Sebastien Clesse (ULB, Brussels) on behalf of the LISA-CosWG PBH group

PrimBHoles

A public code for the computation of PBH abundances and GW signatures

Stavanger, LISA-CosWG meeting, 5-10 June 2023

- 1. Growth of interest in PBHs
- 2. Multi-disciplinary problem **One cannot be expert in all aspects**
- 3. Demand for the most recent prescriptions No need to re-invent the wheel...
- 4. PBHs may exist !
- 5. Two 'unambiguous' ways to prove that PBHs exist: observing subsolar or high-z black holes
- 6. LISA can do both and probe PBHs from 1g to 1 000 000 Msun with 10 different signals

- 1. Growth of interest in PBHs
- 2. Multi-disciplinary problem **One cannot be expert in all aspects**

- 1. Growth of interest in PBHs
- 2. Multi-disciplinary problem **One cannot be expert in all aspects**

- 1. Growth of interest in PBHs
- 2. Multi-disciplinary problem **One cannot be expert in all aspects**
- 3. Demand for the most recent prescriptions No need to re-invent the wheel...

- 1. Growth of interest in PBHs
- 2. Multi-disciplinary problem One cannot be expert in all aspects
- 3. Demand for the most recent prescriptions No need to re-invent the wheel...
- 4. PBHs may exist !
- Two 'unambiguous' ways to prove that PBHs exist: observing subsolar or high-z black ho
- 6. LISA can do both! and probe PBHs from 1g to 1 000 000 with 10 different signals

6

- 1. Growth of interest in PBHs
- 2. Multi-disciplinary problem One cannot be expert in all aspects
- 3. Demand for the most recent prescriptions No need to re-invent the wheel...
- 4. PBHs may exist !
- 5. Two 'unambiguous' ways to prove that PBHs exist: observing subsolar or high-z black holes
- LISA can do both! and probe PBHs from 10 kg to 10⁸ M_☉ with 12 different signals

1. A modular code/toolbox

- 1. A modular code/toolbox
- 2. for end-to-end computations of PBH GW signatures

- 1. A modular code/toolbox
- 2. for end-to-end computations of PBH GW signatures
- 3. developed by a team of 20 PBH experts,
- 4. based on PBH living review

- 1. A modular code/toolbox
- 2. for end-to-end computations of PBH GW signatures
- 3. developed by a team of 20 PBH experts,
- 4. based on PBH living review
- 5. with pre-implemented models and scripts

- 1. A modular code/toolbox
- 2. for end-to-end computations of PBH GW signatures
- 3. developed by a team of 20 PBH experts,
- 4. based on PBH living review
- 5. with pre-implemented models and scripts
- 6. well documented and up-to-date

- 1. A modular code/toolbox
- 2. for end-to-end computations of PBH GW signatures
- 3. developed by a team of 20 PBH experts,
- 4. based on PBH living review
- 5. with pre-implemented models and scripts
- 6. well documented and up-to-date

- 1. A modular code/toolbox
- 2. for end-to-end computations of PBH GW signatures
- 3. developed by a team of 20 PBH experts,
- 4. based on PBH living review
- 5. with pre-implemented models and scripts
- 6. well documented and up-to-date
- 8. easy to install, to use and to modify

How PrimBHoles WO

Primordial cu (Power spectrun

		External code
rke 7		PBH the
INJ i		GW obser
n, non-Gaussian tail)	Fluct. Model	

Primordial curvature fluctuations

Parameters defined in: user params (Poyer spectrum, non-Gaussian tail...) File: power_spectrum.py, Mother class: PS Base Daughter classes: specific models

- 1. Gaussian curvature fluctuations P(k)
 - A. Amplitude + spectral index + running
 - **B.** Log-normal (hybrid inflation)
 - C. Gaussian
 - **D.** Broken power law
 - E. Others (axion, multi-field,...)
 - F. From file or external method
- 2. Non-Gaussian curvature fluctuations PDF
 - A. Non-gaussian tail (critical higgs inflation)
 - **B.** From file or external method
- 3. Plots

10^{-2} 10^{-4} $\overset{(\mathcal{A})}{\smile}_{10^{-6}}$

External codes or file

PBH theory

Parameters defined in: user params.py File: threshold.py and abundance.py Mother classes: ClassDeltaCritical, CLASS abundance Daughter classes: specific models

1. Overdensity threshold

- A. Single fixed value
- B. Elaborated algorithm from Musco et al.
- C. Thermal history (from file)
- **D.** From file or external method
- 2. **PBH** initial abundance
 - E. Standard (naive) calculation
 - F. More elaborated methods
 - G. Non-Gaussian models
 - H. From file or external method
- 3. f_{PBH} and mass function + iterative method
 - **Standard calculation**
 - Effect of accretion on PBH mass

4. Plots

 $m_{PBH}[M_{\odot}]$

Choice of probes defined in: bounds params.pyuvature fluctuations One data file + python dictionary entry, for each probe File: bounds.py

1. Read the necessary files with PBH constraints (monochromatic case) 10^{-2} 2. Make Plot(s) 3. include PBH evidence ?

> $f_{\rm PBH}(M)$ 10^{-6}

> > 10^{-8}

Choice of probes defined in: bounds params.pyuvature fluctuations One data file + python dictionary entry, for each probe File: bounds.py

1. Read the necessary files with PBH constraints (monochromatic case) 2. Make Plot(s) 3. include PBH evidence ?

 $f_{\rm PBH}(M)$

Choice of probes defined in: bounds params.pyuvature fluctuations One data file + python dictionary entry, for each probe File: bounds.py

1. Read the necessary files with PBH constraints (monochromatic case)

- 2. Make Plot(s)
- 3. Include PBH evidence ?

Merger Rate for early binaires (formed before recombination)

Parameters defined in: user_params.pyimordial curvature fluctuations

File: merger_rates.py

Mother classes: MergerRates

Daughter classes: specific models

- 1. Rate of early binaires
 - A. Standard formula
 - B. Rate suppression factors (different models)

2. Rate of late binaries (in clusters)

- C. Standard formula
- D. Rate enhancement (Poisson clustering)
- E. Redshift dependence
- F. Three-body capture

3. Rate of hyperbolic encounters

4. Plots

Overde The PBH in fPBH and External codes or file

PBH theory

GW observable

Merger Rate for early binaires (formed before recombination)

20

When will PrimBHoles be released?

A few months after the living review (October 2023...)

Perspective: interface with other (LISA) codes