Active damage mitigation of the blade leading edge erosion for a wind turbine during rainfall events

Álvaro Úbeda Ripoll Zhiyu Jiang Amrit Verma Jing Zhou

Leading Edge Erosion

- Reduction in aerodynamic efficiency
 - 6% reduction in lift
 - 86% increase in drag
- Repair intervention required
 - Up to 30.000,00€ per repair job
 - Up to 3 days of downtime per repair job
- Existing research include
 - Accelerated coating material tests
 - Computational frameworks for rainfall erosion
 - Cost analysis of LEE

Overview of a generalized simulation

- 10-minute simulation
- 5MW NREL Baseline wind turbine model
- New control tested for rainfall events
- **Reference case** without the alternative control also simulated.

Alternative control system modifications

Variation in reference values for each control system

- Reference rotational speed for the HSS (high speed shaft)
- Electrical **power output** of the generator

Rainfall data LEE post process

Springer model rainfall

- Material properties
- Rainfall characteristics (DSD)
- Droplet impact velocity (Dynamic simulations)

Parameter	Value
$ ho_s$	$1020 kg/m^{3}$
C_s	2480m/s
σ_u	37 MPa
m	6.1
u	0.42

Simulation set-up parameter	Value
Wind mean speed	$21 \mathrm{~m/s}$
Turbulence intensity	0.1423
Reduced main shaft speed	$8 \mathrm{rpm}$
Rainfall intensity	$50~\mathrm{mm/h}$
Median droplet size	$1.4643 \mathrm{~mm}$

င်္ကြ UiA

Simulation set-up parameter	Value
Wind mean speed	$21 \mathrm{m/s}$
Turbulence intensity	0.1423
Reduced main shaft speed	$8~{ m rpm}$
Rainfall intensity	$50~{ m mm/h}$
Median droplet size	$1.4643~\mathrm{mm}$

Simulation set-up parameter	Value
Wind mean speed	$21 \mathrm{~m/s}$
Turbulence intensity	0.1423
Reduced main shaft speed	$8 \mathrm{rpm}$
Rainfall intensity	$50~{ m mm/h}$
Median droplet size	$1.4643~\mathrm{mm}$

ର୍ଣ୍ଣ UiA

De Kooy Case

De Kooy Results

De Kooy

De Kooy Results

ର୍ଣ୍ଣ UiA

De Kooy Results

16

Discussion

Discussion

Contributions of the project

- Data set of dynamic wind turbine simulation results.
- Method for analysis of the longterm effects of a given control system.
- Deeper understanding of the long-term consequences of LEE.

Future work improvement

- Highly sensible to set-up parameters
 - Repair costs & times
 - Material properties
 - Wind turbine model
- More and longer simulations. Testing more weather and control conditions.

