

Faculty of Physics הפקולמה לפיסיקה

Update on the Phase Transition Parameter Estimation Project

C. Caprini, R. Jinno, M. Lewicki, Eric Madge,M. Merchand, G. Nardini, M. Pieroni,A. Roper Pol, and V. Vaskonen

SGWB signal

cf. also Deanna's talk on Wednesday

cf. also Deanna's talk on Wednesday

Templates

broken power-law

$$\Omega_* \mathcal{N}\left(\frac{f}{f_*}\right)^{n_1} \left[1 + \left(\frac{f}{f_*}\right)^{a_1}\right]^{\frac{n_2 - n_1}{a_1}}$$

 \circ bubble collisions: [Lewicki & Vaskonen, 2023] $(n_1,n_2,a_1)=(2.4,-2.4,4)$

Templates

broken power-law

$$\Omega_* \mathcal{N}\left(\frac{f}{f_*}\right)^{n_1} \left[1 + \left(\frac{f}{f_*}\right)^{a_1}\right]^{\frac{n_2 - n_1}{a_1}}$$

bubble collisions: [Lewicki & Vaskonen, 2023] $(n_1, n_2, a_1) = (2.4, -2.4, 4)$

double broken power-law

$$\Omega_2 \, \mathcal{N}\left(\frac{f}{f_1}\right)^{n_1} \left[1 + \left(\frac{f}{f_1}\right)^{a_1}\right]^{\frac{n_2 - n_1}{a_1}} \left[1 + \left(\frac{f}{f_2}\right)^{a_2}\right]^{\frac{n_3 - n_2}{a_2}}$$

○ sound waves: [Jinno et al., 2023] $(n_1, n_2, n_2, a_1, a_2) = (3, 1, -3, 2, 4)$ ○ MHD turbulence: [Roper Pol et al., 2022] $(n_1, n_2, n_2, a_1, a_2) = (3, 1, -\frac{8}{3}, 4, 2.15)$

Polychord/MCMC vs. Fisher analysis

- estimation of parameter reconstruction reach based on generated data +
 Polychord takes a lot of time
- o alternative: Fisher analysis

$$\mathcal{C}_{ij}^{-1} = \mathcal{F}_{ij} = -\frac{\partial^2 \log \mathcal{L}}{\partial \theta_i \partial \theta_j}$$

works well if posteriors are approximately Gaussian

Spectral parameter reconstruction

 $(n_1, n_2, n_3, a_1, a_2) = (3, 1, -3, 2, 4)$

First-order phase transition SGWB in LISA

- 3 spectral params.: Ω_2 , f_2 , f_1 4 therm. params.: α , H_*R_* , ξ_w , T_* \implies degenerate
- \odot consider fixed T_* :

$$\begin{split} \Omega_2 \propto \frac{\xi_{\rm shell}}{\xi_w} \begin{cases} K^2 \, H_* R_* & \text{if } H_* \tau > 1 \\ K^{3/2} (H_* R_*)^2 & \text{if } H_* \tau < 1 \end{cases} \\ f_2 \propto T_* / (H_* R_*) \\ \frac{f_2}{f_1} \propto \xi_w / \xi_{\rm shell} \end{split}$$

 \circ repeat for random $\log_{10}(T_*/\text{GeV})$

○ 3 spectral params.: Ω_2 , f_2 , f_1 4 therm. params.: α , H_*R_* , ξ_w , T_* \implies degenerate

 $\begin{array}{l} \label{eq:Gamma} \circ \mbox{ consider fixed } T_*: \\ \Omega_2 \propto \frac{\xi_{\mathsf{shell}}}{\xi_w} \begin{cases} K^2 \, H_* R_* & \mbox{if } H_* \tau > 1 \\ K^{3/2} (H_* R_*)^2 & \mbox{if } H_* \tau < 1 \end{cases} \\ f_2 \propto T_* / (H_* R_*) \end{cases}$

$$rac{f_2}{f_1} \propto \xi_w/\xi_{\mathsf{shell}}$$

 $_{\odot}$ repeat for random $\log_{10}(T_{*}/{\rm GeV})$

Fisher Polychord 10^{-6} $h^2\,\Omega_{\rm ow}$ \odot 3 spectral params.: Ω_2 , f_2 , f_1 10^{-9} 4 therm. params.: α , H_*R_* , ξ_w , T_* 10^{-12} \implies degenerate 10^{-3} 10^{-2} 10^{-1} 10^{-4} $\log_{10}(H_*R_*)$ f [Hz] mean signal 1σ band noise \odot consider fixed T_* : galactic fg $^{-1}$ 2σ band extragalactic fg ---- injected $\Omega_2 \propto \frac{\xi_{\text{shell}}}{\xi_w} \begin{cases} K^2 H_* R_* & \text{if } H_* \tau > 1 \\ K^{3/2} (H_* R_*)^2 & \text{if } H_* \tau < 1 \end{cases}$ 0.9 $f_2 \propto T_*/(H_*R_*)$ $\underset{\omega}{\operatorname{ogl}}(T_*/\operatorname{GeV})$ $rac{f_2}{f_1} \propto \xi_w / \xi_{
m shell}$ 1.0 repeat for random $\log_{10}(T_*/\text{GeV})$ $\log_{10}(\alpha)$ $\log_{10}(H_*R_*)$ ξ_w $\log_{10}(T_*/\text{GeV})$ $f_2 = 1 \text{ mHz}, \ h^2 \Omega(f_2) = 10^{-10}$

 10^{-3}

○ 3 spectral params.: Ω_2 , f_2 , f_1 4 therm. params.: α , H_*R_* , ξ_w , T_* \implies degenerate

 $\begin{array}{l} \label{eq:Gamma} \circ \mbox{ consider fixed } T_*: \\ \Omega_2 \propto \frac{\xi_{\mathsf{shell}}}{\xi_w} \begin{cases} K^2 \, H_* R_* & \mbox{if } H_* \tau > 1 \\ K^{3/2} (H_* R_*)^2 & \mbox{if } H_* \tau < 1 \end{cases} \\ f_2 \propto T_* / (H_* R_*) \end{cases}$

$$rac{f_2}{f_1} \propto \xi_w/\xi_{\mathsf{shell}}$$

 $_{\odot}$ repeat for random $\log_{10}(T_{*}/{\rm GeV})$

- sound waves + turbulence ⇒ additional parameter: ϵ
 - \implies degeneracy broken?
- analytically:

$$\begin{split} (f_1^{\rm turb}/f_2^{\rm turb})^2 \propto \epsilon \, K \\ \Omega_2^{\rm turb} \propto \epsilon^2 K^2 (H_*R_*)^2 \end{split}$$

${\sf Soundwaves} + {\sf turbulence}$

- sound waves + turbulence ⇒ additional parameter: ϵ ⇒ degeneracy broken?
- \circ analytically: $(f_1^{turb}/f_2^{turb})^2 \propto \epsilon K$ $\Omega_2^{turb} \propto \epsilon^2 K^2 (H_*R_*)^2$

୦ BUT:

- degeneracies remain
- inputs not reconstructed
- Fisher and Polychord disagree

 $\alpha = 1, R_*H_* = 0.25, \xi_w = 1, T_* = 500 \text{ GeV}, \epsilon = 1$

Two double broken power-laws

Two double broken power-laws

Two double broken power-laws

constraints on spectrum parameters $\xrightarrow{\text{error propagation}}$ constraints model parameters

- for the spectral parameters (amplitude, peak/break frequencies, ...), we can estimate the reach using Fisher analysis
- \circ thermodynamics parameters of cosmological phase transitions (α , H_*R_* , T_* , ...) are hard to reconstruct (due to degeneracies)
- a potential observed SGWB signal can determine/constrain fundamental model parameters

- for the spectral parameters (amplitude, peak/break frequencies, ...), we can estimate the reach using Fisher analysis
- \circ thermodynamics parameters of cosmological phase transitions (α , H_*R_* , T_* , ...) are hard to reconstruct (due to degeneracies)
- a potential observed SGWB signal can determine/constrain fundamental model parameters

Thank you for your attention!