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Abstract. Manufacturing is the foundation of any industrialized country and involves making 
products from raw materials using various processes. Additive manufacturing (AM) was initially 
developed as a technique for rapid prototyping to visualize, test, and authenticate a design before 
end-user production. FDM is the most commonly used additive manufacturing process for 
constructing products and prototypes. It encompasses numerous process parameters that impact 
the quality of manufactured products. Properly selecting these process parameters is crucial for 
producing products at a lower cost while enhancing mechanical properties, build time, and part 
quality, among other factors. Therefore, in the past, researchers have optimized the process 
parameters to achieve the desired product outcomes. In the present study, we provide an 
overview of FDM process parameters and review various design optimization methods. We 
present several experimental designs, such as the Taguchi method, response surface 
methodology, and design of experiments, as well as computational approaches like artificial 
intelligence, and machine learning.  

1.  Introduction 
In any industry, manufacturing is a challenging sector due to its extraordinarily complex components. 
Among the recent advances in the manufacturing sector, additive manufacturing (AM) is the most recent 
method for fabricating complex components from 3D Computer-Aided Design (CAD) geometry, using 
the process illustrated in Figure 1 [1]. The AM process builds 3D objects or products layer by layer from 
a Computer-Aided Design (CAD) model, and this capability has experienced unprecedented growth as 
a manufacturing tool in some corporations. Combined with the advances in topology optimization, AM 
process aims to reduce mass or utilize materials where needed and has been successfully adopted in 
many engineering applications [2]. The main advantage of the AM process is its ability to directly 
transform a computerized 3D model into a finished product without the need for auxiliary tools. This 
facilitates the production of complex geometric parts that are difficult to fabricate using conventional 
manufacturing processes [3].  



 
 
 
 

 
Figure 1.  General additive manufacturing process flow (Adapted from [13]) 

Among the first forefront industries that utilized the amazing capabilities of additive manufacturing 
to transform their production are aerospace [4], medical [5], electronics [6], transportation and 
automotive [7], construction [8], healthcare monitoring [9] and sustainable energy generation [10]. There 
are different types of additive manufacturing techniques that have been developed recently. According 
to the American Society for Testing Materials (ASTM), AM has been classified into seven processes 
technologies as illustrated in Figure 2(a) [11,12].  

From the various AM techniques, the fused deposition modelling (FDM) process is one of the most 
popular and commonly used [14,15] in the industry. The main reason for its wider application are that 
FDM is the most cost-effective method of manufacturing bespoke thermoplastic components and 
prototypes. Due to the lower cost of FDM printers and wider availability of thermoplastic m,aterials, the 
lead times are minimal and cheaper than other AM processes [11]. FDM was made commercially 
available in early1990s, after the FDM technique was patented by the co-founder of Stratasys, Scott 
Crump in 1989 [16]. In the FDM process, a continuous supply of thermoplastic filament on a spool is 
utilized for printing layers of material to build the part. As illustrated in Figure 2(b), after an 
uninterrupted supply of material filament is made available, it is heated to a semi-liquid phase by the 
heating element inside the liquefying head, and this semi-liquid thermoplastic is extruded through the 
extrusion nozzle on the printing bed or platform. 

   
  Figure 2. (a) Categorization of AM technologies and (b)  Setup of FDM process [15,20]. 

The main working principle of FDM is that the semi-liquid thermoplastic filament materials do not 
solidify immediately when they are extruded from the nozzle onto the printing plate; rather, these semi-
liquid thermoplastics for a particular layer under construction fuse together before curing or solidifying 
into a layer-wise stacked part at the surrounding ambient temperature [17]. The simplicity of the process, 
high-speed printing, and low cost are the main benefits of FDM. On the other hand, the disadvantages 
of FDM technique are process parameter-dependent mechanical properties (or anisotropic mechanical 
properties), poor surface quality, layer-wise or stair case appearance of parts, and limitation to 
thermoplastic polymers only because thermoplasticity is the essential property for a material to be 3D 
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printed through FDM technique [15,18]. Since the quality and mechanical characteristics of FDM-
printed parts essentially depend upon the proper (or optimal) selection of process parameters, making 
FDM suitable for mass production and more acceptable by industries, finding the optimal process 
parameter combinations to improve the part quality and mechanical properties becomes of utmost 
importance [19]. The various common FDM process parameters, along with their descriptions are 
presented in Table 1. 

Table 1 Process parameter of FDM and its description 

Process parameter  Description  Reference  
Layer thickness Height of layers deposited after extrusion, determined 

by nozzle tip diameter and material 
[14,15] 

Build Orientation Positioning of the part within the build platform in 
relation to X, Y, and Z directions. 

[14,19] 

Raster Angle/ Orientation Angle of material deposition with respect to the X-
direction on the build platform. 

[14,15,19] 

Air Gap Distance between adjacent FDM-printed tool paths on 
a single layer. 

[14,15,19] 

Extrusion temperature Temperature of thermoplastic filament materials inside 
the nozzle before extrusion. 

[15,19] 

Print Speed: Speed of the nozzle tip in the XY plane during 
material deposition. 

[15,19] 

Infill pattern Pattern used to form the internal structure of the FDM 
printed part (e.g., diamond, honeycomb). 

[15,19] 

Infill density/Interior infill Solidity of the internal structure of FDM printed parts. [15,19] 
Nozzle diameter Diameter of the extruder nozzle tip. [15] 
Raster width Width of deposited beads along the extruder tool path. [14,15,19] 
Number of contours Number of solid outer layers surrounding the internal 

infill pattern. 
[14,15] 

Contour width Thickness of the outer contour layers. [14,15] 
Contour to contour Air gap Distance between solid outer layers (contours). [15] 

 
The list in this table (Table 1) indicates that fabrication of components using FDM printing methods 

involve different processing parameters that play crucial roles in quality and performance of the printed 
parts. Accordingly, effects of these parameters on the quality of AM manufactured components have 
been investigated in several research works [14,15,19,21]. Finding an optimum process parameter that 
improves the surface quality and mechanical properties (i.e., tensile strength, fracture toughness, 
plasticity, hardness, brittleness, and fatigue strength) of manufactured components is one of the research 
areas studied by researchers. To find an optimum amount of each parameters different optimization 
techniques were used. Thus, the goal of this survey is to summarize the optimization techniques that are 
applied in FDM AM methods. This review covers the period from 2000 to September 2023, and it offers 
well-organized information on objectives, process parameters studied, constraints, and optimization 
techniques for FDM process. This information can be valuable for researchers seeking to identify trends, 
challenges, and future directions in research gaps that exist in FDM process parameter optimization. 

2.  Highlights of studies on FDM process 
 
In 2021, Dezaki, et al. [22] provided an overview of the research, development, and process optimization 
of FDM throughout history. They also presented an overview of the popular materials investigated to 
find out their features and mechanical properties in the FDM process. Similar work was also reported 
ion [23], where a review was made to know the insights of one such AM process, i.e., FDM. Dey and  
Yodo [19] conducted a thorough review of the current literature on the influence of parameters on part 
qualities, as well as existing work on process parameter optimization. In 2015, Mohamed et al. [14] 
reviewed the research carried out so far in determining and optimizing the process parameters of the 
FDM process. The trends for future FDM research in this area are described focusing on the research on 



 
 
 
 

each quality characteristics (static and dynamic mechanical properties, surface roughness, material 
behavior, and build time). Quite recently, Rajan et al. [24] reported a review that explains the various 
techniques used in 3D printing and the various polymers and polymer composites used in the FDM 
process. The list of mechanical investigations carried out for different materials, process parameters, 
properties, and the FDM process's potential application were discussed. This review indicated the 
materials and their optimized parameters to achieve enhanced properties and applications. Kohad et al. 
[25] reviewed the identification of various FDM process parameters that affect the quality of the 
fabricated parts. They were also evaluated on two factors that influence fabricated parameters.  

Even though there have been research achievements on FDM based AM process parameter 
optimization, the research directions for future development needs improvement. Some reviews about 
process parameter optimization in AM have been published, but mainly aiming at analyzing and 
discussing the general process parameter optimization work in [14,15,24,], but gaps are observed on 
study of the modelling and optimization methods of process parameter in FDM as main study. The 
review also does not identify the objectives, design variables, and constraints that were used by the 
researchers. There is no doubt that the methods of  modelling selecting or predicting an optimum process 
parameter for manufacturing high-quality components are a common problem for obtaining high quality 
product. Therefore, it is necessary to present a review of the process parameter modelling and 
optimization methods to summarize the existing achievements and give some future directions for 
further exploration in the finding of optimum process parameter for FDM based AM process. Besides, 
as far as the authors knowledge, similar review papers for process parameter optimization methods for 
FDM are neither under consideration nor have already been published elsewhere.  

3.   FDM process parameter modelling and optimization methods 
Different optimization techniques have been used to obtain an optimal combination of all process 
variables to either maximize or minimize one or more desired outputs. These techniques are also used 
for identifying the most influential process parameters, the interactions between various parameters, and 
the extent to which an AM process parameter individually affects the output variables. Thus, this section 
presents experimental design approach and computational approach used for process parameter 
optimization of FDM based AM.   

3.1.  Experimental design approach 

3.1.1.  Taguchi method. The Taguchi method, a statistical approach also known as robust design, is often 
used in experimental design to enhance the quality of manufactured goods across various industries [26]. 
It minimizes the number of experiments needed, providing a systematic means to optimize designs in 
terms of quality and cost using orthogonal arrays of factors. Taguchi's primary goal is to reduce 
variability around target product properties through statistical experimental design, known as robust 
design. This method is extensively employed in AM research too to explore the impact of process 
parameters on additively manufactured components using this method. It integrates statistical and 
mathematical techniques to optimize performance traits, revealing effects with fewer experiments and 
focusing on controlling signal factors while mitigating noise factors that contribute to unpredictability 
[27].  

Many studies used the Taguchi method along with analysis of variance (ANOVA) procedures to 
optimize the process parameters of FDM. These parameters include layer thickness [28–33], infill 
density [28,33] road width [30,31,34], speed of deposition [30,33], raster angle [29,31,32,35], air gap 
[29,31,32,35], raster width [29,35], slice height [35], deposition style [34], support style [34], print speed 
[28], direction of rotation [35], build orientation angle [35] and deposition orientation [34]. Most of the 
studies were conducted for ABS (acrylonitrile butadiene styrene) material with the goal of improving 
surface roughness [30,33,34] surface quality [31], dimensional accuracy [31,34], tensile strength [34], 
elastic performance [29,35], impact strength [33,35] build time [28,33]  and production time [32]. Using 



 
 
 
 

the ANOVA procedure, these researchers identified significant parameters such as layer 
thickness[30,32] raster angle[35], raster width[35], and build orientation.  

The Taguchi method was also employed for the optimization of FDM process parameters, namely 
wire-width compensation, extrusion velocity, filling velocity, and layer thickness of ABS material, to 
improve dimensional accuracy and reduce warpage deformation in printed parts [36]. Additionally, the 
method was combined with fuzzy logic to optimize process parameters such as layer thickness, 
orientation, raster angle, raster width, and air gap, with the aim of enhancing dimensional accuracy [37] 
Gray Taguchi method was also utilized to optimize FDM process parameters, including wire-width 
compensation, extrusion velocity, filling velocity, and layer thickness of ABS material to address 
dimensional errors and reduce warpage deformation in printed parts [38]. 

Other areas of application of the Taguchi method includes enhancing the quality of printed materials 
made from Polylactic Acid (PLA). For example, Maguluri et al [39] studied the influence of nozzle 
temperature, infill density, and printing speed on the tensile properties (elastic modulus, tensile strength, 
and fracture strain) using a Taguchi L8 array and obtained optimum values for each PLA specimens. 
Lokesh et al [40] studied the effect of various printing parameters (layer thickness, build orientation and 
raster angle) on the mechanical properties of PLA specimens processed and tested as per ASTM 
standards through the Design of an Experiment (DOE), where the Taguchi approach by L9 orthogonal 
array was employed. To assess whether process variables have any significant effects, an ANOVA was 
performed. It was observed that layer thickness has more influence than build orientation and raster 
angle. Liu et al. [41] established a new theoretical model to reveal the distortion mechanism of PLA 
thin-plate parts in the FDM process, a theoretical model based on the theory of elastic thin plates in 
thermoelectricity. An experimental research approach based on the Taguchi method was used for 
designing special specimens. Moreover, 81 test specimens were designed and prepared through the FDM 
process and measured by a portable 3D laser scanner. Two statistical analysis methods, signal-to-noise 
ratio (S/N) and ANOVA were applied to optimize the process parameters in order to reduce the 
distortion of thin-plate parts. The experimental results indicated that the optimal process parameters can 
be obtained and that the proposed theoretical model was efficient. 

  In several studies, the Taguchi method was employed to optimize various process parameters in 
FDM. Santhakumar et al. [43] investigated the improvement of impact strength by optimizing FDM 
process parameters for polycarbonate material. They studied four key process parameters (1) layer 
thickness, (2) build orientation, (3) raster angle, and (4) raster width, and concluded using ANOVA 
analysis, that the most influential factor for impact strength in polycarbonate material is layer thickness. 
Anitha et al. [42] examined the impact of parameters such as layer thickness, road width, and deposition 
speed on FDM parts utilizing an L18 orthogonal array for their experiments. They found that layer 
thickness significantly affects the minimum surface roughness of FDM parts. Similarly, Alhubail et al. 
[43] investigated the effects of FDM variables, including layer thickness, air gap, raster width, contour 
width, and raster orientation, on surface roughness and tensile strength using Taguchi design (L32). 
Jiang et al. [44] explored the optimization of process parameters for FDM of Polyetheretherketone 
(PEEK) for biomedical implants, employing the Taguchi method to enhance tensile strength, print 
speed, layer thickness, temperature, and extrusion width. Finally, in [45], Gray Taguchi design of 
experiments was used to optimize FDM parameters like layer thickness, print temperature, raster angle, 
infill part density, and infill pattern style, leading to improvements in tensile strength, flexural strength, 
impact strength, and compression strength. Filippidis et al. [46] used a combined Taguchi with I 
optimality and grey analysis to determine the optimal combination: priming/retraction speed (8 mm/s), 
layer thickness (0.4 mm), temperature (190 °C) and nozzle speed (40 mm/s). The major influential 
factors for FDM process parameter optimization were layer thickness followed by printing speed and 
temperature. 

3.1.2.  Response Surface Method. Response surface methodology (RSM) combines mathematical and 
statistical techniques for modelling and optimization. The fundamental goal of this approach is to 
optimize the responses that are affected by numerous input parameters or factors. RSM uses the DoE 



 
 
 
 

approach to gather enough data. The relationship between the controllable input parameters and the 
results can be established using RSM [47]. This method is also used for the modelling and optimization 
of process parameter of FDM to improve the quality of printed parts. 
      In the research conducted by Wang et al. [48], RSM was used to optimize a multi-temperature 
parameter system for FDM by examining the effects of temperature conditions (nozzle temperature, 
platform temperature, and environment temperature) on the tensile strength of carbon fiber/polylactic 
acid composite specimens using the constructed RSM model. The results showed that the RSM 
optimization method significantly improved tensile strength with a 3.2% gap compared to FDM results. 
Similarly, Mandge et al.'s research [49] utilized RSM to study the effect of process parameters such as 
infill percentage, shell wall thickness, and extrusion temperature on ABS specimen material using the 
statistical method of RSM and validating parameter significance using ANOVA. The goal was to 
overcome drawbacks such as printing time, machine speed, and surface quality while optimizing 
strength, thermal, and mechanical properties.  

In the study by Mohamed, et al. [50], critical FDM parameters, including layer thickness, air gap, 
raster angle, build orientation, road width, and number of contours, were investigated using Q-optimal 
response surface methodology. The study examined their effects on build time, feedstock material 
consumption, and dynamic flexural modulus. Mathematical models were developed to establish a 
functional relationship between processing conditions and process quality characteristics. ANOVA was 
employed to assess the adequacy and significance of these models. Optimal process parameter settings 
were determined, and a confirmation test was conducted to validate the models and settings. The results 
demonstrated that the Q-optimal design is a promising method for optimizing FDM process parameters 
and confirmed the adequacy of the developed models. 

Equbal et al. [51] examined the performance of ABS P400 parts manufactured using FDM under 
compressive loading. They studied the effects of varying levels of three FDM process parameters: (1) 
raster angle, (2) air gap, and (3) raster width on three responses, including compressive stress, percentage 
deformation, and breaking stress of the fabricated parts. Experimental results were analyzed using 
ANOVA, response graphs, and 3D surface plots, revealing the anisotropic nature of ABS P400 parts 
and the significant impact of chosen process parameters on compressive properties. The relationships 
between process parameters and responses were complex, and predictive models for these responses 
were developed and validated through additivity tests. Multi-objective optimization using the 
desirability function approach was employed to discover the best combination of FDM process 
parameters, and the results were validated with a confirmatory test. The study provided valuable insights 
into the effects of critical FDM parameters on compressive properties beyond CS, including % D and 
BS of ABS P400 fabricated parts. 

 Comparison of Taguchi method with RSM was also reported [52] using four operating parameters, 
namely (1) extrusion temperature, (2) layer thickness, (3) raster width and (4) print speed. In addition, 
their interaction terms were identified as control variables with three levels, while tensile strength and 
compressive strength were selected responses. L27 orthogonal array and face-centered central 
composite design (FCCCD) were used for the experimental approach for Taguchi and RSM, 
respectively. The S/N ratio and ANOVA were employed to find the optimal FDM parameter 
combination as well as the main factor that affect the performance of the PLA samples. Based on 
experimental results, it was observed that both the Taguchi method and RSM succeed in predicting 
better results compared with the original groups. In addition, the optimum combinations for tensile 
strength and compressive strength obtained from the RSM were 2.11% and 8.15% higher than the 
Taguchi method, respectively. Also, Panda et al. [53] studied five important process parameters such as 
layer thickness, orientation, raster angle, raster width and air gap, considering their effects on three 
responses viz., (1) tensile, (2) flexural and (3) impact strength of test specimen. Experiments were 
conducted using central composite design (CCD) and empirical models relating each response and 
process parameters were developed. The models were validated using ANOVA. Finally, bacterial 
foraging technique was used to suggest theoretical combination of parameter settings to achieve good 
strength simultaneously for all responses. 



 
 
 
 

3.1.3.  Factorial design. Full Factorial Design (FFD) is a classical optimization approach that employs 
statistical methods to demonstrate the relationship between variable parameters influencing the response 
through a linear regression model [54]. Information necessary for constructing the response model is 
gathered through experimental or simulation work, and the FFD method can be employed to examine 
the effects of multiple independent variables and the extent of their interaction simultaneously. In 
statistics, a full factorial design consists of two or more variables in the experimental design, each with 
discrete possible values or levels, and the experimental units take on all possible combinations of these 
levels across all variables. This method allows for the study of the effects of each component on the 
response variables and the interactions among the factors on the response variable [27].  
       Various factorial designs were utilized for modeling and optimizing process parameters in FDM 
printed parts, such as 23 [55], 32 [55], 25 [56], and 24 [57] full factorial designs. These designs 
encompassed parameters such as model temperature [55,58], layer thickness [55,56], part fill style [55], 
orientation [56], contour width [56], raster angle [56,57], part raster width [56], air gap [57–59], raster 
orientation [58], bead width [58], color [58],  build orientation [59], raster width [57–59], build layer 
[59], part orientation [57], and build laydown pattern [59]. The primary objectives of these studies were 
to enhance tensile strength [57,58], surface roughness [55], reduce porosity [59], improve compressive 
yield strength [59], compressive modulus [59], compressive strength [58], support material volume [56], 
and  build time [56] for FDM printed parts. Also for the 3D printed bottom housing part made from 
PLA, Haidiezul et al. [60] employed FFD to optimize shrinkage on the printed parts. The results of the 
optimization work demonstrated that the FFD approach significantly improved dimensional accuracy 
compared to the specified drawing for the printed part.  Gebisa & Lemu [61,62] employed a FFD of 
experiment on high-performance ULTEM 9085 polymeric material, investigating the impact of five 
process parameters (air gap, raster width, raster angle, contour number, and contour width). The study 
revealed that only the raster angle significantly affects the material's tensile [62] properties, and raster 
angle and raster width have the greatest effect on the flexural properties [61] of the material. 

3.2.  Computational approaches 

3.2.1.  Genetic Algorithm (GA). The GA is a computational method employed for optimizing process 
parameters within both conventional manufacturing industries [63] and in the realm of FDM. 
Specifically, it played a pivotal role in optimizing a myriad of process parameters. These encompassed 
layer thickness [64–67],  orientation angle [64,65,67], raster angle [64,65,67], raster width [64,65,67], 
printing temperature [66], infill pattern [66], slice thickness [68], road width [68], liquefier temperature 
[68], and air gap [65,67,68]. The overarching aim was to minimize dimensional variability [65], reduce 
build time [69] , enhance accuracy [69], refine surface roughness [68], and meticulously control porosity 
[68] in FDM parts. Furthermore, this adaptable algorithm tailored its optimization strategies for various 
materials, including polymeric biocomposites [65], ABS [64], and copper-reinforced ABS [66]. Diverse 
GA types were harnessed, exemplified by the hybrid genetic algorithm [64] and the innovative three-
step genetic algorithm-based approach [69]. Moreover, the GA was seamlessly integrated with different 
experimental design methodologies to optimize FDM process parameters. Notably, it harmonized with 
the Taguchi L9 technique [66] and was paired with RSMs [64,68] to achieve unprecedented precision. 

3.2.2.  Artificial Neural Network. The optimization of FDM process parameters for part quality 
improvement by using traditional methodologies will be costly and time consuming for the required 
level of precision. Thus, researchers give attention to an artificial neural network (ANN) method for 
process parameter modelling and optimization.  

Giri et al. [70] used critical process parameters as inputs to ANN and a number of contours to 
optimize and enhance the properties of FDM printed parts such as tensile strength, surface roughness, 
and build time. The material used for 3D printing was PLA. The task of training the data sets and 
optimizing them was accomplished by using function approximation of ANN, which predicted 
experimental data with a coefficient of correlation R = 0.9981, 0.9984, 0.99837 for tensile strength, 



 
 
 
 

build time, and surface roughness, respectively. The root mean square error obtained for the three ouputs 
was 0.5543, 0.578 and 0.241. Further, they identified that build orientation is the most important 
parameter for optimum results. Research from Lyu and Manoochehri [53] presented the study on the 
predictive model to help the process parameter optimization for dimensional accuracy in the FDM 
process. Three process parameters, namely extruder temperature, layer thickness, and infill density were 
considered in the model. To achieve better prediction accuracy, three models were studied, namely 
multivariate linear regression, ANN), and Support Vector Regression (SVR). These models were used 
to characterize the complex relationship between the input variables and dimensions of fabricated parts. 
Based on the experimental data set, it was found that the ANN model performs better than the 
multivariate linear regression and SVR models. The ANN model was able to study more quality 
characteristics of fabricated parts with more process parameters of FDM. Correspondingly, the paper 
presented by Selvam et al. [71] characterized the influence of five manufacturing parameters on a part’s 
ultimate tensile strength (UTS) and modulus of elasticity (E) experimentally, which was used to train 
an ANN. This ANN forms the basis of a capability profile that was shown to be able to represent the 
mechanical properties with RMSEP of 1.95 MPa for UTS and 0.82 GPa for E. They validated the 
capability profile and incorporated into a generative design methodology enabling its application to the 
design and manufacture of functional parts.  

In addition to the above-discussed methods, there are also other methods used for optimizing process 
parameters of FDM. For instance, enabled teaching learning based algorithms [72] and particle swarm 
optimization [73–75] were used for optimizing the process parameter of FDM to improve the quality of 
manufactured parts.  

4.  Discussion  

4.1.  Observation of the trends and challenges in FDM parameter optimization 
In today’s competitive market, the quality of manufactured parts like surface finish, mechanical strength, 
dimensional accuracy, manufacturing cost, etc. is most important to satisfy and attract customers. But 
as discussed earlier in this paper, the quality (such as flexural strength, hardness, tensile strength, 
compressive strength, dimensional accuracy, surface roughness, production time, yield strength, and 
ductility) of parts produced by FDM based AM process highly depends upon various process 
parameters. For that, process parameter optimization of the FDM process must be carried out as a 
continuing research. Different process parameter modelling and optimization methods were applied by 
researchers during the development history of FDM based AM. In the present work, a review of methods 
used for AM process parameter optimization is presented.  

To provide a review of optimization procedures for AM parameters, the applications of different 
optimization methods, such as the Taguchi method, genetic algorithms, artificial neural networks, 
response surface methodology, and factorial design, in the optimization process of FDM parameters are 
investigated. From this review, it is clearly observed that Taguchi method is mostly used and suggested 
for optimizing the process parameter of FDM process parameters. Taguchi helps to determine optimal 
sequence and ANOVA technique helps to determine which parameters are most significant and their 
percentage contribution. Taguchi methodology is widely used for the single and multi-optimization.  

Even if different process parameter optimization methods were used to find optimal process 
parameters to improve surface finish, aesthetics, mechanical properties, model material consumption, 
and build time, there are still no perfect optimal conditions for all types of parts and materials [14]. It 
depends on the materials and indicates that for some materials, layer thickness is the critical parameter, 
and for others, another critical parameter do exist. So, future researchers must focus on finding the 
optimal condition for each material. With the same concept, there is no optimal condition for different 
mechanical properties. For instance, layer thickness is critical for flexural, tensile, and compressive 
strength. But for surface roughness and other properties, layer thickness is not the first critical parameter. 
Thus, identifying the optimal condition for each parameter for each property based on the applications 
area is expected. Also, it has been observed that there is no any method which considered all process 



 
 
 
 

parameters of FDM in optimization. So, for the future, it is expected that all parameters will be 
considered.   

In terms of the quality of the manufactured components by all methods FDM processed parts 
normally have lower mechanical properties and surface finish than the parts made by conventional 
manufacturing process such as injection moulding [14,78]. To improve the part quality and mechanical 
properties for FDM fabricated parts, it is necessary to understand the relationship between material 
properties and process parameters.  

In terms of material properties, most of the studies are mainly focused on optimizing the process 
parameters using the methods mentioned above for the mechanical properties of ABS parts. However, 
there have been no published research articles relating to the optimization of FDM process variables for 
the thermal, chemical, and dynamic mechanical properties of FDM fabricated parts in other material 
forms. Therefore, much research work is needed in this area in the future. 

Most of the researchers have taken air gap, layer thickness, raster angle, raster width, and build 
orientations as input (variable) parameters. Air gap, layer thickness, and raster angle are important 
parameters to consider while studying the effects of process parameters on the required responding 
characteristics. In this method, the majority of the researchers have done their work by considering the 
FDM parameters like air gap, layer thickness, and raster angle. In the end, they concluded that layer 
thickness is the most significant factor for build time, increasing impact strength, and minimizing surface 
roughness in FDM. 

Regarding the constraints in the optimization, there is a physical constraint imposed on the FDM 
machine that influences the selection of the optimal process settings and must be taken into account in 
future studies. The first constraint is that some FDM machines allow only four specific values of layer 
thickness, which are 0.1270, 0.1778, 0.2540, and 0.3302 mm. Apart from these, the operator cannot 
choose any other value because they are restricted by the nozzle diameter. The second practical 
constraint is that each nozzle diameter has its own raster width range. The third practical limitation is 
that the operator can only use a limited number of contours when required. In this case, the operator will 
not be allowed to use any other values in this range[14,15]. As a result, it becomes challenging to 
optimize the FDM process parameters in the presence of several such constraints. Therefore, it will be 
difficult for traditional DOEs to address this type of problem. Therefore, new optimization techniques 
and mathematical modeling must be created in order to get around these restrictions and make the ideal 
parameters realistic and practicable in real-world applications. 

FDM processes involve a multitude of interconnected parameters, often leading to complex, 
nonlinear relationships. Adjusting one parameter can have unexpected consequences on others, making 
it challenging to predict the overall impact on the final product's quality. This complexity is further 
exacerbated in high-dimensional parameter spaces, where optimization becomes resource-intensive and 
time-consuming. Engineers and researchers often grapple with finding the right balance between various 
parameters to achieve the desired results. 

The use of computational methods for FDM parameter optimization can place significant demands 
on resources. Finite Element Analysis (FEA), Computational Fluid Dynamics (CFD), and machine 
learning algorithms require substantial computational power and time, limiting their applicability in 
environments with resource constraints. The iterative nature of optimization can also lead to extended 
production times, potentially affecting project schedules. Moreover, collecting and processing large 
datasets for machine learning-based optimization approaches can be daunting, requiring careful data 
management and analysis. 

FDM encompasses a wide range of materials, each with its unique properties and behavior. This 
material variability poses a considerable challenge in optimization efforts. Different materials may 
demand distinct optimization approaches due to variations in melting points, viscosities, and thermal 
conductivities. Material properties can change over time due to factors such as humidity and storage 
conditions, necessitating adjustments to optimization parameters. Additionally, maintaining consistent 
material extrusion throughout the printing process is crucial, and any deviations can lead to variations 
in printed parts, making it harder to maintain optimized settings. 



 
 
 
 

4.2.  Future directions 
As FDM technology continues to evolve, several promising avenues and innovations are shaping the 
future of FDM parameter optimization. These future directions aim to further enhance the efficiency, 
quality, and adaptability of FDM processes. 

The integration of real-time monitoring and control systems is a crucial step in the evolution of FDM 
parameter optimization. By incorporating sensors and feedback mechanisms into 3D printers, 
manufacturers can dynamically adjust parameters during the printing process. This capability enables 
rapid response to variations in environmental conditions, material properties, or part geometry. Real-
time monitoring can also detect anomalies or defects as they occur, allowing for immediate corrective 
actions. The adoption of Industry 4.0 principles, including the Internet of Things (IoT) and data 
analytics, will play a pivotal role in realizing this vision of adaptive and self-optimizing FDM systems. 

The development of new materials specifically tailored for FDM applications is an exciting frontier. 
Innovations in materials chemistry and engineering are expected to yield materials with improved 
properties, such as enhanced strength, thermal resistance, or biocompatibility. These advanced materials 
will expand the range of applications for FDM, from aerospace components to medical implants. 
Moreover, material development will address the challenges of material variability in parameter 
optimization, as optimized settings may need to adapt to the unique characteristics of each material. 

The integration of FDM into smart factories and Industry 4.0 environments is a transformative trend. 
Smart manufacturing systems will seamlessly connect FDM printers with other production equipment 
and databases, facilitating data-driven decision-making and process optimization. This integration will 
enable real-time tracking of production progress, quality control, and inventory management. 
Furthermore, it will allow for the exchange of optimization insights across the entire manufacturing 
ecosystem, fostering collaboration and knowledge sharing among manufacturers and researchers. 

Future FDM parameter optimization approaches will likely incorporate multi-objective optimization 
techniques. Rather than focusing solely on a single optimization criterion (e.g., cost or quality), these 
methods will consider multiple objectives simultaneously. This will enable manufacturers to strike a 
balance between conflicting goals, such as minimizing production time while maximizing part quality. 
Multi-objective optimization algorithms will provide decision-makers with a range of Pareto-optimal 
solutions, allowing them to choose the one that best aligns with their priorities. 

Artificial intelligence (AI) and machine learning (ML) will continue to advance in the context of 
FDM parameter optimization. These technologies will become more sophisticated in predicting optimal 
parameters and identifying patterns in data, making them invaluable tools for manufacturers. As datasets 
grow and computational power increases, AI and ML models will provide more accurate and efficient 
optimization solutions. 

5.  Conclusions 
 
Optimizing additive manufacturing process parameters is crucial for achieving cost-effective production 
while enhancing mechanical properties, build time, part quality, and more. In this paper, we examine 
several Design of Experiments (DOE)-based parameter optimization techniques applied to optimize 
process parameters in FDM. The methods considered encompass both experimental design and 
computational approaches for FDM process parameter optimization. Common methods include the 
Taguchi method, RSM, ANN, full factorial design method, among others, which are widely used in 
optimizing process parameters for FDM technique. This review work identified key FDM process 
parameters, including air gap, layer thickness, nozzle temperature, bed temperature, build orientation, 
raster width, and raster angle, that have been subjects of previous studies and possibly to be further 
investigated.  

As AI techniques continue to mature, they are expected to remain attractive and powerful tools for 
optimizing process parameters in FDM. Thus, future works in this direction will focus on use of ML 
techniques in AI. 
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