

Primordial Gravitational Waves in non-Minimally Coupled Chromo-Natural Inflation

Martino Michelotti University of Groningen, Van Swinderen Institute

Based on: E. Dimastrogiovanni, M. Fasiello, MM, L. Pinol, 2023, arXiv:2303.10718

university of groningen

Background and perturbations evolution

CMB observables

Sourced background of primordial GWs

Outline

Natural inflation Freese, Frieman, Olinto, 1990 shift symmetry protects from large quantum corrections

Natural inflation Freese, Frieman, Olinto, 1990 shift symmetry protects from large quantum corrections

tension with CMB measurements

Natural inflation Freese, Frieman, Olinto, 1990 shift symmetry protects from large quantum corrections

tension with CMB measurements

additional friction from gauge fields

Anber, Sorbo, 2010

Chromo-natural inflation

Adshead, Wyman, 2012

blue-tilted and chiral GW signal

İS 2010 012

Natural inflation Freese, Frieman, Olinto, 1990 shift symmetry protects from large quantum corrections

tension with CMB measurements

additional friction from gauge fields

Anber, Sorbo, 2010

Chromo-natural inflation

Adshead, Wyman, 2012

blue-tilted and chiral GW signal

GW overproduction

further step is needed

See Matteo's talk...

İS 2010 012

first introduced in UV-protected natural inflation

$$\mathcal{L} = \frac{M_{\rm Pl}^2}{2}R - \frac{1}{2}\left(g^{\mu\nu} - \frac{G^{\mu\nu}}{M^2}\right)\partial_{\mu}\chi\partial_{\nu}\chi - V(\chi) - \frac{1}{4}F^{a\mu\nu}F^a_{\mu\nu} + \frac{\lambda\chi}{8f\sqrt{-g}}\epsilon^{\mu\nu\rho\sigma}F^a_{\mu\nu}F^a_{\mu\nu}F^a_{\mu\nu} + \frac{\lambda\chi}{8f\sqrt{-g}}\epsilon^{\mu\nu\rho\sigma}F^a_{\mu\nu}F^a_{\mu\nu}F^a_{\mu\nu}F^a_{\mu\nu} + \frac{\lambda\chi}{8f\sqrt{-g}}\epsilon^{\mu\nu\rho\sigma}F^a_{\mu\nu}$$

The model

Idea: non-minimal coupling with the Einstein tensor

first introduced in UV-protected natural inflation

$$\mathcal{L} = \frac{M_{\rm Pl}^2}{2}R - \frac{1}{2}\left(g^{\mu\nu} - \frac{G^{\mu\nu}}{M^2}\right)\partial_\mu\chi\partial_\nu\chi - V(\chi) - \frac{1}{4}F^{a\mu\nu}F^a_{\mu\nu} + \frac{\lambda\chi}{8f\sqrt{-g}}\epsilon^{\mu\nu\rho\sigma}F^a_{\mu\nu}F^a_{\mu\nu} + \frac{\lambda\chi}{8f\sqrt{-g}}\epsilon^{\mu\nu\rho\sigma}F^a_{\mu\nu}F^a_{\mu\nu}F^a_{\mu\nu}F^a_{\mu\nu} + \frac{\lambda\chi}{8f\sqrt{-g}}\epsilon^{\mu\nu\rho\sigma}F^a_{\mu\nu}F^a_$$

 M^{-2} : strength of non-minimal coupling $\longrightarrow M \rightarrow \infty$: chromo-natural limit

additional friction unrelated to GW production

The model

Idea: non-minimal coupling with the Einstein tensor

Background dynamics

$$\left(1 + \frac{3H^2}{M^2}\right) \ddot{\chi} + 3H \left(1 + \frac{3H^2}{M^2}\right) = 0$$

Background dynamics

Axion background:
$$\chi(t)$$
 gauge friction
$$\left(1 + \frac{3H^2}{M^2}\right) \ddot{\chi} + 3H \left(1 + \frac{3H^2}{M^2}\right) \dot{\chi} + V'(\chi) = -\frac{3g\lambda}{f} HQ^3$$

Gauge fie

eld background:
$$A_0^a = 0$$
, $A_i^a = \delta_i^a a(t)Q(t)$
 $\ddot{Q} + 3H\dot{Q} + 2H^2Q + 2g^2Q^3 = \frac{g\lambda}{f}\dot{\chi}Q^2$

additional friction from the non-minimal coupling if $\frac{H}{M} \gg 1$

In the limit $\frac{H}{M} \gg 1$

Gravitationallyenhanced friction dominating at large scales

Gauge friction increasing at later times

In the limit $\frac{H}{M} \gg 1$

Gravitationallyenhanced friction dominating at large scales

Gauge friction increasing at later times

long-enough inflation without GW overproduction

In the limit $\frac{H}{M} \gg 1$

Gravitationallyenhanced friction dominating at large scales

long-enough inflation without GW overproduction

Gauge friction increasing at later times

> sourced GWs at smaller scales

expectation: viable model with detectable GW signal

In the limit $\frac{H}{M} \gg 1$

Gravitationallyenhanced friction dominating at large scales

long-enough inflation without GW overproduction

Gauge friction increasing at later times

> sourced GWs at smaller scales

Chiral GW production

Constraints from CMB

Constraints from CMB

Sourced GWs $\propto \exp(m_Q)$

blue (and chiral) spectrum

Sourced GWs $\propto \exp(m_Q)$

detectable by future interferometers

blue (and chiral) spectrum

Sourced GWs $\propto \exp(m_Q)$

detectable by future interferometers

Very conservative bound on m_Q from backreaction

blue (and chiral) spectrum

Dimastrogiovanni et al. 2016 Ishiwata et al. 2022 Peloso, Sorbo, 2022

 $k \, [\mathrm{Mpc}^{-1}]$

(Weaker but still) conservative bound on m_Q

10

Conclusions

By means of the non-minimal coupling with gravity in CNI:

- GW overproduction avoided in a long-enough period of inflation *
- Distinct signature: blue and chiral GW spectrum (possibly detectable) *

Conclusions

- By means of the non-minimal coupling with gravity in CNI:
- GW overproduction avoided in a long-enough period of inflation *
- Distinct signature: blue and chiral GW spectrum (possibly detectable) *
 - In progress
- Full study of backreaction effects
- Perturbativity bounds and non-Gaussianity from higher-order correlators

Conclusions

- By means of the non-minimal coupling with gravity in CNI:
- GW overproduction avoided in a long-enough period of inflation *
- Distinct signature: blue and chiral GW spectrum (possibly detectable) *
 - In progress
- Full study of backreaction effects
- Perturbativity bounds and non-Gaussianity from higher-order correlators

Thank you for the attention!

Tensor perturbations

$$\partial_x^2 h_{L,R} + \left(1 - \frac{2}{x^2}\right) h_{L,R} = \frac{2\sqrt{\epsilon_E}}{x} \partial_x^2$$

$$\partial_x^2 t_{L,R} + \left[1 + \frac{2}{x^2} \left(m_Q \xi \mp x (m_Q + \xi)\right)\right]$$

Canonical normalization: $h_{L,R} \equiv$

 $_{x}t_{L,R} + \frac{2\sqrt{\epsilon_B}}{x^2} \left(m_Q \mp x\right) t_{L,R}$

 $)) \bigg] t_{L,R} = -\frac{2\sqrt{\epsilon_E}}{x} \partial_x h_{L,R}$ $+\frac{2}{r^2}\left[(m_Q \mp x)\sqrt{\epsilon_B} + \sqrt{\epsilon_E}\right]h_{L,R}$

 $h_{L,R} \equiv \frac{aM_{\rm Pl}}{2} \left(h_{+} \pm ih_{\times}\right) \qquad t_{L,R} \equiv a \left(t_{+} \pm it_{\times}\right)$

Gauge-field background evolution

Effective potential:

 $V_{\text{eff}}(Q) = H^2 Q^2 - \frac{g\lambda\mu^4}{27f^2H} \frac{M^2}{H^2} \sin\frac{\chi}{f} Q^3 + \frac{g^2}{2}Q^4$

Perturbations

Canonical quantization: $\hat{\Delta}$

Equations of motion:

$$\begin{array}{l} \text{Metric tensors} \\ \delta g_{ij} \supset h_{ij} \longrightarrow h_{L,R} \end{array}$$

$$\begin{array}{l} \text{Gauge-field tensors} \\ \delta A_i^a \supset t_{ia} \longrightarrow t_{L,R} \end{array}$$

$\hat{\Delta}_a(\tau, \mathbf{k}) = \mathcal{D}_{a\alpha}(\tau, k)\hat{a}_\alpha(\mathbf{k}) + \mathcal{D}^*_{a\alpha}(\tau, k)\hat{a}^\dagger_\alpha(-\mathbf{k})$

$\mathcal{D}'' + 2K\mathcal{D}' + \left(\Omega^2 + K'\right)\mathcal{D} = 0$