## Stochastic gravitational wave background reconstruction for a nonequilateral and unequal-noise LISA constellation (based on 2303.15929)

Olaf Hartwig (Paris Obs), Marc Lilley (Paris Obs), Martina Muratore (AEI), Mauro Pieroni (CERN)

## SGWB detection in LISA TDI data

- Many potential sources (some speculative, some model-dependent)
- Instrumental noise characteristics not well known
- Two main approaches, so far:
- Known noise, unknown SGWB (e.g. SGWBinner)
- Unknown noise, known SGWB (e.g. Spline approach)

Technically easy to handle
Computationally cheap
Noise estimation readily made

- Other simplifying assumptions on the LISA configuration:
- Constant and equal arm lengths
- Equal secondary noise levels



## Unequal arms

Diagonal terms
Equal/Unequal noise

TDI response $\mathscr{R}$ for SGWB
(signal independent)

## Introduce the fully symmetric

 Sagnac channel $\zeta$Secondary
noises PSD's

## T channel no longer noise-dominated below 0.01 Hz

(includes noise model)




"Strain sensitivity":



## Unequal arms <br> Equal noise

Noise cross-correlations

## Michelson AT and ET

 no longer zero

## Use $A E \zeta$ or Sagnac

 channels but not AETXYZ

$\alpha \beta \gamma$




## Unequal arms, unequal noise vs. equal arms unequal noise

Noise cross-correlations


Michelson AT and ET mainly affected by unequal arms


No diagonal basis for noise


AET


AE $\zeta$

$\alpha \beta \gamma$

$\mathcal{A E T}$

$\mathcal{A E} \zeta$


## Unequal arms

Signal transfer function cross-correlations
Equal/Unequal noise

XYZ


AET


AE

$\alpha \beta \gamma$

$\mathcal{A E T}$

$\mathcal{A E \zeta}$


## Intermediary comments

- We have established that in a semi-realistic setting (arm lengths are still time independent), there are no null channels, and there is no diagonal basis.
- This introduces computational and modelling complexity.
- We have seen in previous talks there the noise has to be estimated at the same time as the SGWB.
- The spline approach, for e.g., takes seriously the fact that noise models established on-ground will not be reliable in flight, i.e., noise estimation has to be kept very flexible.
- Can we get away with neglecting off-diagonal terms in the covariance?

```
In general, we expect that neglecting off diagonal terms will result in the following:
- some degeneracies which could be broken will remain
- the dominant components will have artificially smaller error bars
- the subdominant components will have enlarged error bars
```


## Case study

- Signal as a simple power law: spectral index $n_{T}$, spectral slope $\alpha$
- Noise functional forms known, but amplitudes unknown (with some priors)
- Access the determination of signal and noise parameters
- Compare diagonal-only $A E T$ and $A E \zeta$ with full-matrix $A E T$ and $A E \zeta$ using Fisher information (access to uncertainties only).
- MCMC runs diagonal-only (access to biases and uncertainties).
- Unequal arms, equal and unequal noise, low frequency or full frequency range.
- High SNR over the full frequency range


## Low frequency, equal noises



From Fisher forecast: Off-diagonal terms matter for AET but not for AE $\zeta$ From MCMC: AET performs much worse than $\mathrm{AE} \zeta$. In particular $P$ is wrong.

## Full frequency, unequal noises



From Fisher forecasts: Off-diagonal terms matter for $\mathrm{AE} \zeta$ (and for AET , not shown)

## Full frequency, unequal noises



These corner plots are an example of variance under-estimation for AET noise parameters
The best fit values also shift by up to 1 sigma for 3 OMS noise parameters

## SGWB parameters for 6 LISA configurations



$A E \zeta U A, U N$
AET UA, UN
$A E \zeta \cup A, E N$
AET UA, EN
$A E \zeta E A, E N$
AET AE, EN

[^0]
## Conclusions

We studied secondary noises and SGWB power law for a semi-realistic LISA configuration. All detailed analytic formulae are available in 2303.15929 and supplementary material as Mathematica notebooks)

- TDI variables:
- Unequal arms: T is no longer a null channel, AET no longer diagonal.
- $A E \zeta$ robust to unequal arms.
- No null channels or diagonal basis for unequal arms and unequal noise.
- Parameter estimation:
- Frequency range matters
- Off-diagonal terms matter, as demonstrated for the noise in this study
- Noteworthy that here, we found insensitivity of the SGWB parameter to the details of the LISA configuration. Not believed to be generic.
- General comments:
- Important to go beyond diagonal AET and beyond the fully symmetric LISA configuration
- Important to recognise that the noise is not going to be well known: innovative and agnostic approaches are needed.
- This will have an impact on forecasts and the ability to reconstruct SGWBs.


[^0]:    The cosmological parameters for this specific power law model are not very sensitive to the details of the LISA configuration.
    But:

    - This is a high SNR case
    - The noise and SGWB functional forms are precisely defined (provides strong handle)

