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Abstract. Offshore support structures are critical for offshore bottom-fixed wind turbines,
as they bear nearly all the mass and loading of wind turbine systems. In addition, the
support structures are generally subjected to a harsh environment and require a design life
of more than 20 years. However, the design validation of the support structure normally needs
thousands of simulations, especially considering the fatigue limit state. Each simulation is
quite time-consuming. This makes the design optimization of wind turbine support structures
lengthy. Therefore, an effective approach for estimating the fatigue damage of wind turbine
support structures is essential. This work uses a machine learning method named the AK-
DA approach for cumulative fatigue damage of wind turbine support structures. An offshore
site in the Atlantic Sea is studied, and the related joint probability distribution of wind-wave
occurrences is adopted in this work. The IEA 15MW wind turbine with monopile support
structure is investigated, and different wind-wave conditions are considered. The cumulative
fatigue damage of the monopile support structure is estimated by the AK-DA approach. The
numerical results showed that this machine learning approach can efficiently and accurately
estimate the cumulative fatigue damage of the monopile support structure. The efficiency is
increased more than 55 times with an error of around 1%. The AK-DA approach can highly
enhance the design efficiency of offshore wind support structures.

1. Introduction
In pursuing sustainable energy solutions, wind power has emerged as a prominent source of
renewable electricity generation. Many works [1, 2, 3, 4, 5, 6] have been carried out for wind
turbine structures. Yang et al.[1] did a reliability-based design of wind turbine sub-structure
optimization. Wang and Kolios [3] proposed a framework for system reliability assessment of
offshore monopiles considering soil-solid interaction and harsh marine environments. Ren et al.
[2, 5] compared different dynamic simulation approaches of wind turbine jacket foundations and
carried out structural reliability analysis of jacket structures with machine learning approaches.
Yu et al. [6] built a predictive model for the mooring line failure diagnosis and motion control.
To increase wind power generation, the new trend is to install wind turbines offshore, as offshore
wind has higher and uniform wind speeds. Offshore wind turbines are commonly classified into
bottom-fixed and floating wind turbines (FWTs). Compared to the bottom-fixed wind turbines,
the technologies of FWTs are not yet mature. Therefore, the installed offshore wind turbines



are mostly bottom-fixed. Among the installed bottom-fixed wind turbines, more than 70% off-
shore wind turbines are with monopile support structures. Wind turbine support structures like
monopiles are critical components that bear the weight of massive turbine components, endure
the forces of dynamic wind loads, and ensure the safe and efficient operation of wind turbines
throughout their operational lifespan. The design of these support structures is fundamental to
the success of wind energy projects. According to the design codes [7] and [8], fatigue limit state
and ultimate limit state are the two most essential criteria for offshore wind turbine structure
design.

Among these two design criteria, the fatigue limit state is more complex as offshore wind tur-
bine structures experience a large combination of wind and wave conditions during their lifetime.
Further, the load responses are highly dynamic, fully coupled, and sensitive to wind and wave
combinations. This means one needs to consider all wind-wave combinations individually when
estimating fatigue. The fatigue estimation will, therefore, require the computation of a large
number of load cases, requiring simulation times of a few thousand hours, for the accurate
representation of fatigue damage. To tackle this problem, different solutions [9, 10] have been
proposed for the fatigue damage assessment. They can be roughly classified into two types: (1).
fatigue damage estimation in the frequency domain [9], and (2). reduced load cases for fatigue
damage estimation [10]. In addition, due to the powerful capacity of machine-learning tech-
niques, some researchers used machine-learning approaches for offshore wind turbine reliability
assessment [11, 12] and fatigue damage estimation [13, 14]. More recently, Huchet et al. [15] and
Ren and Xing [16] proposed efficient active learning approaches for cumulative fatigue damage
estimation of offshore wind turbine structures. The proposed active learning approaches have
demonstrated high efficiency and accuracy for the fatigue damage assessment of wind turbine
towers.

Considering the importance of wind turbine support structures and the efficiency of active
learning approaches, we apply an active learning approach named AK-DA proposed by [15] for
the cumulative fatigue damage estimation of monopile support structures. The IEA 15MW wind
turbine model with monopile support structure [17] is investigated in this work. In addition, the
AK-DA approach assumes that the joint probability of wind-wave occurrence is already known.
Thus, one offshore site in the Atlantic Sea and its joint probability distribution are considered
in this work. The layout of this paper is organized as follows: Section 2 presents the IEA 15MW
wind turbine models and monopile support structures. The classical fatigue damage estimation
approach is also given in this work. Section 3 overviews the AK-DA approach and the related
joint probability of wind-wave occurrences in the Atlantic sea. Section 4 gives the results of
cumulative fatigue damage estimation. In the end, the conclusion and discussion are given.

2. Wind turbine model and support structures
2.1. The IEA 15MW wind turbine model with monopile support structures
The IEA 15MW wind turbine with a fixed-bottom monopile support structure [17] is shown in
Fig.1. This wind turbine is a Class 1B direct-drive machine with a rotor diameter of 240 meters
and a hub height of 150 meters, which is jointly designed by the National Renewable Energy
Laboratory (NREL) and the Technical University of Denmark (DTU). The monopile structure
is designed as an isotropic steel tube. More detailed information on the wind turbine model can
be found in the original report [17]. In this work, the aero-hydro-servo-elastic simulation of the
IEA 15MW wind turbine is conducted through OpenFAST codes [18].



Figure 1. The IEA 15MW wind turbine with monopile support structures [17]

2.2. Load-stress in the monopile support structure
For the wind turbine tower and monopile structures, the normal stress typically dominates the
fatigue damage. The normal stress at the monopile structures can be calculated as follows:

σ(α) =
Fz

A
− Mx

Ix
R sinα+

My

Iy
R cosα (1)

where Fz is axial force; A is nominal cross section area; Mx and My are side-to-side bending
moment and fore-after bending moment, respectively; Ix and Iy are sectional moments of area; R
is the radius of the cross-section; α is the azimuth angle. The force (Fz) and moments (Mx and
My) can be obtained from the OpenFast simulation. In this study, the fatigue damage caused
by the normal stress at the mud line is assessed, and the dimension of the monopile structure
at the mud line is given in Table 1.

Table 1. Mudline monopile parameters [17]

Location Height (m) Outer diameter (m) Thickness (mm)

Mudline monpile -30 10 55.341



2.3. Classicial cumulative fatigue damage estimation approach
The cumulative fatigue damage can be calculated as follows:

D =

nc∑
i=1

ρidi (2)

where ρi is the probability of occurrence of ith wind-wave case, nc is the total number of wind-
wave cases. and di is the fatigue damage value of ith wind-wave case. The fatigue damage di
value can be calculated based on the time series stress by Rainflow counting technique [19, 20]
and the S-N curve of the material property, which gives:

di =
∑
s

ns

Ns
(3)

Where s is the stress range in MPa, ns is the number of cycles obtained using the Rainflow
counting method at the stress range s, and Ns is the number of cycles to failure at the stress
range s. According to the design code [8], the Ns value can be calculated as follows:

log10Ns = log10 ā−m log10
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s
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t
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)k
)

(4)

Where m is the negative slope of the S-N curve and log10 ā is the intercept of the S-N curve. The
parameters t and tref represent the thickness of the wind turbine structure and the reference
thickness, respectively, depending on the connection type of steel structures. In the context of
this study, t refers explicitly to the monopile thickness, while tref is a fixed value of 25mm. For
the fatigue analysis of the present study, the S-N curve D in the seawater from the DNV code
[8] is employed, with the exponent m set to 3, the logarithm of the reference stress amplitude
log10 ā assigned to 11.764, and the constant k set to 0.20.

3. The AK-DA approach
3.1. The overview of the AK-DA approach
In the AK-DA approach [15], the Kriging model is employed for the prediction of simulated
fatigue damage across various wind-wave cases. Subsequently, the expression for the estimated
long-term cumulative fatigue damage (D̂) is as follows:

D̂ =

nc∑
i=1

d̂iρi (5)

Here, d̂i represents the predicted damage value by the Kriging model for the ith wind-wave
case, and ρi is the related probability of occurrences. The variance of the predicted cumulative
fatigue damage can be expressed as follows:

σ2
D̂
= VAR(

N∑
i=1

pid̂i) =
N∑
i=1

N∑
j=1

pipjCOV(d̂i, d̂j) (6)

Where COV(d̂i, d̂j) denotes the covariance between d̂i and d̂j . The coefficient of variation (δD̂)
for the predicted cumulative fatigue damage can be computed as follows:

δD̂ =
σD̂
D̂

(7)



The AK-DA approach aims to reduce the coefficient of variation value (δD̂) by updating the
Kriging model with the enriched samples. The enriched wind-wave cases are selected as follows:

i∗ = argmax pi

N∑
j=1

pjCOV(d̂i, d̂j) = argmax Ci (8)

where i∗ denotes the enriched wind-wave case number. The active learning process will stop
when the convergence criterion (δD̂ ≤ 0.01) is satisfied. The general flowchart of the AK-DA
approach can be summarized in Fig. 2, where ni is the total number of initial training samples.

Figure 2. The general flowchart of AK-DA approach

3.2. Wind-wave probability of the occurrences
In the AK-DA approach, it is assumed that the probability of wind-wave occurrences has been
pre-established. This paper adopts the joint wind and wave distribution presented in the work
of Li et al. [21]. Utilizing the one-hour mean wind speed (Uw), significant wave height (Hs), and
wave peak period (Tp), a long-term joint wave and wind distribution are constructed, yielding
the following:



fUw,Hs,Tp(u, h, t) ≈ fUw(u) · fHs|Uw
(h | u) · fTp|Hs

(t | h) (9)

fUw() represents the marginal distribution of Uw, fHs|Uw
() denotes the conditional distribution

of Hs given Uw, and fTp|Hs
() is the the conditional distribution of Tp given Hs. Li et al. [21]

conducted a study on the joint wind-wave distribution of five different sites. In these sites, Site
one, Sem Rev, with a water depth of 40 meters, is suitable for the IEA 15MW wind turbine
with monopile support structures. Therefore, the simplified joint distribution derived from Site
One is utilized in this investigation. Further information regarding the joint distribution can
be found in the work by Li et al. [21]. It should be noted that this study assumes alignment
between wind and wave direction, and the potential misalignment between wind and wave is
not addressed.

4. Cumulative fatigue damage estimation of the monopile support structure
In this section, the cumulative fatigue damage of the mud line monopile support is estimated
by the AK-DA approach. Different wind-wave cases are considered and a total of 4032 cases are
investigated in this work. As listed in Table 2, the mean wind speed is from the cut-in wind speed
(3 m/s) to the cut-out wind speed (25 m/s), with an interval of 2 m/s. The significant wave
height is from 0.5m to 8m, with an interval of 0.5m. Also, the peak period time is from 5s to 15s,
with an interval of 0.5s. The intervals of Uw, Hs and Tp are following the recommendations from
the design code [7]. Also, a 4000-second simulation is conducted for each wind-wave case, but
the first 400 seconds are not considered. Furthermore, the initial wind-wave cases for training
the Kriging model in the AK-DA approach are also given in Table 2. The initial wind-wave cases
can normally be selected by the grid sampling based on each parameter design space. Only 60
wind-wave cases are used to train Kriging model at the beginning of the AK-DA approach.

Table 2. Wind-wave cases considered for the cumulative fatigue estimation

Parameter Domain of variation Discretization Number of cases Initial grid samples

Uw(m/s) [3, 25] 2 12 [3, 7, 11, 19, 25]
Hs(m) [0.5, 8] 0.5 16 [1, 4, 7]
Tp(s) [5, 15] 0.5 21 [5, 8, 11, 14]

Total cases N = 4032 ni = 60

The global one-hour cumulative fatigue damage at the mud line of monopile support is calculated.
The final results of the AK-DA approach and the related simulation results are given in Table 3.
In Table 3, the simulation calls mean that a total of simulated wind-wave cases, D1H denotes the
global one-hour cumulative fatigue damage, Diff. represents the absolute percentage difference
between the simulated and predicted damage values, the increased efficiency is calculated based
on the simulation calls between the simulation approach and the AK-DA approach. As shown
in Table 3, only 72 wind-wave cases are required for the AK-DA approach to estimate the
cumulative fatigue damage. The absolute difference between the simulated reference and the
AK-DA approach is just around 1%. The efficiency is increased more than 55 times. The
final prediction results of the AK-DA approach at different mean wind velocities are given in
Fig.3, compared with the simulated values. As shown in Fig.3, the prediction results of AK-DA
approaches are nearly the same compared to the simulated references.



(a) Uw = 9m/s : pd (b) Uw = 9m/s : pd̂

(c) Uw = 13m/s : pd (d) Uw = 13m/s : pd̂

(e) Uw = 19m/s : pd (f) Uw = 19m/s : pd̂

Figure 3. Simulated values pd and Final predicted values pd̂ at different mean wind velocities



Table 3. Results of AK-DA approach compared to the simulation reference

Approach Simulation calls D1H (10−5) Diff. (%)
Increased efficiency
(times)

Simulated reference 4032 2.797 - -
AK-DA 72 2.826 1.03 56

5. Conclusion
In this work, we apply a machine learning method, the AK-DA approach, to estimate the cu-
mulative fatigue of monopile support structures in the IEA 15MW wind turbine. The joint
wind-wave distribution at one offshore site in the Atlantic Sea is used in this paper. The global
one-hour cumulative fatigue damage in the mud line of monopile structures is estimated by the
AK-DA approach. The predicted results are compared to the simulated references. The results
indicate:

The AK-DA approach can efficiently and accurately estimate the cumulative fatigue damage of
the monopile support structures. The efficiency can be increased more than 55 times with an
error of around 1%. This machine-learning method can significantly reduce the computational
effort required for fatigue damage estimation in the design process of wind turbine support
structures. The AK-DA approach can be an effective tool for wind turbine support designers,
which can greatly reduce the fatigue damage estimation time and accelerate the iterative design
process.

Of course, no work is perfect. This work only considers that the wind-wave direction is aligned,
and no misalignment between wind-wave directions is considered. Also, only one location at the
monopile is considered for fatigue damage estimation. In the future, the wind-wave direction
misalignment should be included, and more locations in the monopile support structures will be
considered.
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