISA Pathfinder: Modeled forces do

not fully explain noise
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Measured Noise
—— Actuation

Browian

Charge Fluctuations
—Stray Voltages
——Laser Pressure

' |

——IFQ Noise
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Various key parameters of the LISA noise (DC
residual forces, magnetic field gradients,
residual stray electrostatic fields, optical

alignments, among others), are all designed
to be ideally zero

but with uncertainties that make their residual
contribution both difficult to predict and

likely different among the different LISA TM
or optical readouts

Existing noise model consists of many
components which depend on physical

parameters which cannot be measured
directly (e.g., the Brownian

force noise or the optical interferometry shot
noise)



