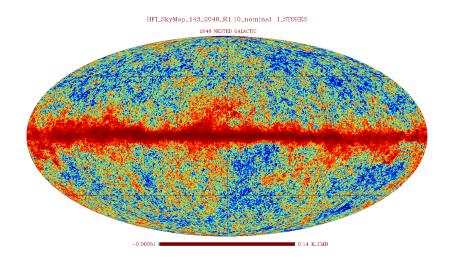
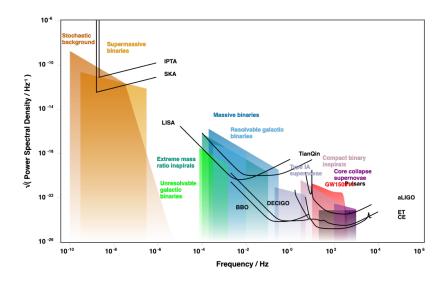
Observational Landscape

Stochastic gravitational-wave backgrounds with LISA and beyond: Challenges and Opportunities

Carlo Contaldi


Theory Group, Imperial College London

Stavanger, 6th June, 2023


Overview

- Observational Landscape
- SGWB Statistics
- Practical Challenges & Prospects
- New Ideas

Background

Observational landscape

Observational Landscape

• Unresolved sources. Incoherent superposition of unresolved compact sources.

- Unresolved sources. Incoherent superposition of unresolved compact sources.
- Diffuse sources. Spatially correlated at generation due to phase transitions, topological defects, primordial perturbations, etc.

- Unresolved sources. Incoherent superposition of unresolved compact sources.
- Diffuse sources. Spatially correlated at generation due to phase transitions, topological defects, primordial perturbations, etc.
- LIGO: actively searching for stochastic component (but very specific).

- Unresolved sources. Incoherent superposition of unresolved compact sources.
- Diffuse sources. Spatially correlated at generation due to phase transitions, topological defects, primordial perturbations, etc.
- LIGO: actively searching for stochastic component (but very specific).
 - Upper limits $\Omega_{\rm GW} \sim 10^{-9}$ at f=25 Hz [LVK circa 2022].

- Unresolved sources. Incoherent superposition of unresolved compact sources.
- Diffuse sources. Spatially correlated at generation due to phase transitions, topological defects, primordial perturbations, etc.
- LIGO: actively searching for stochastic component (but very specific).
 - Upper limits $\Omega_{\rm GW} \sim 10^{-9}$ at f=25 Hz [LVK circa 2022].
- LISA: guaranteed to see significant stochastic components. This is amazing!

- Unresolved sources. Incoherent superposition of unresolved compact sources.
- Diffuse sources. Spatially correlated at generation due to phase transitions, topological defects, primordial perturbations, etc.
- LIGO: actively searching for stochastic component (but very specific).
 - Upper limits $\Omega_{\rm GW} \sim 10^{-9}$ at f=25 Hz [LVK circa 2022].
- LISA: guaranteed to see significant stochastic components. This is amazing!
- LISA: guaranteed to see significant stochastic components. This is very scary!

What is a Stochastic signal?

$$h_{ab}(\vec{x},t) = \sum_{\Lambda} \int_{-\infty}^{+\infty} df \int_{\Omega} d\Omega_{\hat{k}} e^{-i2\pi \left[f(t-\hat{k}\cdot\vec{x})+\phi_i(f,\hat{k})
ight]} \tilde{h}_A(f,\hat{k}) \, e_{ab}^A(\hat{k}) \, .$$

- Resolved: The signal is correlated either temporally or spatially (frequency and/or direction).
- The signal is coherent and can be distinguished from random noise by "averaging" data (linear in strain \tilde{h}).

Credit: Wikipedia CC BY-SA 2.0

$$\langle \tilde{h} \rangle_T \neq 0, \quad \langle \tilde{n} \rangle_T = 0.$$

What is a Stochastic signal?

$$h(\vec{x},t) = \sum_{A} \int_{-\infty}^{+\infty} df \int_{\Omega} d\Omega_{\hat{k}} \tilde{h}_{A}(f,\hat{k}) e_{ab}^{A}(\hat{k}) e^{-i2\pi \left[f(t-\hat{k}\cdot\vec{x})\right]}.$$

- Stochastic: Limit where phase is uncorrelated between frequencies and/or directions e.g. due to incoherent superposition of sources or generation by random field
- The signal is incoherent and cannot be distinguished from noise at linear level.

$$\langle \tilde{h}\tilde{h}^{\star}\rangle_{T}\sim P_{h},\ \langle \tilde{n}\tilde{n}^{\star}\rangle_{T}\sim \mathcal{S}_{n}\,.$$

Statistical properties

- Incoherent signal: fully stochastic backgrounds hold no phase information in strain h.
- Usually assumed to be stationary, and statistically isotropic;

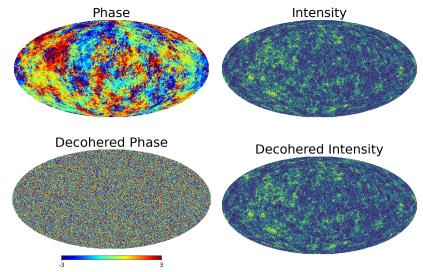
$$\langle h(t,\hat{k})h^{\star}(t+\Delta t,\hat{k}')\rangle \sim \delta^{(3)}(\hat{k}-\hat{k}') H(\Delta t),$$

$$\updownarrow$$

$$\langle h(f,\hat{k})h^{\star}(f',\hat{k}')\rangle \sim \delta(f-f') \delta^{(3)}(\hat{k}-\hat{k}') P_h(f).$$

- These assumptions are very important ones for methods aimed at characterising and separating SGWBs.
- Note that statistical isotropy does not imply lack of angular correlations. The strain intensity (power) can be anisotropic and have non-trivial angular correlations

$$egin{aligned} \langle h(f,\hat{k})h^{\star}(f',\hat{k}')
angle &\sim \delta(f-f')\,\delta^{(3)}(\hat{k}-\hat{k}')\,P_h(f,\hat{k})\,, \ \langle P_h(f,\hat{k})P_h(f,\hat{k}')
angle &= rac{1}{4\pi}\sum_{\ell}(2\ell+1)\,\mathcal{C}_\ell(f)\mathcal{P}_\ell(\hat{k}\cdot\hat{k}')\,, \end{aligned}$$


One more possibility...

 Only one way to generate a diffuse background with (temporal and/or angular) coherency i.e. $\langle \phi(f, \hat{k}) \phi(f', \hat{k}') \rangle \sim \delta(f - f') \delta^{(3)}(\hat{k} - \hat{k}')$.

Practical Challenges & Prospects

- GWs that have spent time outside the horizon. These will be squeezed (zero-momentum) and then start oscillating (and travelling) coherently in all directions as they re-enter the horizon.
- Unique signature of inflationary background which would lead to standing waves [Grishchuk & Sazhin 1975].
- Interferometers can distinguish between standing and travelling waves [CC & Magueijo 2018].
- Density perturbations destroy all coherence [Bartolo et al 2019, Margalit, CC, & Pieroni 2020] \rightarrow no unique signature due to coherent \vec{k} and $-\vec{k}$ modes.

Scalar modes are annoying foregrounds...

Non-Gaussianity

Observational Landscape

- Decoherence, or randomisation of phase correlations, affects what kind of non-Gaussianity can be observed using GWs.
- Any non-Gaussian correlations in the strain field is wiped out by the propagation through a perturbed universe eg.

$$\langle h(\vec{k}_1)h(\vec{k}_2)h(\vec{k}_3) \rangle \rightarrow 0$$
.

 Only three-point correlations of the GW intensity will carry information (angular correlations) [Bartolo et al. 2019, 2020].

$$\langle P_h(\vec{k}_1)P_h(\vec{k}_2)P_h(\vec{k}_3)\rangle$$

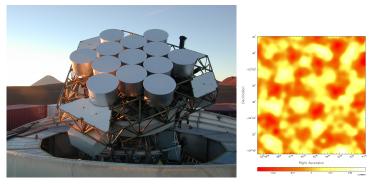
- Mining non-Gaussianity will require spectral and angular resolution.
- Valuable to constrain all generation scenarios including astrophysical sources, cosmological phase transitions, topological defects, etc.
- ...but scalar perturbations are a foreground → tensor non-Gaussianity "polluted" by scalar non-Gaussianity. Use GWs to constrain f_{NL} ?!

Observational Landscape

• LISA will almost certainly observe a superposition of different SGWBs.

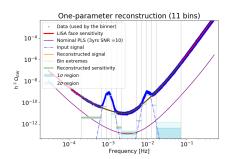
- LISA will almost certainly observe a superposition of different SGWBs.
- These will have to be separated using both spectral and angular information.

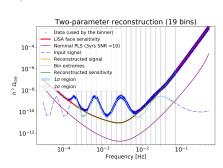
- LISA will almost certainly observe a superposition of different SGWBs.
- These will have to be separated using both spectral and angular information.
- Coherent detectors are typically good spectrometers but bad imagers.


- LISA will almost certainly observe a superposition of different SGWBs.
- These will have to be separated using both spectral and angular information.
- Coherent detectors are typically good spectrometers but bad imagers.
- e.g. CMB radio interferometry; very successful spectral rejection of compact radio source signals but spatial (angular) rejection impossible because of sparse Fourier (uv) coverage.

- LISA will almost certainly observe a superposition of different SGWBs.
- These will have to be separated using both spectral and angular information.
- Coherent detectors are typically good spectrometers but bad imagers.
- e.g. CMB radio interferometry; very successful spectral rejection of compact radio source signals but spatial (angular) rejection impossible because of sparse Fourier (uv) coverage.
- GW interferometry; excellent spectral resolution and baseline but low angular resolution (in "intensity"-mode).

- LISA will almost certainly observe a superposition of different SGWBs.
- These will have to be separated using both spectral and angular information.
- Coherent detectors are typically good spectrometers but bad imagers.
- e.g. CMB radio interferometry; very successful spectral rejection of compact radio source signals but spatial (angular) rejection impossible because of sparse Fourier (uv) coverage.
- GW interferometry; excellent spectral resolution and baseline but low angular resolution (in "intensity"-mode).
- Not to be confused with localisation resolution which uses time phase information to reconstruct angular position of coherent compact sources.


Observational Landscape


Photon Interferometry vs GW Interferemetry

Cosmic Background Imager, Caltech, NSF

• Coherent detectors make very good spectrometers.

Caprini at al. 2019

• ...as long as several real-world effects are taken care of...

Spectral characterisation - Challenges

- Non-stationarity in signal and noise. When does $\langle X(f)X^*(f')\rangle \rightarrow \delta(f-f')$?
 - Noise: well-known problem, complicates estimation of noise and timescales
 - Signal: when does a superposition of signals become sufficiently "stochastic"? Complicates directional searches.
- Resolved source (time and angular) removal: Great feature of GW signal but will leave non-trivial residuals in the time-domain. e.g. LISA will see at least a few high SNR>> 1 events per hour. All stochastic timestream will contain residuals plus significant non-stochastic contribution from SNR ~ 1 signal.
- This will complicate the spectral analysis by degrading spectral resolution and make noise estimation harder.
- cf CMB analysis; time-domain gaps, cosmic ray hits, noise non-stationarities, glitches, etc.

• LISA will have a high signal-to-noise timestream - even after resolved source removal.

Practical Challenges & Prospects

- LISA will have a high signal-to-noise timestream even after resolved source removal.
- Noise power will have to be estimated iteratively.

- LISA will have a high signal-to-noise timestream even after resolved source removal.
- Noise power will have to be estimated iteratively.
 - 1 Integrate timestream into frequency or/and angular domain. $P_h(f, \vec{k})$. cf. "map-making" χ^2 step in CMB analysis.

- LISA will have a high signal-to-noise timestream even after resolved source removal.
- Noise power will have to be estimated iteratively.
 - Integrate timestream into frequency or/and angular domain. $P_h(f, \vec{k})$. cf. "map-making" χ^2 step in CMB analysis.
 - 2 "Re-scan" to timestream and subtract from data.

- LISA will have a high signal-to-noise timestream even after resolved source removal.
- Noise power will have to be estimated iteratively.
 - Integrate timestream into frequency or/and angular domain. $P_h(f, \vec{k})$. cf. "map-making" χ^2 step in CMB analysis.
 - 2 "Re-scan" to timestream and subtract from data.
 - Evaluate new PSD of timestream.

- LISA will have a high signal-to-noise timestream even after resolved source removal.
- Noise power will have to be estimated iteratively.
 - Integrate timestream into frequency or/and angular domain. $P_h(f, \vec{k})$. cf. "map-making" χ^2 step in CMB analysis.
 - "Re-scan" to timestream and subtract from data.
 - Evaluate new PSD of timestream.
 - Iterate 1-3.

- LISA will have a high signal-to-noise timestream even after resolved source removal.
- Noise power will have to be estimated iteratively.
 - Integrate timestream into frequency or/and angular domain. $P_h(f, \vec{k})$. cf. "map-making" χ^2 step in CMB analysis.
 - "Re-scan" to timestream and subtract from data.
 - Evaluate new PSD of timestream.
 - Iterate 1-3.
 - **5** Fix PSD and evaluate a final "map" $(f, \hat{k}, \ell m)$.

- LISA will have a high signal-to-noise timestream even after resolved source removal.
- Noise power will have to be estimated iteratively.
 - Integrate timestream into frequency or/and angular domain. $P_h(f, \vec{k})$. cf. "map-making" χ^2 step in CMB analysis.
 - "Re-scan" to timestream and subtract from data.
 - Evaluate new PSD of timestream.
 - Iterate 1-3.
 - **5** Fix PSD and evaluate a final "map" $(f, \hat{k}, \ell m)$.
 - Iterative Maximum Likeliood estimate of intensity power spectrum e.g. $C_{\ell}(f)$.

- LISA will have a high signal-to-noise timestream even after resolved source removal.
- Noise power will have to be estimated iteratively.
 - Integrate timestream into frequency or/and angular domain. $P_h(f, \vec{k})$. cf. "map-making" χ^2 step in CMB analysis.
 - "Re-scan" to timestream and subtract from data.
 - Evaluate new PSD of timestream.
 - 4 Iterate 1-3.
 - **5** Fix PSD and evaluate a final "map" $(f, \hat{k}, \ell m)$.
 - Iterative Maximum Likeliood estimate of intensity power spectrum e.g. $C_{\ell}(f)$.
- Ill-conditioning problem: pre-compress harmonic space and direct to C_{ℓ} estimation (cf. CMB interferomery "gridding" methods)?

- LISA will have a high signal-to-noise timestream even after resolved source removal.
- Noise power will have to be estimated iteratively.
 - Integrate timestream into frequency or/and angular domain. $P_h(f, \vec{k})$. cf. "map-making" χ^2 step in CMB analysis.
 - "Re-scan" to timestream and subtract from data.
 - Evaluate new PSD of timestream.
 - 4 Iterate 1-3.
 - **5** Fix PSD and evaluate a final "map" $(f, \hat{k}, \ell m)$.
 - Iterative Maximum Likeliood estimate of intensity power spectrum e.g. $C_{\ell}(f)$.
- III-conditioning problem: pre-compress harmonic space and direct to C_{ℓ} estimation (cf. CMB interferomery "gridding" methods)?
- ...null or Sagnac channels do change this...

Angular characterisation

Observational Landscape

• Coherent detectors make very bad imagers (ill-conditioning of reconstrcution).

- Coherent detectors make very bad imagers (ill-conditioning of reconstrcution).
- Coherent detectors without ability to focus make even worse imagers.

- Coherent detectors make very bad imagers (ill-conditioning of reconstrcution).
- Coherent detectors without ability to focus make even worse imagers.
- LISA: "Stuck" with non-compact geometric response with limited phase coverage.

Observational Landscape

- Coherent detectors make very bad imagers (ill-conditioning of reconstruction).
- Coherent detectors without ability to focus make even worse imagers.
- LISA: "Stuck" with non-compact geometric response with limited phase coverage.
- Combination of response and noise power determines spectral sensitivity at each frequency.

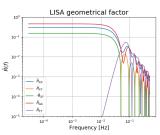
The data \tilde{d} (in frequency domain) can be expressed as

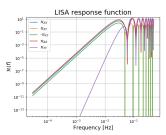
$$\begin{split} \tilde{d} &= \tilde{s} + \tilde{n} \simeq \tilde{h}r + \tilde{n} \\ \left\langle \tilde{d}^2 \right\rangle &= \left\langle \tilde{s}^2 \right\rangle + \left\langle \tilde{n}^2 \right\rangle = \mathcal{R} \, P_h^{\lambda} + N \equiv \mathcal{R} \left[P_h^{\lambda} + S_n \right] \end{split}$$

Observational Landscape

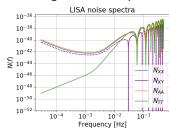
- Coherent detectors make very bad imagers (ill-conditioning of reconstruction).
- Coherent detectors without ability to focus make even worse imagers.
- LISA: "Stuck" with non-compact geometric response with limited phase coverage.
- Combination of response and noise power determines spectral sensitivity at each frequency.

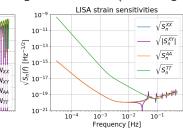
The data \tilde{d} (in frequency domain) can be expressed as


$$\begin{split} \tilde{d} &= \tilde{s} + \tilde{n} \simeq \tilde{h}r + \tilde{n} \\ \left\langle \tilde{d}^2 \right\rangle &= \left\langle \tilde{s}^2 \right\rangle + \left\langle \tilde{n}^2 \right\rangle = \mathcal{R} \, P_h^\lambda + N \equiv \mathcal{R} \left[P_h^\lambda + S_n \right] \end{split}$$


Angular characterisation will be a crucial step in noise estimation.

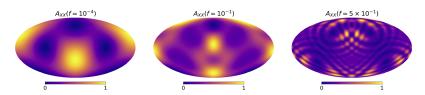
LISA Reponse and Noise

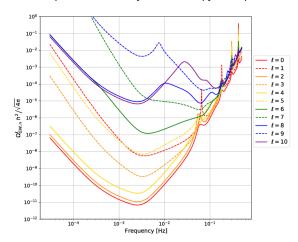

Observational Landscape


After angular integration we get:

by combining noise and response we get the the strain (bottom right):

LISA sky response

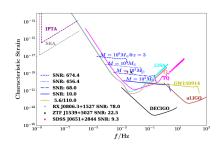



FIG. 2. Normalised auto-correlated response of TDI channel X, A_{XX} , at time t=0 and in the Solar System Baycentre (SSB) reference frame, at frequencies $f=10^{-4}$ Hz, $f=10^{-1}$ Hz, $f=5\times10^{-1}$ Hz from left to right respectively.

- At peak sensitivity frequencies the "beam" has low structure $\ell_{\rm max} \lesssim 8$.
- The beam rotates around the triangle axis and along the Earth's orbit (fills in very limited angular phase information m).
- A lot of phase information is not sampled \rightarrow missing sky modes.

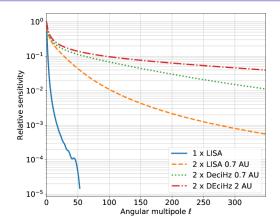
LISA Anisotropies


Observational Landscape


• LISA: Expected sensitivity to anisotropy multipoles in intensity.

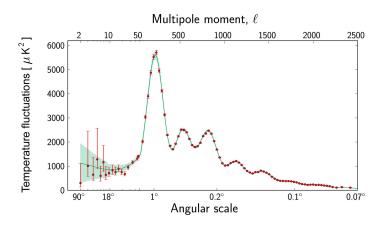
Bartolo at al. 2022

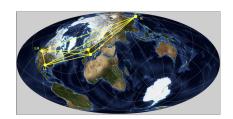
High- ℓ SGWB from space?



- Beat the fL/c factor by introducing long-baseline interferometry in space.
- Concurrent missions: LISA, TianQin, Taiji?

High- ℓ SGWB from space?

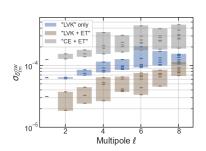

Observational Landscape


Baker et al. 2021

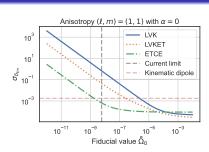
- Resolution dramatically improves with long baseline in space.
- Reminder: this is intensity (angular) resolution.

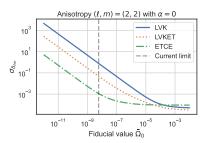
Cosmic Variance - a new problem?

Cosmic Variance - GW interferometry

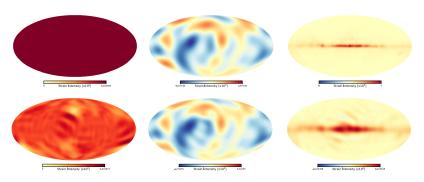

Observational Landscape

- Growing number of baselines over the next decade.
- Iterative improvement in sensitivity.
- Einstein Telescope (mid 30s?)

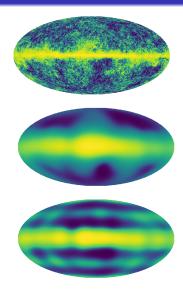

Mentasti, CC, & Peloso [2301.08074. 2304.06640]

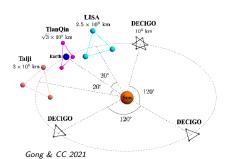

- Consider zero-noise limit.
- Interferometers covariance of multipoles is not diagonal, despite full-sky coverage.
 - Overlapping and finite frequency coverage.
 - Non-compact beam.
- Calculate "SNR" of anisotropies when variance is dominated by monopole.
- "How well can we measure $a_{\ell m}$'s in signal dominated limit?

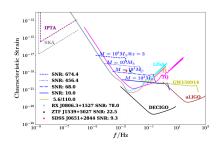
Cosmic Variance - GW interferometry



[Mentasti, CC, & Peloso, 2301,08074, 2304,06640]

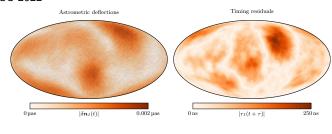

Map-making?

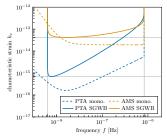

Renzini & CC 2019


- Yes, but only if $\delta_{\ell m}^{\rm GW} > 10^{-2}$.
- ...and assuming stationarity! (see e.g. Capurri et al. 2103.12037).

LISA "map"?

High- ℓ SGWB from space?

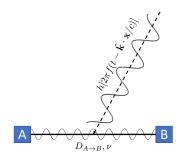




- Beat the fL/c factor by introducing long-baseline interferometry in space.
- Concurrent missions: LISA, TianQin, Taiji?

Astrometry

Golat & CC 2022



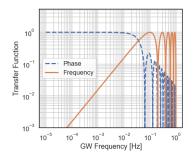
Phase vs Frequency Measurements

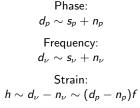
Observational Landscape

LISA is a phasemeter. Measures the perturbation to the distance between two stations (TDI - Time-Delay Interferometry).

Phase change:

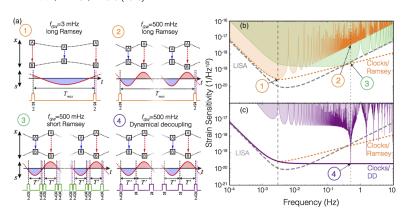
$$\delta D_{A o B}\sim c\int_{t_A}^{t_B}\,h\,dt\sim c\,h/f$$

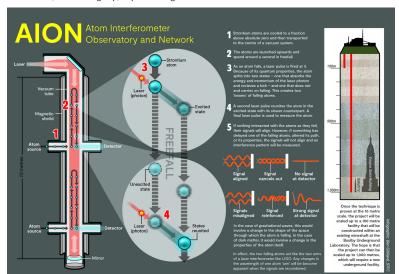

Frequency change (Doppler):


$$rac{dD_{A
ightarrow B}}{dt}\sim \Delta
u/
u\sim h$$

LISA uses TDI because it cannot compare frequencies between stations - local oscillator ("clock") is not stable enough leading to overwhelming laser frequency noise.

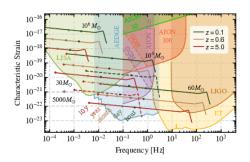
GW Observation with space clocks?


- Lab-based optical lattice atomic clocks routinely reach 10⁻¹⁹ relative frequency stability.
- This raw sensitivity is sufficient to measure astrophysical GWs if it can be integrated on to the required frequencies.
- Measuring the Doppler shift directly may have significant advantages for the same technology and scale of e.g. LISA.


GW Observations with space clocks

Kolkowitz et al., PRD 94, 124043 (2016)

GW Observations with cold atoms


O. Buchmueller, Cold atom group, Imperial College

Fundamental physics with cold atoms in space?

Badurina et al. 2020

Observational Landscape

- Atom interferometry: MAGIS (US), AION (UK/EU?), AEDGE (SPACE?).
- measurements?
- "Tunable" target frequency range.
- Anisotropies: higher angular resolution cf. LISA.

Phase or frequency

 Other tests of GR (scalar and vector modes of time dependent metric perturbations).

Summary

- Great prospects for characterisation of SWGBs over big range in frequency.
- LISA: significant real-world challenges separation of stochastic components/residuals will be difficult. Exploit both frequency and angular structure.
- Angular resolution will improve with addition of baselines to ground-based network (but still ~ 10 degrees at current frequencies).
- Long-baseline in space (~ 1 degree?)
- Cold atoms?