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@ LISA: guaranteed to see significant stochastic components. This is very
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SGWB Statistics
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What is a Stochastic signal?

+oo B s ] ~ ~ ~
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@ Resolved: The signal is correlated
either temporally or spatially
(frequency and/or direction).

@ The signal is coherent and can be
distinguished from random noise
by “averaging” data (linear in
strain h).

Credit: Wikipedia CC BY-SA 2.0

<71>T #0, (A)r=0.
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What is a Stochastic signal?
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@ Stochastic: Limit where phase is
uncorrelated between frequencies
and/or directions e.g. due to
incoherent superposition of
sources or generation by random
field.

@ The signal is incoherent and
cannot be distinguished from
noise at linear level.

(RR*) 1 ~ Pn, (Af*)T ~ Sp.
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Statistical properties

@ Incoherent signal: fully stochastic backgrounds hold no phase information
in strain h.

@ Usually assumed to be stationary, and statistically isotropic;
(h(t,k)n*(t + At, k') ~ 6O (k — K'Y H(At),

)
(h(F, R (F, k)Y ~ 8(F — ) 6P (k — k') Pu(f).

@ These assumptions are very important ones for methods aimed at
characterising and separating SGWBs.

@ Note that statistical isotropy does not imply lack of angular correlations.
The strain intensity (power) can be anisotropic and have non-trivial
angular correlations

(h(F, R)B* (1K) ~ O(F — £) 6O (k — K') Po(F, k),
(Pa(F, K)Pu(F, K)) = % SO@e+ ) ClFYPulk- K,
V4
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One more possibility...

@ Only one way to generate a diffuse background with (temporal and/or
angular) coherency i.e. (¢(f, k)p(f', k') = &6(F — £') 6P (k — k).
@ GWs that have spent time outside the horizon. These will be squeezed

(zero-momentum) and then start oscillating (and travelling) coherently in
all directions as they re-enter the horizon.

@ Unique signature of inflationary background which would lead to standing
waves [Grishchuk & Sazhin 1975].

@ Interferometers can distinguish between standing and travelling waves
[CC & Magueijo 2018].

@ Density perturbations destroy all coherence [Bartolo et al 2019, Margalit,

CC, & Pieroni 2020] — no unique signature due to coherent k and —k
modes.
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Scalar modes are annoying foregrounds...

Intensity
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SGWB Statistics
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Non-Gaussianity

@ Decoherence, or randomisation of phase correlations, affects what kind of
non-Gaussianity can be observed using GWs.

@ Any non-Gaussian correlations in the strain field is wiped out by the
propagation through a perturbed universe eg.

(h(ki)h(k2)h(k3)) = 0.

@ Only three-point correlations of the GW intensity will carry information
(angular correlations) [Bartolo et al. 2019, 2020].

(Ph(ka) P(k2) Pa(k3))

@ Mining non-Gaussianity will require spectral and angular resolution.

@ Valuable to constrain all generation scenarios including astrophysical
sources, cosmological phase transitions, topological defects, etc.

@ ...but scalar perturbations are a foreground — tensor non-Gaussianity
“polluted” by scalar non-Gaussianity. Use GWs to constrain fyr,?!
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Characterising backgrounds

@ LISA will almost certainly observe a superposition of different SGWBs.

@ These will have to be separated using both spectral and angular
information.

@ Coherent detectors are typically good spectrometers but bad imagers.

@ e.g. CMB radio interferometry; very successful spectral rejection of
compact radio source signals but spatial (angular) rejection impossible
because of sparse Fourier (uv) coverage.

@ GW interferometry; excellent spectral resolution and baseline but low
angular resolution (in “intensity”-mode).

@ Not to be confused with localisation resolution which uses time phase
information to reconstruct angular position of coherent compact sources.
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Photon Interferometry vs GW Interferemetry

Cosmic Background Imager, Caltech, NSF
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Spectral characterisation

@ Coherent detectors make very good spectrometers.

One-parameter reconstruction (11 bins) Two-parameter reconstruction (19 bins)

Data (used by the binner)
—— LISA face sensitivity

Data (used by the binner)
—— LISA face sensitivity

107*1 — Nominal PLS (3yrs SNR =10) Nominal PLS (3yrs SNR =10)
—— Input signal —= Input signal
Reconstructed signal Reconstructed signal
1076 Bin extremes 106 Bin extremes
— Reconstructed sensitivity —— Reconstructed sensitivity
é% 10 region 10 region
s ;
~ 10 20 region 20 region
=
10710 -
1012
1074 1073 1072 1071 104 1072 1072 107t
Frequency [Hz] Frequency [Hz]

Caprini at al. 2019

@ ...as long as several real-world effects are taken care of...
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Spectral characterisation - Challenges

@ Non-stationarity in signal and noise. When does
(X(F)X*(f")) — 6(F — F')?

@ Noise: well-known problem, complicates estimation of noise and
timescales.

o Signal: when does a superposition of signals become sufficiently
“stochastic”? Complicates directional searches.

@ Resolved source (time and angular) removal: Great feature of GW signal
but will leave non-trivial residuals in the time-domain. e.g. LISA will see
at least a few high SNR>> 1 events per hour. All stochastic timestream
will contain residuals plus significant non-stochastic contribution from
SNR~ 1 signal.

@ This will complicate the spectral analysis by degrading spectral resolution
and make noise estimation harder.

@ cf CMB analysis; time-domain gaps, cosmic ray hits, noise
non-stationarities, glitches, etc.
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Noise estimation
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@ lll-conditioning problem: pre-compress harmonic space and direct to C,
estimation (cf. CMB interferomery “gridding” methods)?
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@ lll-conditioning problem: pre-compress harmonic space and direct to C,
estimation (cf. CMB interferomery “gridding” methods)?

@ ...null or Sagnac channels do change this...
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The data d (in frequency domain) can be expressed as

d=5+f~hr+#

(7)=(€) (7) = e war [ 5]
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Angular characterisation

@ Coherent detectors make very bad imagers (ill-conditioning of
reconstrcution).

@ Coherent detectors without ability to focus make even worse imagers.

@ LISA:"Stuck” with non-compact geometric response with limited phase
coverage.

@ Combination of response and noise power determines spectral sensitivity
at each frequency.

The data d (in frequency domain) can be expressed as

<32> - <§2>+<;2> =RPM+N=R [P,$+5n]

@ Angular characterisation will be a crucial step in noise estimation.

+A~hr+ i
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LISA Reponse and Noise

After angular integration we get:

LISA geometrical factor LISA response function

R(f)

107 10 102 107 107 102 10

3
Frequency [Hz) Frequency [Hz]

by combining noise and response we get the the strain (bottom right):

LISA noise spectra LISA strain sensitivities

10736
10733
1040
10-42
§ 10744
10756
10758
10750

1o 1074 1073 1072 1c|r’l e 107 1074 1073 1072 107!
Frequency [Hz] Frequency [Hz] 18/35
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LISA sky response

Axx(f=10"*%) Axx(f=1071) Axx(f=5x1071)

— — | — |
[ 1 [ 1 0 1

FIG. 2. Normalised auto-correlated response of TDI channel X, Axx, at time ¢ = 0 and in the Solar System Baycentre (SSB)
reference frame, at frequencies f = 10~ Hz, f = 107! Hz, f =5 x 10~ Hz from left to right respectively.

@ At peak sensitivity frequencies the “beam” has low structure £pax < 8.

@ The beam rotates around the triangle axis and along the Earth's orbit
(fills in very limited angular phase information m).

@ A lot of phase information is not sampled — missing sky modes.
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LISA Anisotropies

@ LISA: Expected sensitivity to anisotropy multipoles in intensity.

o wwnnnn
HO®NOUEWN PO

10°10

10-11

1074
107 107 1072 107!

F [Hz]
requeney T Bartolo at al. 2022
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High-¢ SGWB from space?

LISA
2.5 % 10% km DECIGO
TianQin @ 107 km

V3 x L0 km

Taiji rrn@e &
35100 em g . .

10-1

-- SNR: 674.4
SNR: 456.4

: e =W : ~— SNR: 68.0
H -
4 107 — snmi10.0
- -\_/ i 5.6/110.0
i - : j0-m| + RX]J0B06.3+1527 SNR: 78.0 DECIGO
DECIGO - 1200 .. DECIGO -~ «  ZTFJ1539+5027 SNR: 22.5

SDSS J0651+2844 SNR: 9.3

- 1075 = = = = ; s
. 10 10 107 1073 10 10 10°

f/Hz

Characteristic Strain

Gong & CC 2021.
@ Beat the fL/c factor by introducing long-baseline interferometry in space.

@ Concurrent missions: LISA, TianQin, Taiji?
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High-¢ SGWB from space?

10°
107!
z
2
1072
=
[
w
[
2
| 1073
[
-4
. —— 1xLISA
10 2 x LISA 0.7 AU
----- 2 x DeciHz 0.7 AU
5 —-- 2 x DEciHz 2 AU
10~
0 50 100 150 200 250 300

Angular multipole £

Baker et al. 2021
@ Resolution dramatically improves with long baseline in space.
@ Reminder: this is intensity (angular) resolution.
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Cosmic Variance - a new problem?

Multipole moment, /¢
2 10 50 500 1000 1500 2000 2500

6000 |

5000 |

4000 ¢
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1000

Temperature fluctuations [ 1 K2 ]

96° 18° I° 0.2° 0.1° 0.07°
Angular scale

Planck, ESA
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Cosmic Variance - GW interferometry

@ Growing number of baselines over
the next decade.

@ lterative improvement in
sensitivity.

@ Einstein Telescope (mid 30s?)

Mentasti, CC, & Peloso [2301.08074,
2304.06640]

@ Consider zero-noise limit.

@ Interferometers - covariance of
multipoles is not diagonal, despite
full-sky coverage.

@ Overlapping and finite
frequency coverage.
e Non-compact beam.

@ Calculate "SNR" of anisotropies
when variance is dominated by
monopole.

@ "How well can we measure a¢m's
in signal dominated limit?
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Cosmic Variance - GW interferome

Anisotropy (£, m) =(1,1) witha =0

103 — LVK
<oo+ LVKET
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T T T ° 10-1 '\.
“LVK" only e _ — N,
WKHET g L D0 LD 102 ™
cce+ET |1 Bat S B= T c— Y
s 107 =B L I T R
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1 1 10° — LK
- | | | | <ooo LVKET
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5 N
5 .
S 107 N,
\.
[Mentasti, CC, & Peloso, 2301.08074, 2304.06640] 10°
0" 10 107 100 107

Fiducial value Qg
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Map-making?

e o T T Strain intensity [x10°)

.(\ >  —

sty (10°)  oaen e o T st Strain itensly (10°)

Renzini & CC 2019

@ Yes, but only if 65V > 1072,
@ ...and assuming stationarity! (see e.g. Capurri et al. 2103.12037).
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LISA “map”?
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High-¢ SGWB from space?
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@ Concurrent missions: LISA, TianQin, Taiji?
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Golat & CC 2022

Astrometric deflections Timing residuals

Opas on(t)] 0.002 pas Ons Irr(t+7)| 250ns

characteristic strain h.

=== PTA mono. AMS mono.
L — PTA SGWB AMS SGWB
T

1017 Lo = I
10°® 1077 10°°

frequency f [Hz]
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Phase vs Frequency Measurements

LISA is a phasemeter. Measures the perturbation to the distance between two
stations (TDI - Time-Delay Interferometry).

Phase change:

§Dasg ~ ¢ [,% hdt ~ ch/f

Frequency change (Doppler):

D e ~ dufy b

Da—p,v

LISA uses TDI because it cannot compare frequencies between stations - local
oscillator (" clock”) is not stable enough leading to overwhelming laser
frequency noise.
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GW Observation with space clocks?

@ Lab-based optical lattice atomic clocks routinely reach 1071° relative
frequency stability.

@ This raw sensitivity is sufficient to measure astrophysical GWs if it can be
integrated on to the required frequencies.

@ Measuring the Doppler shift directly may have significant advantages for
the same technology and scale of e.g. LISA.

I it = Phase:

% \‘n‘ o~ 5+ 1y
210" | —— Phase s

% Fraquancy o Frequency:
S } dy ~ S, + N

Strain:
h~d, —n, ~ (dp — np)f

=)
————————

10° 10 1wt 107

GW Frequency [Hz]

e i
S
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GW Observations with space

Kolkowitz et al., PRD 94, 124043 (2016)

(@) f,,~3mHz £,,~500 mHz 107 gy
long Ramsey long Ramsey
107
k.
1078 <
LISA %

&

101

f4,=500 mHz f4,=500 mHz
short Ramsey Dynamical decoupling

107

10

Strain Sensitivity (1/Hz'2)

1010

Clocks/
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|
|
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GW Observations with cold atoms

O. Buchmueller, Cold atom group, Imperial College

AlIO

Magnetic —
sheild

4

Atom Interferometer

Observatory and Network

(photon)

-
States
reunited

Strontium atoms are cooled to a fraction
above absolute zero and then transported
10 the centre of a vacuum system.

The atoms are launched upwards and
spend around a second in fresfall.

As an atom falls, a laser pulse is fired at it
Because of its quantum properties, the atom
splits into two states — one that absorbs the.
‘energy and momentum of the laser photon
and recieves a kick - and one that does not

ind carries on falling. This creates two
“beams’ of falling atoms.

A second laser pulse reunites the atom in the.
‘excited state with its slower counterpart. A
final laser pulse is used to measure the atom.

If nothing interacted with the atoms as they fell
their signals will align. However, if something has
delayed one of the falling atoms, altered its path,
orits properties, the signals will ot align and an
interference pattern will be measured.

signal No signal
cancelsout  at detector

| | 'I/\

Strong signal
at detector

nals

sig signal
misaligned forced

In the case of gravitational waves, this would
involve a change in the shape of the space.
through which the atom is falling. In the case
of dark matter, it would involve a change in the
properties of the atom itself.

In effect, the two fallng atoms act like the two ams

of alaser interforometer like LIGO, Any changes in
the wavelength of one atom ‘arm’ will be become:
apparent when the signals are recombined,

Once the technique is
proven at the 10 metre
scale, the project will be

Laboratory. The hope is that
the project can then be

underground facilty.

9415 Pueyi9 uag ydesbojus

New ldeas
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Fundamental physics with cold atoms in space?

Badurina et al. 2020 @ Atom interferometry: MAGIS

(US), AION (UK/EU?), AEDGE

107 (SPACE?).
10—[?
£ 0 @ Phase or frequency
2 107
2 o measurements?
g 1020 “Tunable” target frequency range.
g . . .
% 10 @ Anisotropies: higher angular
107 resolution cf. LISA.
1072
R e @ Other tests of GR (scalar and

" A a
o 1w o ot w1t

Frequency [HZ] vector modes of time dependent

metric perturbations).
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Summary

@ Great prospects for characterisation of SWGBs over big range in
frequency.

@ LISA: significant real-world challenges - separation of stochastic
components/residuals will be difficult. Exploit both frequency and
angular structure.

@ Angular resolution will improve with addition of baselines to ground-based
network (but still ~ 10 degrees at current frequencies).

@ Long-baseline in space (~ 1 degree?)

@ Cold atoms?
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