Stochastic gravitational wave background reconstruction for a nonequilateral and unequal-noise LISA constellation (based on 2303.15929)

Olaf Hartwig (Paris Obs), Marc Lilley (Paris Obs), Martina Muratore (AEI), Mauro Pieroni (CERN)

SGWB detection in LISA TDI data

- Many potential sources (some speculative, some model-dependent)
- Instrumental noise characteristics not well known
- Two main approaches, so far:
 - Known noise, unknown SGWB (e.g. SGWBinner)
 - Unknown noise, known SGWB (e.g. Spline approach)
- Other simplifying assumptions on the LISA configuration:
 - Constant and equal arm lengths
 - Equal secondary noise levels

<u>Unequal</u> arms, unequal noise vs. equal arms unequal noise

Michelson AT and ET mainly affected by unequal arms

No diagonal basis for noise

Unequal arms Equal/Unequal noise $|\mathcal{R}^{UV}|/\sqrt{\mathcal{R}^{UU}\mathcal{R}^{VV}}|$ No diagonal basis for signal

Signal transfer function cross-correlations

Frequency [Hz]

Frequency [Hz]

Intermediary comments

- We have established that in a semi-realistic setting (arm lengths are still time independent), there are no null channels, and there is no diagonal basis.
- This introduces computational and modelling complexity.
- We have seen in previous talks there the noise has to be estimated at the same time as the SGWB.
- The spline approach, for e.g., takes seriously the fact that noise models established on-ground will not be reliable in flight, i.e., noise estimation has to be kept very flexible.
- Can we get away with neglecting off-diagonal terms in the covariance?

- some degeneracies which could be broken will remain - the dominant components will have artificially smaller error bars - the subdominant components will have enlarged error bars

In general, we expect that neglecting off diagonal terms will result in the following:

Case study

- Signal as a simple power law: spectral index n_T , spectral slope α
- Noise functional forms known, but amplitudes unknown (with some priors)
- Access the determination of signal and noise parameters
- Compare <u>diagonal-only</u> AET and AE ζ with <u>full-matrix</u> AET and AE ζ using Fisher information (access to uncertainties only).
- MCMC runs <u>diagonal-only</u> (access to biases and uncertainties).
- Unequal arms, equal and unequal noise, low frequency or full frequency range.
- High SNR over the full frequency range

Low frequency, equal noises

Full frequency, unequal noises

From Fisher forecasts: Off-diagonal terms matter for AE ζ (and for AET, not shown)

Full frequency, unequal noises

SGWB parameters for 6 LISA configurations

The cosmological parameters for this specific power law model are not very sensitive to the details of the LISA configuration. But: This is a high SNR case

- The noise and SGWB functional forms are precisely defined (provides strong handle)

Conclusions

We studied secondary noises and SGWB power law for a semi-realistic LISA configuration. All detailed analytic formulae are available in 2303.15929 and supplementary material as Mathematica notebooks)

- TDI variables:
 - Unequal arms: T is no longer a null channel, AET no longer diagonal.
 - AE ζ robust to unequal arms.
 - No null channels or diagonal basis for unequal arms and unequal noise.
- Parameter estimation:
 - Frequency range matters
 - Off-diagonal terms matter, as demonstrated for the noise in this study
 - believed to be generic.
- <u>General comments:</u>
 - Important to go beyond diagonal AET and beyond the fully symmetric LISA configuration

 - This will have an impact on forecasts and the ability to reconstruct SGWBs.

• Noteworthy that here, we found insensitivity of the SGWB parameter to the details of the LISA configuration. Not

• Important to recognise that the noise is not going to be well known: innovative and agnostic approaches are needed.

