Nikolaos Karnesis **Aristotle University of Thessaloniki** karnesis@auth.gr

10th LISA Cosmology Working Group Workshop, June 2023

A review on the astrophysical stochastic gravitational wave signals in the LISA band

CONSORTIUM

Stochastic signals of Astrophysical origin Important, because

- They will give us a lot of information about underlying population models.
- Challenge data analysis effort
 - Contribute to the noise, affect total noise knowledge.
- Complicates the search for signals of Cosmological origin.

- We will make a summary of what we expect for LISA.
- Discuss possible implications to Data Analysis.

arxiv:1702.00786

So, LISA signal dominated, and here is a list of potential sources:

- Compact Galactic binaries (GBs)
- Stellar Origin Black Hole binaries (SOBHBs)
- Supermassive Black Hole Binaries (SMBHBs)
- Extreme Mass Ratio Inspirals (EMRIs)
- Cosmological signals.

How to get down to the residuals? Simulate both the population signals & LISA data analysis. For different types of astrophysical sources we need to

- 1. Get the different population models.
- 2. Simulate wave-forms in the LISA band.
- 3. Perform data analysis, and get resolved sources and stochastic signals.

Global fit A necessary scheme for LISA data analysis

- Many types of sources.
- Iterate among them, try to search in the data.
- Pass residuals around
- Update our instrument knowledge.

Littenberg+ 2021

Global fit A necessary scheme for LISA data analysis

- Many types of sources.
- Iterate among them, try to search in the data.
- Pass residuals around
- Update our instrument knowledge.

- So far we are based to matched filtering, and costly MCMC algorithms.
- Forbid us from exploring scenarios of different populations yielding stochastic signals.

Q. Baghi: LISA data analysis: from measurements to discoveries

O Hartig: On the effectiveness of null TDI channels as instrument noise monitors in LISA

M Muratore: Impact of the noise knowledge uncertainty for the science exploitation of cosmological and astrophysical stochastic gravitational wave background with LISA

M Lilley: Stochastic gravitational wave background reconstruction for a non-equilateral and unequal-noise LISA constellation

R Rosati: Recovering Primordial Stochastic Gravitational Wave Backgrounds in the LISA Global Fit

H Inchauspé: Doppler-boosted anisotropies of SGWB and LISA: a lever of separation from instrumental and confusion noise.

"Simulating" the Data Analysis of LISA

Instead we can "simulate" the LISA data analysis... Using a scheme based on simple SNR criteria.

- Iterative process, "loose" criteria about the detection of each source, i.e. a SNR limit.
- Basically loop over the known catalogue.

• For example, we define a SNR0, for which if a given source surpasses it, then we subtract it.

NK+ 2021, Digman & Cornish 2022 S Nissanke+ 2011 Crowder & Cornish 2007 Timpano+ 2006

Instead we can "simulate" the LISA data analysis... Using a scheme based on simple SNR criteria.

- Iterative process, "loose" criteria about the detection of each source, i.e. a SNR limit.
- Basically loop over the known catalogue.
- Fast.
- Generic! Applicable to virtually any type of source (being careful though)
- Idealized:

No source overlap problem.

Perfect subtraction residuals.

Noise is ideal as well.

• For example, we define a SNR0, for which if a given source surpasses it, then we subtract it.

NK+ 2021, Digman & Cornish 2022 S Nissanke+ 2011 Crowder & Cornish 2007 Timpano+ 2006

Pros and cons of this method

- **Fast & Generic.**
- Can combine multiple populations from source types.
- Has drawbacks, i.e. Idealized (unrealistic noise & simplifying assumptions).
- Improvements have been proposed [Digman & Cornish 2022].

A. Compact Galactic Binaries

A.O. On the Galactic binaries

- Compact binaries with orbital period ~<1 hr.
- Mostly WD-WDs, but other objects there as well!
- Multi-messenger laboratories.
- Potential Triplets detections. [Danielski+ 2019, Tamanini & Danielski 2019, Katz+ 2022]

A.1. On DWDs

- Depending on the population model, we resolve O(10⁴) sources.
- More data resolvable sources.
- Cyclo-stationary stochastic signal.
- Main reason we need the global fit!
- Spectral shape: information about properties of Galaxy, and its evolution history.
- Background from Extragalactic WD binaries?
 [Korol+ 2020, Farmer & Phinney 2003]

A.1. On DWDs

Very important: Spectral shape depends on the underlying population model!

Spectral shape depends on population!

A.1. On DWDs

about the population properties.

$$p(\vec{\theta}, \vec{\beta} | d) =$$

Use resolved sources and a hierarchical Bayesian analysis to get information

N. Karnesis, AUTh, 10th LISA Cosmology WG Workshop

B. Stellar-mass Black Holes

- LVK data has already given us a plethora of such sources.
- This is a good starting point for extrapolating to LISA.
- What we can to then is
 - 1. Take the given population model(s)
 - 2. Estimate the confusion signal of LISA, given the uncertainties from LVK.
 - 3. Do a forecast on the resolvable sources.

- Two ways to actually get an estimate of the foreground signal
 - 1. Analytically
 - 2. Numerically

Two ways to actually get an estimate of the foreground signal

1. Analytically

2. Numerically

$$\Omega_{\rm GW}(f)h^2 = \frac{8\pi^{5/3}}{9} \frac{h^2}{H_0^2} f^{2/3} \int_0^\infty \mathrm{d}\mathcal{M}p(\mathcal{M}(m_1, m_2)) \,\mathcal{M}^{5/3} \int_0^\infty \mathrm{d}R(z) \frac{(1+z)^{2/3}}{H(z)}$$

Babak+, <u>arXiv:2304.06368</u>, 2023 E. S. Phinney, 2001

Two ways to actually get an estimate of the foreground signal

1. Analytically

2. Numerically

And the population details tune the amplitude.

Babak+, <u>arXiv:2304.06368</u>, 2023 E. S. Phinney, 2001

 $\Omega_{
m GW}(f)h^2 \propto f^{2/3}$

Two ways to actually get an estimate of the foreground signal

1. Analytically

2. Numerically

And the population details tune the amplitude.

Babak+, <u>arXiv:2304.06368</u>, 2023 E. S. Phinney, 2001

N. Karnesis, AUTh, 10th LISA Cosmology WG Workshop

 $\Omega_{\rm GW}(f)h^2 \propto f^{2/3}$

Perigois+ 2022 Phinney 2001 Sesana+ 2016 Perigois+ 2021

• Two ways to actually get an estimate of the foreground signal

1. Analytically

2. Numerically

- Two ways to actually get an estimate of the foreground signal
 - 1. Analytically

2. Numerically

- Choose an observational time (4 years).
- Simulate catalogues (up to a z maximum, for practical reasons).
- Use PhenomHM waveforms.
- scheme.

Set an SNR threshold for the detectable sources, and follow the iterative

Two ways to actually get an estimate of the foreground signal

1. Analytically

2. Numerically

N. Karnesis, AUTh, 10th LISA Cosmology WG Workshop

How detectable will this stochastic signal be with LISA?

How detectable will this stochastic signal be with LISA?

$P_{25}: 5.65 \stackrel{+0.21}{_{-0.19}} \times 10^{-13}$	$ P_{75} : 11.5 + 0.21 \times 10^{-13}$
$7 \cdot 7 \circ 7 + 0.21 \times 10^{-13}$	$D \cdot 20 4 + 0.2 \times 10 - 13$

How detectable will this stochastic signal be with LISA?

B. On the stellar-mass black holes Babak+, <u>arXiv:2304.06368</u>, 2023 How detectable will this stochastic signal be with LISA?

•What about the detectable sources?

C. ENRIS

D. On Extreme Mass Ratio Inspirals

- From Bonetti & Sesana 2020 it was already shown that for some population models, we could expect a stochastic signal.
- Using simplified waveform models, estimated SNR for each harmonic.

	Mass	MBH	Cusp	M – σ		CO		EMRI ra
Model	function	spin	erosion	relation	N_{p}	mass $[M_{\odot}]$	Total	Detected
M1	Barausse12	a98	yes	Gultekin09	10	10	1600	29
M2	Barausse12	a98	yes	KormendyHo13	10	10	1400	22
M3	Barausse12	a98	yes	GrahamScott13	10	10	2770	80
M4	Barausse12	a98	yes	Gultekin09	10	30	520	26
M5	Gair10	a98	no	Gultekin09	10	10	140	4
M6	Barausse12	a98	no	Gultekin09	10	10	2080	47
M7	Barausse12	a98	yes	Gultekin09	0	10	15800	27
M8	Barausse12	a98	yes	Gultekin09	100	10	180	3
M9	Barausse12	aflat	yes	Gultekin09	10	10	1530	21
M10	Barausse12	a0	yes	Gultekin09	10	10	1520	18
M11	Gair10	a0	no	Gultekin09	100	10	13	-
M12	Barausse12	a98	no	Gultekin09	0	10	20000	42

D. On Extreme Mass Ratio Inspirals

- We do as before! Simulate the population and LISA Data Analysis!
- Use the Augmented Analytic Kludge with 5PN trajectory model.
 - FEW package, [Katz+ 2021].
- Simulated all catalogues.
- Accelerate procedure: Leave out very weak signals (contribute to % level)
- Again, adopting an observation duration of 4 years, and
- assuming that sources with SNR>20 will be detectable.

D. On Extreme Mass Ratio Inspirals

D. Massive Black Holes

C. On the massive black holes

- To check this type of sources, we first need to consider the different population synthesis models
 - Pop III: adopts the light seeds scenario, while implementing a delay between when two host galaxies merge and when their MBHs merge.
 - Q3d: adopts the heavy seeds scenario, while also implementing a delay to merge MBHs after their host galaxies merged.
 - Q3nd: is similar to Q3d, but with no delay between the host galaxy mergers and MBH mergers.
- We do as before! Simulate the population and LISA Data Analysis!

N. Karnesis, AUTh, 10th LISA Cosmology WG Workshop

Thesis of D. Langeroodi Klein+ 2016, Sesana+ 2014, Barausse+ 2012

C. On the massive black holes

N. Karnesis, AUTh, 10th LISA Cosmology WG Workshop

Thesis of D. Langeroodi

E. Adding everything together

(not cosmological signals though)

- Non-stationary (cyclo-stationary)
- Anisotropic
- Dominating below ~ 0.3 mHz
- Particular spectral shape

- Non-stationary
- "Pop-corn" like
- Its existence to be proven

- Stationary
- Isotropic
- Good prior on the amplitude and spectral shape.

- A lot of unknowns
- Just plotting here the most "optimistic" model

- On top of those we should add the instrumental noise properties!
- Non-stationarities: glitches, gaps, slow variations.
- Assess our level of knowledge on
 - The spectral shape
 - Overall budget (above and below!)

- analysis.
- We will have potential stochastic components across the band.
- This will bring implications to Data Analysis, and to the global fit.
- We need to prepare accordingly!
- noise modeling techniques, [see work reported in this meeting])

 Disclaimer: all these results are retrieved by assuming independent analysis for all types of sources. Future -more realistic- work should focus on a global

Already a lot of advancements (null channels, global fit algorithms,

Έξτρα ματέριαλ

