LENSING OF GRAVITATIONAL WAVES

Macarena Lagos

mul'GRAVITATIONAL LENSING

mul'GRAVITATIONAL LENSING

EM Lensing

- Probe Dark Matter
- Measure H_{0}
- See farther/lighter objects
- Exoplanets
- Primordial BHs

myl'GW LENSING

mul'GW LENSING

Main parameters of interest: b, M_{L}, λ

mul|LENSING LANDSCAPE

Geometric Optics

$$
\lambda \ll M_{L}
$$

mul|LENSING LANDSCAPE

mulLENSING LANDSCAPE

mulLENSING LANDSCAPE

mull $\operatorname{LENSING~LANDSCAPE~}$

> Wave Optics $\lambda \sim M_{L}$

mwl'GW STRONG LENSING

(c) HE 0435-1223

mwl'GW STRONG LENSING

(c) HE 0435-1223

- Events: up to a few in LISA [Sereno+2010] (vs ~100 with ET/CE)

mwl'GW STRONG LENSING

(c) HE 0435-1223

- Events: up to a few in LISA [Sereno+2010] (vs ~100 with ET/CE)
- Science:

mwl'GW STRONG LENSING

(c) HE 0435-1223

- Events: up to a few in LISA [Sereno+2010] (vs ~100 with ET/CE)
- Science:
- DM distribution

mwl'GW STRONG LENSING

(c) HE 0435-1223

- Events: up to a few in LISA [Sereno+2010] (vs ~100 with ET/CE)
- Science:
- DM distribution
- HO constraints [Sereno+2011; Hannuksela+ 2020; Wempe+2022]

myl'GW STRONG LENSING

(c) HE 0435-1223

- Events: up to a few in LISA [Sereno+2010] (vs ~100 with ET/CE)
- Science:
- DM distribution
- HO constraints [Sereno+2011; Hannuksela+ 2020; Wempe+2022]
- Better localization and polarization (combine multiple time-delayed events) [Hannuksela+2020; Goyal+2020]

myl'GW STRONG LENSING

(c) HE 0435-1223

- Events: up to a few in LISA [Sereno+2010] (vs ~100 with ET/CE)
- Science:
- DM distribution
- HO constraints [Sereno+2011; Hannuksela+ 2020; Wempe+2022]
- Better localization and polarization (combine multiple time-delayed events) [Hannuksela+2020; Goyal+2020]
- Phase shift signature creates distortions for unequal mass ratios (IMRs, EMRIs) [Dai+2007; Ezquiaga, Holz, Hu, Lagos+2020; Wang+2021; Vijaykumar+2022]

mul|'GW WEAK LENSING

mul|'GW WEAK LENSING

- Single image with small magnification: $d_{L}^{\text {obs }}=d_{L}\left(z ; H_{0}, \Omega_{m}\right) \times(1-\kappa)$

mul|'GW WEAK LENSING

- Single image with small magnification: $d_{L}^{\text {obs }}=d_{L}\left(z ; H_{0}, \Omega_{m}\right) \times(1-\kappa)$
- $\kappa<1$ traces LSS matter distribution

mull'GW WEAK LENSING

- Single image with small magnification: $d_{L}^{\text {obs }}=d_{L}\left(z ; H_{0}, \Omega_{m}\right) \times(1-\kappa)$
- $\kappa<1$ traces LSS matter distribution
- Ideal case: GW distances with angular correlations $+z$ [Cutler+2009; Shang+2010, Congedo+2019; Mpetha+ 2022]

mull'GW WEAK LENSING

mull'GW WEAK LENSING

- Independent measurement with less systematics

mul'GW WEAK LENSING

- Independent measurement with less systematics

mul'GW WEAK LENSING

- Independent measurement with less systematics
- Challenge: needs large number of sources, good distance, sky and z information

mul'GW WEAK LENSING

- Independent measurement with less systematics
- Challenge: needs large number of sources, good distance, sky and z information
- Used in complementary way to EM

mul'GW WEAK LENSING

- Independent measurement with less systematics
- Challenge: needs large number of sources, good distance, sky and z information
- Used in complementary way to EM
- It is a bias for low number of sources

mul|'GW MICROLENSING

- Frequency-dependent distortions when $\lambda \sim M_{L}$ [Takahashi+2003]

mul|'GW MICROLENSING

- Frequency-dependent distortions when $\lambda \sim M_{L}$ [Takahashi+2003]
- Ground: $M_{L} \sim 10-10^{3} M_{\odot}$
- LISA: $M_{L} \sim 10^{6}-10^{8} M_{\odot}$

mull'GW MICROLENSING

- Up to 2\% mergers with detectable distortions by low-mass DM halos in CDM [Gao+ 2022]

mull'GW MICROLENSING

- Up to 2\% mergers with detectable distortions by low-mass DM halos in CDM [Gao+ 2022]
- Challenge: realistic lens models and LoS structures

mull'GW MICROLENSING

- Up to 2% mergers with detectable distortions by low-mass DM halos in CDM [Gao+ 2022]
- Challenge: realistic lens models and LoS structures
- Does not need high alignment: $b / R_{E} \sim \mathcal{O}(10)$ [Gao+ 2022, Caliskan+2022]

mull'GW MICROLENSING

- Up to 2% mergers with detectable distortions by low-mass DM halos in CDM [Gao+ 2022]
- Challenge: realistic lens models and LoS structures
- Does not need high alignment: $b / R_{E} \sim \mathcal{O}(10)$ [Gao+ 2022, Caliskan+2022]
- Different for individual strongly-lensed images [Tambalo+2023]

mulLISA LENSING OUTLOOK

mwllisA LENSING OUTLOOK

- Probe DM from large to small scales
- GWs lensing is free of many astrophysical systematics

mwllisA LENSING OUTLOOK

- Probe DM from large to small scales
- GWs lensing is free of many astrophysical systematics
- To Do:
- Prepare joint EM analyses
- Quantify realistic weak lensing constraints with EM

mwllisA LENSING OUTLOOK

- Probe DM from large to small scales
- GWs lensing is free of many astrophysical systematics
- To Do:
- Prepare joint EM analyses
- Quantify realistic weak lensing constraints with EM
- Use realistic lenses

mwllisA LENSING OUTLOOK

- Probe DM from large to small scales
- GWs lensing is free of many astrophysical systematics
- To Do:
- Prepare joint EM analyses
- Quantify realistic weak lensing constraints with EM
- Use realistic lenses
- Advantages of individual strong-lensed signals

mwllisA LENSING OUTLOOK

- Probe DM from large to small scales
- GWs lensing is free of many astrophysical systematics
- To Do:
- Prepare joint EM analyses
- Quantify realistic weak lensing constraints with EM
- Use realistic lenses
- Advantages of individual strong-lensed signals
- Other signatures-e.g. polarization in microlensing [Cusin, Lagos+2020; Andersson+2021; Dahal+2021; Dalang, Cusin, Lagos 2022; Oancea+2022]

mwllisA LENSING OUTLOOK

- Probe DM from large to small scales
- GWs lensing is free of many astrophysical systematics
- To Do:
- Prepare joint EM analyses
- Quantify realistic weak lensing constraints with EM
- Use realistic lenses
- Advantages of individual strong-lensed signals
- Other signatures-e.g. polarization in microlensing [Cusin, Lagos+2020; Andersson+2021; Dahal+2021; Dalang, Cusin, Lagos 2022; Oancea+2022]
- Use for tests of GR [Ezquiaga, Zumalacarregui+2020; Dalang+2021; Goyal+2023]

mwllisA LENSING OUTLOOK

- Probe DM from large to small scales
- GWs lensing is free of many astrophysical systematics
- To Do:
- Prepare joint EM analyses
- Quantify realistic weak lensing constraints with EM
- Use realistic lenses
- Advantages of individual strong-lensed signals
- Other signatures-e.g. polarization in microlensing [Cusin, Lagos+2020; Andersson+2021; Dahal+2021; Dalang, Cusin, Lagos 2022; Oancea+2022]
- Use for tests of GR [Ezquiaga, Zumalacarregui+2020; Dalang+2021; Goyal+2023]
- More pressing questions?

mw ll LISA LENSING OUTLOOK

- Probe DM from large to small scales
- GWs lensing is free of many astrophysical systematics
- To Do:
- Prepare joint EM analyses
- Quantify realistic weak lensing constraints with EM
- Use realistic lenses
- Advantages of individual strong-lensed signals
- Other signatures-e.g. polarization in microlensing [Cusin, Lagos+2020; Andersson+2021; Dahal+2021; Dalang, Cusin, Lagos 2022; Oancea+2022]
- Use for tests of GR [Ezquiaga, Zumalacarregui+2020; Dalang+2021; Goyal+2023]
- More pressing questions?

