

Constraining the expansion of the Universe with massive black hole binaries

Alberto Mangiagli Marie Curie Fellow

Astroparticule et Cosmologie (APC), Paris

Collaborators: Chiara Caprini, Sylvain Marsat, Nicola Tamanini, Marta Volonteri, Susanna Vergani, Lorenzo Speri, Henri Inchauspé

10th LISA Cosmology Working Group Workshop

MBHBs : new cosmological probes

The Λ -Cold Dark Matter (Λ CDM) is the most common cosmological parametrization:

- ✓ Simple model with good fit to the bulk of data
- × Current tensions :
 - Early Universe: Cosmic Microwave Background (CMB) observations at z > 1000
 - > Late Universe: SNIa, lensed images at $z \sim 2.5$

We need new models and new probes!

Standard sirens are new cosmological probes

▶ Direct information on d_L → No calibration errors and no intrinsic scatter
 ▶ Independent from CMB or SNIa → Independent estimates

Bright sirens, i.e. Redshift information from the EM counterpart

5

6

Stellar BHBs at high frequency : LISA point of view

EM counterpart to Stellar BHBs mergers

Isolated and dynamical formation channels do not predit an EM counterpart, but...

(Stone+16, Bartos+16, Caputo+20)

× Gamma-ray :
 ▶ It requires L~10⁴ L_{edd}
 ▶ Might be facilitated by jet emission
 × X-ray :
 ▶ Accretion still requires L > 10⁴ L_{edd}

Remnant kicks are uncertain

✓ L~2-5×L_{edd} leaves a detectable imprint in the GW signal (Sberna+22)

EM emissions might be AGN-dominated

Extreme mass ratio inspiral in LISA

- > Uncertain merger rate : $\sim 1-10^3$ /yr events
 - Long-lived sources as SBHBs

- Accurate sky localization (~10 deg²)
 × Poor d_L estimates
 - Complex data analysis procedure :
 X Overlapping signals
 X Higher harmonics

(Check Pozzoli's talk for SGWB from EMRIs)

EM counterpart from EMRIs

Let's move to Massive BHBs (MBHBs)

MBHB merger rates

Let's proceed with order: How many MBHB mergers do we expect?

Large uncertainties in astrophysical processes (Klein+16, Katz+19, Barausse+20) :

- Initial seed mass
 Time delays between galaxy and MBHB merger
- Feedback processes

Cosmological simulations predicts ~ 1/yr with $M_{BH} \sim 10^5~M_{\odot}$

From few to several hundreads per year

How MBHBs do look like in LISA?

> Strong and long-lasting signals > Strong overlap between signals from different sources → Global fit approach > Detectable up to z ~ 20

What EM emission do we expect?

No transient AGN-like emission has been associated unambiguously to a MBHBs
 Uncertainties on BH of 10⁵⁻⁷ M_☉ concerning bolometric correction, obscuration, spectra and variability

During the inspiral . . .

The binary excavates a cavity
Two bright minidisks around each BHs emitting in X-ray
Gas streams flowing in the cavity
Periodicities due to the orbital motion of the binary might be clear signatures (Dal Canton, AM +19)

(Bowen+18, Haiman+17, Tang+18, Nobel+21, Combi+22, Cattorini+22, Gutiérrez+22 ...)

What EM emission do we expect?

Post-merger signatures

Disk-rebrightening (Rossi+10)

✓ In-plane kicks for BHs with spins aligned along the orbital momentum

×Might be to weak to be observed

> Afterglow emission (Yuan+21)

Broad band emission from radio to X-ray
 Delays from days to months

However, close at merger, minidisks might be depleated \Rightarrow Reduction in luminosity (Tang+18)

LISA sky localization for systems at z = 1

Large distributions \rightarrow strong dependence from true binary position ¹⁶

"Multimodal" LISA events

Systems with multimodal sky posterior distribution from LISA data analysis

Arise from LISA degeneracy pattern function

> Degeneracies can be broken with :

- > Orbital motion of the detector for $f \sim 10^{-4}$ Hz
- > High frequency response of the detector for $f \sim 10^{-3} 10^{-2}$ Hz

"Multimodal" LISA events

Systems with multimodal sky posterior distribution from LISA data analysis

MBHBs can go up to high redshift

Cosmology with MBHBs

What constrains can we put on the expansion of the Universe at high redshift with bright MBHBs?

Key improvements respect to previous works (Tamanini+16)

- > Improve the modeling of the EM counterpart
- > Bayesian analysis for GW signal (Marsat+20) \rightarrow expensive but realistic
- Bayesian cosmological inference

Starting point

Semi-analytical models: tools to construct MBHBs catalogs (Barausse+12)

Constructing the population of MBHBs with EM counterpart

In AM+2207.10678 we estimate the rate of MBHBs with a detecatable EM counterpart **Observing strategies**

Optical	Radio	X-Ray
LSST, Rubin Obs.	SKA	Athena
\succ FOV ~ 10 deg ²	\succ FOV ~ 10 deg ²	\succ FOV ~ 0.4 deg ²
Identification+redshift	Redshift with ELT	Redshift with ELT

We also explored the possibility of AGN obscuration and collimated radio emission

Number of EMcp in 4 yr

 Strong decrease with obscuaration and radio jet
 Parameter estimation selects

preferentially heavy

(In 4 yr)	Standard	w Obsc./Colli. radio
Light	6.4	1.6
Heavy	14.8	3.3
Heavy-no-delays	20.7	3.5

Here we focus on the '<u>Standard</u>' case

Prospects for H_0 and Ω_m in 10 yr

Light	Heavy	Heavy-no-delays
16	37	51.7

For CPL parametrization \rightarrow Poor constrains on ω_0 and no constrain on ω_a 22

Redshift bin approach in 10 yr

$$D \equiv \frac{d_L(z)}{1+z} = c \int_0^z \frac{dz'}{H(z')}$$
$$H(z) = \left(\frac{dD}{dz}\right)^{-1}$$

Model independent approach (it assumes only flatness)

Trade-off between:

► Bin size

> Number of EMcps in each bin Requirement: D(z) accuracy $\leq 5\%$

What if we do not have EMcp in a bin or if the D and z errors are too broad?

Constraining H(z) at high redshifts (Preliminary results)

Fit: $D(z) = D(z_{\rho}) + H(z_{\rho})^{-1}(z - z_{\rho})$ with 10yr of LISA observations

$z_{p}=3$	Light	Heavy	Heavy-no-delays
2< <i>z</i> <4	6.1	14.6	20.7

Cosmology with bright sirens will be challenging

Stellar BHBs

Granted sources from LVK

Local cosmological measurementsEM counterpart might be too faint

EMRIs

×Uncertainties in the merger rate

Local cosmological measurements
EM counterpart is similar to AGN

luminosity

×Only few studies on the topic

Massive BHBs

- ×Uncertainties in the merger rate
- Local cosmological measurements
- High-z cosmological measurements
- Broad type of EM emission

×Our strategy depend strongly on the radio emission : we need better modeling

From the current results

- > H₀ constrained to few percent in 10 yr
- > Larger uncertainties on Ω_n
- Provide information on H(z) at high redshifts

Backup slides

Overview of cosmological models in our study (AM+23, in prep.)

ACDM Universe

> Λ CDM parametrization 2-parameters model: (H₀, Ω_m) (see Caprini's talk)

Dark energy/modified gravity

 CPL parametrization for ω(z) 4-parameters model: (H₀, Ω_m, ω₀, ω_a) Phenomenological Tracker model (Bull+20)
 4-parameters model: (ω₀, ω_∞, z_c, Δz) (work in progress)
 Phenomen. modified gravity (Belgacem+19) 2-parameters model: (Ξ₀, n) (see Caprini's talk)

At high redshift

- Matter-only approximation 2-parameter models: D(z_p), H(z_p) (see Caprini's talk)
 Redshift bin approach Model-independent
 - 2-parameter models: $D(z_p)$, $H(z_p)$
- Splines interpolation Model-independent Constrain at all redshifts (work in progress)

Luminosity distance and redshift estimates

Luminosity distance

Accurate estimate of luminosity distance → ∆d/d_L < 10%
 Lensing relevant for z > 2-3
 Peculiar velocities are negligible

Redshift measurements

LSST/Rubin Obs.

> Photometric measurements with $\Delta z = 0.03(1 + z)$ (Laigle + 19)

EMcps in optical, X-ray and radio

29