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Observational Evidence for Primordial Black Holes

Figure 38. PBH mass function with peaks induced by the thermal history of the Universe (thick, dashed curve;
cf. Ref. [34]). Figure includes the same pieces of positive evidence for PBHs as in Fig. 1. Also included, as a
comparison, are various monochromatic constraints on fPBH(M) (light-shaded regions), taken from Ref. [371].

D. Comparing Evidence with Thermal-History Model

In Figs. 1 and 38, we have indicated the PBH mass and dark matter fraction required to explain the

various type of observational evidence discussed in this review. We now explain the derivation of these

regions in more detail, considering the lensing, dynamical and GW arguments in turn. However, just

as for PBH constraints, all these estimates are based on various assumptions and subject to significant

uncertainties. In particular PBH properties (such as mass function, clustering etc.) can modify the

di↵erent regions. Unless indicated otherwise, we assume a monochromatic PBH mass function.

PBH dark matter fraction from lensing evidence. We have estimated the PBH dark matter

fraction for six types of lensing evidence in the following way:

• For HSC, we have reinterpreted the limits of Ref. [96]. Instead of assuming no detection, we have

computed the 2� confidence intervals for fPBH assuming that one PBH microlensing event was

observed. The limit is identified with a band using simple Poisson statistics. All the assumptions

are therefore identical to those of Ref. [96].

• For OGLE, we show the 2� allowed region provided in Fig. 8 of Ref. [93], combining the OGLE

confidence region with the HSC exclusion region.

– 76/108 –
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Primordial curvature fluctuations
(Power spectrum, non-Gaussian tail…) Model

Parameters defined in:  user_params.py 
File:  power_spectrum.py,  
Mother class:  PS_Base 
Daughter classes:  specific models 

1. Gaussian curvature fluctuations - P(k) 
A. Amplitude + spectral index + running 
B. Log-normal (hybrid inflation)  
C. Gaussian 
D. Broken power law 
E. Others (axion, multi-field,…) 
F. From file or external method 

2. Non-Gaussian curvature fluctuations - PDF 
A. Non-gaussian tail (critical higgs inflation) 
B. From file or external method 

3.  Plots 
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Primordial curvature fluctuations Fluct. Model

External codes or file

PBH theory

GW observable

Overdensity threshold, 
Thermal history

PBH initial abundance,
fPBH and mass function(z),

Threshold model,    
Modified thermal history          

PBH formation model

Parameters defined in:  user_params.py 
File:  threshold.py and abundance.py  
Mother classes:  ClassDeltaCritical, CLASS_abundance 
Daughter classes:  specific models 
1. Overdensity threshold 

A. Single fixed value 
B. Elaborated algorithm from Musco et al. 
C. Thermal history (from file) 
D. From file or external method 

2. PBH initial abundance 
E. Standard (naive) calculation 
F. More elaborated methods 
G. Non-Gaussian models 
H. From file or external method 

3. fPBH and mass function + iterative method 
I. Standard calculation  
J. Effect of accretion on PBH mass 

4. Plots

Figure 12. PBH density fraction at formation �form (left panel) and the corresponding PBH mass
function fPBH today (right panel), neglecting the e↵ects of PBH growth by accretion and hierarchical
mergers, for two models with a power-law primordial power spectrum and including the e↵ects of thermal
history: Model 1 from [67, 71] with spectral index ns = 0.97; Model 2 from [128, 132] with ns = 1. and
a cut-o↵ mass of 10�14M�. The transition between the large-scale and small-scale power spectrum is
fixed at k = 103Mpc�1. The power spectrum amplitude is normalized such that both models produce an
integrated PBH fraction fPBH = 1, i.e. PBH constitute the totality of Dark Matter. A value of � = 0.8
(ratio between the PBH mass and the Hubble horizon mass at formation) was assumed. Figure produced
for [360].

Figure 13. Comparison of the expected PBH mass function for a power-law primordial power spectrum
with spectral index ns = 0.965/0.97/0.975 (blue, red and green curves, respectively) and an amplitude
fixed to get an integrated fraction fPBH = 1, including the e↵ects on the threshold from the thermal
history with (solid curves) or without (dashed curves) taking the time and radial variations of the
equation-of-state in the simulations, during the PBH formation process. Figure from [73].

here we discuss two new e↵ects that complement the modulation of threshold introduced in
the previous section. Focusing on the solar mass range, we will discuss the modification of
the relation between the density contrast and the curvature perturbation induced by a time
variation of the equation of state, as well as a modified critical collapse scaling. While the
former reduces the impact of the threshold reduction, the latter induces a pile-up e↵ect around
the solar mass that enhances the QCD peak.

When the equation-of-state is not constant, Eq. (3.4) is modulated by an overall factor
�(t), which we can define in the long wavelength approximation as [84]

�⇢

⇢b
(r, t) = �4

3
�

✓
1

aH

◆2

e�5⇣(r)/2r2e⇣(r)/2. (3.46)
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Primordial curvature fluctuations Fluct. Model
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PBH theory

GW observable
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fPBH and mass dist(z),
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PBH formation model

Constraints on PBH 
abundance

Choice of probes defined in:  bounds_params.py 
One data file + python dictionary entry, for each probe 
File:  bounds.py  
1. Read the necessary files 
with PBH constraints (monochromatic case) 
2. Make Plot(s) 
3. include PBH evidence ?

Figure 40. Zooms over some claimed limits on the PBH abundance fPBH for a monochromatic distribu-
tion of mass mPBH, in the asteroid-mass range where constraints are dominated by various probes of PBH
Hawking evaporation (top panel), in the planetary-mass and low stellar-mass range up to mPBH ⇠ 10M�
coming from microlensing surveys (middle panel), and in the range from stellar-mass up to the supermas-
sive PBHs, from a combination of accretion, dynamical, GW and indirect constraints (bottom panel).
The legend indicates the origin of each represented limit. It is worth noticing that all those limits are
subject to important uncertainties and can be highly model dependent, moving up and down with dif-
ferent model and astrophysical assumptions. The possible limitations and sources of uncertainties are
discussed in the text.
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Parameters defined in:  user_params.py 
File:  merger_rates.py 

Mother classes:  MergerRates 
Daughter classes:  specific models 
1. Rate of early binaires 

A. Standard formula 
B. Rate suppression factors (different models) 

2. Rate of late binaries (in clusters) 
C. Standard formula 
D. Rate enhancement (Poisson clustering) 
E. Redshift dependence  
F. Three-body capture  

3. Rate of hyperbolic encounters 

4. Plots

Model 1: Carr 2019, ns = 0.97

Model 2: De Luca 2020, ns = 1

Figure 21. Expected merging rates of PBH of masses m1 and m2, for the two mass models represented
on Fig. 12 (top panels: Model 1, bottom panels: Model 2), for the two considered binary formation
channel: primordial binaries (see Eq. 4.1) on the left panels, and tidal capture in halos (see Eq. 4.9) on
the right panels. Figure produced for [360].

7. PBH clustering at formation may either boost or suppress the merger rates of early bi-
naries, but this e↵ect is very model dependent and still debated (see e.g. [414–416] for
di↵erent models and conclusions).

8. It has recently been claimed in [417] that subtle general relativistic e↵ects may highly
suppress this PBH binary formation channel, but this result has been disputed in [400,
418, 419]. This problem is related to the question of which metric is physically relevant
to describe the PBH environment (Takhurta metric, generalized Mc-Vittie, other).

In general, one should not forget that early binaries can be impacted by their environment
during the whole cosmic history, and this environment has a complex evolution, influenced by
the clustering after matter-radiation equality, accretion, dynamical heating, etc. Therefore one
should be cautious and strong claims relying on these merging rates are probably still premature.
Nevertheless, Eq. 4.1 likely gives good estimations for some models, at least in some regimes.
To that end, they are relevant for estimating not only the merging rates but also the resulting
SGWB background, based on our current (but rapidly evolving) knowledge.

4.2 Late Binaries

4.2.1 General formula

The second binary formation channel is through dynamical capture in dense environments.
We will give a particular emphasis to the case in which PBHs comprise the totality of the
dark matter in the universe and investigate the dynamical formation in dense PBH halos. As

– 51 –
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A few months after the living review 
(October 2023…) 

Perspective:  interface with other (LISA) codes


