
Hard Thermal Loops
Resummations and collective modes

• To see the emergence of collectivity, consider resummed propagators 

• Quarks: in vacuum propagating massless quark (antiquark) with positive 
(negative) chirality to helicity ratio , with  
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Figure 19: The longitudinal and transverse HTL spectral functions on the left and right
respectively. In both plots the three-momentum is fixed at q = 0.5mD. We show the space-
like Landau cut in solid black and the Dirac �-function at the time-like plasmon pole in dashed
red.

plasmon pole is a Dirac �-function. Indeed, in the propagators (78) and (79),
plasmons have zero width. This is just a leading-order e↵ect: the more precise
statement is that the position of the plasmon pole, determined by the real part
of the self energy, is of order gT , while the width of the plasmon, also called
gluon damping rate, is of order g

2
T . This means that the first arises from a

one-loop diagram in the HTL limit, i.e. with hard momenta running through it,
while the latter requires soft momenta through the loop and thus a consistent
HTL resummation, including both resummed propagators and vertices. Indeed,
the determination of the gluon damping rate at vanishing momentum within the
HTL theory and the proof of its gauge invariance represented one of the first
successes of the HTL approach [57, 58], as well as one of the first computational
tours de force within the theory. With a similar approach, theO(g2T ) correction
to the plasma frequency was computed in [59].

For what concerns the discussion of the collective modes of fermions, there
exist many parallels with what we have just illustrated for gluons. While we
refer to reviews such as [5] or textbooks such as [3] for more details, we give
a brief summary of the di↵erences and similarities. Rather than longitudinal
and transverse modes, the retarded self energy ⌃R given in Eq. (71) can be
decomposed in modes with positive or negative chirality-to-helicity ratios. In
detail, one finds that
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where q

0 is understood to be q
0 + i✏. At positive (negative) frequencies the

massless bare theory only has a positive (negative) chirality-to-helicity mode,
with !

+(q) = q (!�(q) = �q) . In the HTL theory, both modes develop
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Hard Thermal Loops
Collective quark modes

• In the time-like sector plasmons: collective excitations with modified 
dispersion relation. At vanishing momentum 

, propagating, massive modes for both 
helicities! Plasma oscillations 
At large , at positive frequency the negative chirality/helicity 
mode has exponentially small residue, positive chirality/helicity modes 
have  asymptotic mass. The opposite happens at neg 
freq. In-between: numerical solution, plasmino
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respectively. In both plots the three-momentum is fixed at q = 0.5mD. We show the space-
like Landau cut in solid black and the Dirac �-function at the time-like plasmon pole in dashed
red.
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Figure 19: The longitudinal and transverse HTL spectral functions on the left and right
respectively. In both plots the three-momentum is fixed at q = 0.5mD. We show the space-
like Landau cut in solid black and the Dirac �-function at the time-like plasmon pole in dashed
red.
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Figure 20: The positive (top) and negative (bottom) chirality-to-helicity fermion modes in the
HTL theory. In both figures, we show the position of the time-like pole above the light-cone
bisector and the contours of the spectral function in the Landau cut below the bisector, in
units of m1. Note that each spectral function is not odd in !, as the self energies obey
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R(�!, q) = �⌃⌥
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[60]. Also in this case, the asymptotic limit agrees with the full one-loop
result for hard fermions. At intermediate momenta the negative chirality-to-
helicity mode, called the plasmino, displays non-monotonic behavior, as shown
in Fig. 20. Such a mode can be understood as a collective excitation where
the positive frequency fermion mixes with the negative frequency anti-fermion.
Indeed, for small q the behavior of !�(q) is that of a negative energy state:
it decreases as q increases. These time-like modes, whose pole position is of
order gT , are long-lived: their width is of order g

2
T , as in the case of gluonic
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• Plasmino: a collective excitation where the positive frequency fermion 
mixes with the negative frequency anti-fermion. Negative freq. derivative!



Hard Thermal Loops
Causality and “old” sum rules

• The analytical properties of amplitudes are dictated by causality. 

• They can be used to obtain sum rules: perform complicated-looking 
integrals analytically 

• Textbook causality examples: retarded (advanced) propagator analytical in 
the upper (lower) half-plane in the complex frequency  

• “Old” sum rules for HTL propagators at fixed three-momentum exploit it 
 

• Aside: HTLs are classical (see Kurkela), kept only the classical-field part T/ω

excitations. The quark damping rate thus requires a similar HTL-resummed
calculation, which was presented, for vanishing momentum, in [61] (see also [62]
for a discussion of gauge invariance).

In the space-like region Landau damping manifests itself also for soft quarks,
corresponding physically to scatterings of the soft, virtual, space-like quark with
the hard constituents of the medium. The contours of the quark HTL spectral
functions in the Landau cut are shown in Fig. 20.

4.1.3. Sum rules
We now turn to an illustration of sum rules that can be obtained from the

analytical properties of the amplitudes, owing to causality. These sum rules also
provide insights into the physical picture behind the HTL amplitudes. We start
by illustrating the classic sum rules, which can be found in textbooks such as
[3]. In the chromoelectric case we have
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with dA = N
2
c
� 1 standing for the dimension of the adjoint representation of

SU(Nc). We only consider the field-based definition on the first line at leading-
order, so we omit the Wilson line connecting the two fields and ensuring gauge
invariance. The result on the second line can be easily obtained from the ana-
lytical properties of the spectral function, which is the di↵erence of the retarded
and advanced propagators. These are in turn analytic on the upper and lower
half-planes in !, as dictated by causality. The retarded (advanced) integration
can then be closed above (below) the real axis without encountering any non-
analytic structures from the propagators themselves. The pole at ! = 0 from
the Bose–Einstein distribution contributes to the longitudinal integration only.
The longitudinal and transverse propagators in Eqs. (78) and (79) decay as 1/!
at large !, so both generate a contribution when closing the contours away from
the real axis. The sum of these contributions yields Eq. (83) [52, 63, 64].

With the same methods we can also look at the magnetic correlator, which
reads
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(84)
As anticipated, the contour sum rules not only lead us to the simple closed form
results of Eqs. (83) and (84), but they furthermore make the underlying physical
picture more transparent. At large q, we expect to see only the two transverse
degrees of freedom, equally distributed by equipartitioning, which is indeed the
case in both the electric and the magnetic condensates, which both become
2T . At vanishing q, we on the other hand expect to see the three degenerate
polarizations of plasmons in the electric case, i.e. chromoelectric fields, which
is again borne out by Eq. (83) that reduces to 3T at vanishing q. On the
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Hard Thermal Loops
Causality and “old” sum rules

• In the complex plane (see blackboard) the only contributing structures are 
the zero-mode pole at  and the asymptotic behaviour at ω = 0 |ω | → ∞
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• In the complex plane (see blackboard) the only contributing structures are 
the zero-mode pole at  and the asymptotic behaviour at ω = 0 |ω | → ∞
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4.1.3. Sum rules
We now turn to an illustration of sum rules that can be obtained from the

analytical properties of the amplitudes, owing to causality. These sum rules also
provide insights into the physical picture behind the HTL amplitudes. We start
by illustrating the classic sum rules, which can be found in textbooks such as
[3]. In the chromoelectric case we have
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with dA = N
2
c
� 1 standing for the dimension of the adjoint representation of

SU(Nc). We only consider the field-based definition on the first line at leading-
order, so we omit the Wilson line connecting the two fields and ensuring gauge
invariance. The result on the second line can be easily obtained from the ana-
lytical properties of the spectral function, which is the di↵erence of the retarded
and advanced propagators. These are in turn analytic on the upper and lower
half-planes in !, as dictated by causality. The retarded (advanced) integration
can then be closed above (below) the real axis without encountering any non-
analytic structures from the propagators themselves. The pole at ! = 0 from
the Bose–Einstein distribution contributes to the longitudinal integration only.
The longitudinal and transverse propagators in Eqs. (78) and (79) decay as 1/!
at large !, so both generate a contribution when closing the contours away from
the real axis. The sum of these contributions yields Eq. (83) [52, 63, 64].

With the same methods we can also look at the magnetic correlator, which
reads
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As anticipated, the contour sum rules not only lead us to the simple closed form
results of Eqs. (83) and (84), but they furthermore make the underlying physical
picture more transparent. At large q, we expect to see only the two transverse
degrees of freedom, equally distributed by equipartitioning, which is indeed the
case in both the electric and the magnetic condensates, which both become
2T . At vanishing q, we on the other hand expect to see the three degenerate
polarizations of plasmons in the electric case, i.e. chromoelectric fields, which
is again borne out by Eq. (83) that reduces to 3T at vanishing q. On the
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Figure 21: Contributions to IE in Eq. (83). On the left we plot, for ! > q, the position
of the transverse (solid black) and longitudinal (dashed red) plasmon poles. Under the ! =
q bisector, for q > !, we plot the contours of the Landau cut contribution to Eq. (83),
divided by Tm2

D. On the right, we plot in dashed blue and dot-dashed red the contributions
from the transverse and longitudinal poles, respectively. The transverse and longitudinal cut
contributions are drawn in dotted blue and red. The overall total is plotted in solid black.

other hand, as we will discuss in Sec. 6.2, the gauge invariance of MQCD—the
e↵ective, static theory of chromomagnetic modes at the scale g

2
T which shall

be illustrated later in Sec. 6.3.1—prevents from generating a third degree of
freedom for chromomagnetic fields in the IR, which is why IB is constant as
a function of q. These considerations are reflected not just in the integrated
results, but in the integrands as well: in the limit of small q, the integral of
⇢T appearing in IE is dominated by its pole (!2 � q

2) part, whereas IB is
dominated by its cut (q2 > !

2) part. This reflects the fact that at small q, the
plasmon contains only electric fields oscillating with the hard particles, while
the magnetic fields are unscreened. In Figs. 21 and 22 we plot separately the
pole and cut contributions to these integrals.

Similar sum rules, motivated again by causality, can be derived in the fermion
case as well and can be found in textbooks [3].

As we have remarked, causality is responsible for the sum rules we have just
illustrated. In a way, this is a textbook application of causality, as it relies on
the basic property of analyticity of the retarded propagator on the upper half of
the complex ! plane. However, causality allows for stronger statements, which
can be used to derive sum rules that apply on the light cone. To this end, let
us consider the light-cone causality of retarded propagators, which implies

D
R(q+, q�, q?) =

Z
dx

+
dx

�
d
2
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i(q+x
�+q

�
x
+
�q?·x?)

D
R(x+

, x
�
,x?) (85)

is an analytic function of q+ ⌘ (q0 + qz)/2 on the upper half-plane at fixed
q
� ⌘ q

0 � qz and q?. This is because the retarded response function is only
non-zero in the forward light cone 2x+

x
� � x

2
?
. Thus the integral in Eq. (85)

has support only for x
�

> 0, and the Fourier integral provides an analytic
continuation in the upper half q

+ plane, due to the decreasing exponential
e
iq

+
x
�
[65]. In other words, retarded functions are analytical on the upper half-
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Hard Thermal Loops
Causality and new sum rules

• Let us look at transverse momentum broadening, important ingredient for 
collinear radiation 

• Hard particle propagating eikonally in the  direction 

• Rate: correlator of eikonal Wilson lines at finite transverse separation 
Casalderrey-Solana Teaney hep-th/0701123

x+ = (x0 + xz)/2

too are related by the same universality to those determined for q̂ in [29].

The presence of two such large corrections, the classical ones at order g and beyond, and

the quantum radiative ones at order g2 ln2(LmedT ), together with the recent developments

on both sides, such as the present availability of high-quality non-perturbative data for the

classical corrections, naturally begs the question of which of the two corrections, if any, can

be considered parametrically larger than the other.

Motivated by this question, in this paper we address the connection of the two corrections

in the case of a weakly-coupled quark-gluon plasma. We will revisit the calculation of radiative

corrections with full accounting of the thermal length and momentum scales. We shall show

how the e↵ect of Bose enhancement for the radiated gluon, as well as the possibility of

absorption of thermal gluons — neither was included in previous analyses — modifies the

shape of the double-log-enhanced region in the frequency–formation time plane, thus changing

the argument of the double logarithm. On a more technical standpoint, we also show how the

regions giving rise to classical and quantum corrections meet at their shared boundary, and

how this can be rephrased in terms of the mapping to the Euclidean 3D theory introduced

by Caron-Huot.

Our analysis will be mostly limited to the largest double-logarithmic corrections only and

it will adopt the so-called harmonic-oscillator approximation: we shall discuss some smaller

corrections and provide a pathway to the determinations of missing ones.

The paper is organized as follows: in Sec. 2 we review the determination of double-log-

enhanced radiative corrections. In Sec. 3 we show how this derivation needs to be modified to

account for the presence of a weakly-coupled dynamical medium and we present there our main

results. In Sec. 4 we provide, for the interested readers, more details on our derivations and

on the connection to the classical regime of Caron-Huot, while in Sec. 5 we provide a pathway

towards the investigation of radiative corrections beyond the harmonic-oscillator and double-

logarithmic approximations. Finally, in Sec. 6 we draw our conclusions. Our conventions, as

well as more technical detail on the calculations, are collected in the appendices.

2 The double-logarithmic phase space in the literature

As our starting point, let us call C(k?) the di↵erential-in-transverse-momentum scattering

rate, also known as scattering kernel, i.e.

C(k?) ⌘ (2⇡)2
d�

d2k?
, q̂(µ) =

Z µ d2k?
(2⇡)2

k2? C(k?) , (2.1)

where d�
d2k?

is the rate for the hard jet parton of energy E � T and momentum along z to

acquire k? transverse momentum — see App. A for our conventions.

µ is some process-dependent UV regularisation for the Coulomb logarithm in the leading-

order scattering kernel, C(k?) / k�4
? for k? � gT . We shall treat µ as a parameter, without

necessarily identifying it with the saturation scale Q2
s = q̂Lmed as done in [29]. In the

case of QCD, asymptotic freedom would in principle make the integration UV-finite, but it

– 3 –
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• Let us look at transverse momentum broadening 
 

• Power counting 
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Hard Thermal Loops
Causality and new sum rules

• Let us look at transverse momentum broadening 
 

• This looks complicated for soft gluons 

• Space-like separations and causality come to the rescue however, and 
give us a powerful new(er) “sum rule”: a connection to a dimensionally-
reduced Euclidean theory 

• Let’s see in detail



• For : equal time correlators: Euclidean (recall first lecture) 
 

• Consider the more general case  
 

• Change variables to  

t/xz = 0

| t/xz | < 1
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Euclideanisation
Causality and analiticity

•  has support for  and , i.e. . Hence 
retarded functions are analytical in the upper plane in any time-like or 
light-like variable  
 

•  analytical in , only poles are the Matsubara modes in  
 
 
where  renamed back to 

DR(X) x0 > 0 2x+x− > x2
⊥ x+ > 0, x− > 0

(q+ = (q0 + qz)/2, q− = q0 − qz)
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Figure 21: Contributions to IE in Eq. (83). On the left we plot, for ! > q, the position
of the transverse (solid black) and longitudinal (dashed red) plasmon poles. Under the ! =
q bisector, for q > !, we plot the contours of the Landau cut contribution to Eq. (83),
divided by Tm2

D. On the right, we plot in dashed blue and dot-dashed red the contributions
from the transverse and longitudinal poles, respectively. The transverse and longitudinal cut
contributions are drawn in dotted blue and red. The overall total is plotted in solid black.

other hand, as we will discuss in Sec. 6.2, the gauge invariance of MQCD—the
e↵ective, static theory of chromomagnetic modes at the scale g

2
T which shall

be illustrated later in Sec. 6.3.1—prevents from generating a third degree of
freedom for chromomagnetic fields in the IR, which is why IB is constant as
a function of q. These considerations are reflected not just in the integrated
results, but in the integrands as well: in the limit of small q, the integral of
⇢T appearing in IE is dominated by its pole (!2 � q

2) part, whereas IB is
dominated by its cut (q2 > !

2) part. This reflects the fact that at small q, the
plasmon contains only electric fields oscillating with the hard particles, while
the magnetic fields are unscreened. In Figs. 21 and 22 we plot separately the
pole and cut contributions to these integrals.

Similar sum rules, motivated again by causality, can be derived in the fermion
case as well and can be found in textbooks [3].

As we have remarked, causality is responsible for the sum rules we have just
illustrated. In a way, this is a textbook application of causality, as it relies on
the basic property of analyticity of the retarded propagator on the upper half of
the complex ! plane. However, causality allows for stronger statements, which
can be used to derive sum rules that apply on the light cone. To this end, let
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Euclideanisation
Causality and analiticity

•  analytical in , only poles are the Matsubara modes in  
 

• Soft physics dominated by  (and t-independent) =>EQCD! 
 
 

• NB: forgot  denominators everywhere
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Caron-Huot PRD79 (2009)

Grr(t,x)soft = T

Z
d3p eip·x GE(!n = 0,p)



Euclideanisation
Causality and analiticity

• Soft physics dominated by  (and t-independent) =>EQCD! 
 

• In our case, recalling that 

n = 0

iGR(ω, p) = GE(ωE = − i(ω + iϵ), p)

Caron-Huot PRD79 (2009)
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Z
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Euclideanisation
Causality and analiticity

• The latest result could have been obtained (for the zero mode only) from 
the complex plane directly, Aurenche Gelis Zaraket

Caron-Huot PRD79 (2009)



Hard Thermal Loops
Fermionic sum rules and the photon rate

• The proper evaluation of the soft contribution to the photon rate requires HTL 
resummation for the photon rate. Landau damping will then make this 
contribution IR finite.  
 
 
 
 
 
 
Single line soft, double line hard (they can’t be both soft, ). The cut goes 
through any of the infinite HTLs

k ∼ T

⇧<

g2 soft(K) =

= + + + . . .

Figure 23: The diagram contributing to the soft region at leading order, Eq. (96). The double
lines are hard quarks, such as S(P +K) in the diagram above, whereas the dotted single line
represents the bare soft propagator S(P). The single plain line is the HTL-resummed soft
quark propagator and curly lines with an extra line running through them are hard gluons.
Figure taken from [32, 34].

forms of the propagators (see Appendix A), we find
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(97)

where we used S
<(�P) = �S

>(P) = �(1� nF(p0))(SR(P)� SA(P)). We can
now make use of the fact that K � P, so that �((P + K)2) ⇡ �(2kp�), with
the previously defined light-cone coordinates. Futhermore, for soft momenta
nF(p0 ⇠ gT ) = 1

2 . Hence
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Using the explicit form in Eq. (81) to take the trace, we find
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where the � function puts the hard quark on shell, resulting in

⇧<

g2 soft(K) =2e2
X

i

Q
2
i
nF(k)

Z
dp

+
d
2
p?

(2⇡)3

✓
1� p

+

p

◆
⇢
+(p+, p� = 0, p?)

+

✓
1 +

p
+

p

◆
⇢
�(p+, p� = 0, p?)

�
. (100)

38

Bare prop.HTL prop.



Hard Thermal Loops
Fermionic sum rules and the photon rate

• The proper evaluation of the soft contribution to the photon rate requires 
HTL resummation for the photon rate. Landau damping will then make this 
contribution IR finite 
 

• Using the KMS relations this is 
 

However, not all operators are dominated by the zero mode. Let us consider
the longitudinal analogue of Eq. (86), i.e.
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(93)
which is quite clearly related to the longitudinal component of the Lorentz force
for the same eikonal source. At LO for soft momenta this becomes
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which evidently is not sensitive to the zero mode. In this case a di↵erent type
of light-cone sum rule applies, based on the same analyticity properties rooted
in causality. When dealing with the retarded (advanced) contribution to the
spectral function we are then free to deform the integration contour away from
the real axis in the upper (lower) half plane, on an arc at fixed, large |q+|. On
this arc, |q+| � mD, q? and the structures in Eq. (78) and (79) reduce to their
asymptotic, light-like limit, which can only depend on the asymptotic thermal
mass of transverse excitations. Indeed we find [66, 68, 69]

FL = T


1� q

2
?

q
2
?
+M2

1

�
, (95)

where the first term in brackets arises from the longitudinal modes and the
second from the transverse ones: as expected, the result depends on M1.

For what concerns fermions, which have odd Matsubara frequencies, no
equivalent of Eq. (88) can exist. There exists however an equivalent of Eqs. (93)
and (95) [34, 70], which depend on m1 and are of relevance for thermal photon
production [34] and for right-handed neutrino production in the Early Universe
[70]. In the former case the sum rule permits a simple, analytical evaluation of
the leading-order contribution to the photon rate from soft quark momentum;
let us briefly see how it comes about, to tie back to our discussion at the begin-
ning of Sec. 4. While Eq. (61) vanishes when both quark propagators are bare,
which is appropriate when they are both hard, P � K ⇠ T and P ⇠ T , this is
no longer the case when one of these two is soft, P ⇠ gT , which, as we have
argued, is where a logarithmic IR divergence appears in the naive treatment of
Eqs. (63) and (64).

To properly deal with the P ⇠ gT region we must perform HTL resumma-
tion, as shown diagrammatically in Fig. 23. This gives
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with a factor of 2 accounting for the P � K ⇠ gT region. Using the explicit
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g2 soft(K) =

Figure 23: The diagram contributing to the soft region at leading order, Eq. (96). The double
lines are hard quarks, such as S(P +K) in the diagram above, whereas the dotted single line
represents the bare soft propagator S(P). The single plain line is the HTL-resummed soft
quark propagator and curly lines with an extra line running through them are hard gluons.
Figure taken from [32, 34].
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Figure 23: The diagram contributing to the soft region at leading order, Eq. (96). The double
lines are hard quarks, such as S(P +K) in the diagram above, whereas the dotted single line
represents the bare soft propagator S(P). The single plain line is the HTL-resummed soft
quark propagator and curly lines with an extra line running through them are hard gluons.
Figure taken from [32, 34].
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Figure 23: The diagram contributing to the soft region at leading order, Eq. (96). The double
lines are hard quarks, such as S(P +K) in the diagram above, whereas the dotted single line
represents the bare soft propagator S(P). The single plain line is the HTL-resummed soft
quark propagator and curly lines with an extra line running through them are hard gluons.
Figure taken from [32, 34].
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• See where this is going?  integration, retarded functions 
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Figure 23: The diagram contributing to the soft region at leading order, Eq. (96). The double
lines are hard quarks, such as S(P +K) in the diagram above, whereas the dotted single line
represents the bare soft propagator S(P). The single plain line is the HTL-resummed soft
quark propagator and curly lines with an extra line running through them are hard gluons.
Figure taken from [32, 34].
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Figure 23: The diagram contributing to the soft region at leading order, Eq. (96). The double
lines are hard quarks, such as S(P +K) in the diagram above, whereas the dotted single line
represents the bare soft propagator S(P). The single plain line is the HTL-resummed soft
quark propagator and curly lines with an extra line running through them are hard gluons.
Figure taken from [32, 34].
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where the � function puts the hard quark on shell, resulting in
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Figure 23: The diagram contributing to the soft region at leading order, Eq. (96). The double
lines are hard quarks, such as S(P +K) in the diagram above, whereas the dotted single line
represents the bare soft propagator S(P). The single plain line is the HTL-resummed soft
quark propagator and curly lines with an extra line running through them are hard gluons.
Figure taken from [32, 34].
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Figure 23: The diagram contributing to the soft region at leading order, Eq. (96). The double
lines are hard quarks, such as S(P +K) in the diagram above, whereas the dotted single line
represents the bare soft propagator S(P). The single plain line is the HTL-resummed soft
quark propagator and curly lines with an extra line running through them are hard gluons.
Figure taken from [32, 34].
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Figure 23: The diagram contributing to the soft region at leading order, Eq. (96). The double
lines are hard quarks, such as S(P +K) in the diagram above, whereas the dotted single line
represents the bare soft propagator S(P). The single plain line is the HTL-resummed soft
quark propagator and curly lines with an extra line running through them are hard gluons.
Figure taken from [32, 34].
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where the � function puts the hard quark on shell, resulting in

⇧<

g2 soft(K) =2e2
X

i

Q
2
i
nF(k)

Z
dp

+
d
2
p?

(2⇡)3

✓
1� p

+

p

◆
⇢
+(p+, p� = 0, p?)

+

✓
1 +

p
+

p

◆
⇢
�(p+, p� = 0, p?)

�
. (100)

38

p+

Analytic

this statistical function as 1
2 � nF (k0 + p0) ' 1

2 � nF (k) and use the identity

nB(k) (1� 2nF (k)) = nF (k) . (4.2)

Bringing everything together,
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If we had evaluated W< directly without going to the r, a basis we would have written this

down immediately.

Now we evaluate Eq. (4.3) expanding in P ⇠ gT ⌧ K ⇠ T . This expansion will

enforce eikonality on the hard line, which is essential for the sum rules described below. It

is convenient to write each propagator in terms of its components of positive and negative

chirality-to-helicity ratio:

⇢(P ) = h+
P
⇢+(P ) + h�

P
⇢�(P ) , h±

P
⌘

�0 ⌥ p̂ · ~�

2
, (4.4)

with p̂ = p/p. For the hard line, we use an eikonal approximation

⇢+(P+K) ' 2⇡�(vk · P ) = 2⇡�(p�) , ⇢�(P+K) = 2⇡�(p0 + k + |p+k|) ' 0 , (4.5)

and thus the hard line is a function of p� only. Using this delta function simplifies the

traces, which we expand in small P :
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We insert the leading-order piece of this trace into Eq. (4.3), finding
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(4.7) {leadingW}

The factor of two in front takes care of the kinematic region where K + P is soft and P is

hard, which gives the same result after a shift of integration variables.

Next consider the p+ integration in Eq. (4.7). We will perform the integral using

analyticity methods similar to those discussed in App. B. The key is that Eq. (4.7) in-

volves ⇢(p�, p+, p?) = SR(p�, p+, p?)�SA(p�, p+, p?). Due to causality, the retarded and

advanced functions are analytic in any timelike or null momentum variable in the upper

and lower half planes respectively, generalizing the familiar analyticity properties of these

functions in p0 [21]. In particular, SR(p�, p+, p?) is analytic in the upper half of the com-

plex p+ plane, while holding p� and p? fixed. We are therefore free to deform the p+

integration contour: instead of integrating just above and below the real axis for SR and

SA respectively, we integrate along an arc at large p+ where gT ⌧ p+ ⌧ T – see Figure 13.

Along these arcs the integrand has a remarkably simple behavior, which can be obtained

by expanding the HTL propagator listed in App. A, yielding
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where the upper (lower) sign refers to the positive (negative) chirality-to-helicity com-
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The other components of the propagators in the r, a basis can be obtained through Eq. (2.3).

B Gauge invariant condensates
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Here coordinates are written as triples (x+, x�, x?) with x� = (t� z) and x+ = (t+ z)/2,

so that t = z = x+ when x� = 0 and X · P = x? · p? � x�p+ � x+p�. U(x1;x2) is the
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Hard Thermal Loops
Fermionic sum rules and the photon rate

• Finally one finds 
 
 
 

• This is UV log-divergent, removes log sensitivity of naive contribution. A 
finite result is thus obtained analytically 

• Still missing the collinear contribution 

⇧<

g2 soft(K) =

Figure 23: The diagram contributing to the soft region at leading order, Eq. (96). The double
lines are hard quarks, such as S(P +K) in the diagram above, whereas the dotted single line
represents the bare soft propagator S(P). The single plain line is the HTL-resummed soft
quark propagator and curly lines with an extra line running through them are hard gluons.
Figure taken from [32, 34].

forms of the propagators (see Appendix A), we find
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where we used S
<(�P) = �S

>(P) = �(1� nF(p0))(SR(P)� SA(P)). We can
now make use of the fact that K � P, so that �((P + K)2) ⇡ �(2kp�), with
the previously defined light-cone coordinates. Futhermore, for soft momenta
nF(p0 ⇠ gT ) = 1
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Using the explicit form in Eq. (81) to take the trace, we find
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where the � function puts the hard quark on shell, resulting in
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g2 soft(K) =

Figure 23: The diagram contributing to the soft region at leading order, Eq. (96). The double
lines are hard quarks, such as S(P +K) in the diagram above, whereas the dotted single line
represents the bare soft propagator S(P). The single plain line is the HTL-resummed soft
quark propagator and curly lines with an extra line running through them are hard gluons.
Figure taken from [32, 34].
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In the above result, we recognize the fermionic analogue of Eq. (94): the
⇢
± ⌘ S

±

R
� S

±

A
fermionic spectral function play the role of those of longitudinal

and transverse gluons. The analyticity in the upper (lower) half of the complex
p
+ plane of the retarded (advanced) functions allow us to deform the integration

away from the real axis to the arcs at large, complex p
+, where the propagators

again greatly simplify, becoming sensitive only to the shift in the dispersion
relation at the light cone. Indeed we find [34]
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where at large positive p
+ the constant term in square brackets comes from the

S
� contribution and the other term from the S

+ contribution.
As expected, Eq. (101) is UV log-divergent. The divergence can be regular-

ized with a cuto↵ µ
LO
?

on p?, as shown graphically in Fig. 14; when regularizing
Eqs. (63) and (64) in the same scheme (see [38] and footnote 7 of [34] for de-
tails) one recovers a finite, cuto↵-independent result. We recall that a complete
leading-order photon rate necessitates also the evaluation of the collinear con-
tribution, which is the subject of the next section.

4.2. Collinear physics: LPM resummation

So far we have been talking about the complications that arise from soft
kinematics, where (one of) the particles in the discussion has all four-momentum
components that are soft, i.e. O(gT ). As we mentioned in the introduction to
Sec. 4, there is another kinematic region where intricacies arise, as noticed by
Aurenche et al. [39, 71–73] in the context of thermal photon production: the
collinear region. There the particles are hard with momenta of order T , their
virtualities are of order g

2
T

2 and their angular separations are of order g, as
we showed in Figs. 13 and 14. Where the physics is sensitive to this kinematic
region, it is necessary to perform a further resummation, di↵erent from HTL, in
order to correctly describe the physics. Such resummation scheme traces back
to the works of Landau, Pomeranchuk [74, 75], and Migdal [76] (LPM) in the
context of bremsstrahlung in QED, later generalised to the physics of QCD by
Baier, Dokshitzer, Mueller, Peigné, and Schi↵ [77, 78] and Zakharov [79, 80].
In the context of Thermal Field Theory, this was introduced by Arnold, Moore,
and Ya↵e [81, 82], whose formalism we will follow in this review, in its position-
space formulation. We are in particular indebted to the heuristic derivation in
[83] and to the extended and detailed derivation in [84]. A useful Rosetta stone
between the many di↵erent formalisms and associated notations can be found
in App. A of [85].

4.2.1. Introduction and physical picture
The physical origin of the complication is related to the quantum mechan-

ical formation times of scatterings in medium. Consider for concreteness the
splitting of a hard parton (the parent) to two softer partons (the children);
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Collinear physics
Another failure of the naive loop expansion

Figure 11: The first-order graphs for ⇧<. Figure taken from [34].

A thermal QCD medium can be considered weakly coupled to photons, so
that the latter are not in equilibrium and their production is a rare event. Under
these assumptions, a classic derivation [33] finds that the photon emission rate
per unit volume is, at first order in ↵em = e

2
/(4⇡),

dN�

d4Xd3k
⌘ d��

d3k
=

⇧<(K)

(2⇡)32k
, ⇧<(K) =

Z
d
4X e

�iK·X hJµ(0) Jµ(X )i , (60)

where K = (k, 0, 0, k) is the photon’s lightlike momentum—we assume k ⇠ T—
and the electromagnetic current reads J

µ ⌘
Pnf

i
eQi i

�
µ
 i for nf quarks—

assumed to be massless in what follows—with electric charges Qi.
Eq. (60) requires the computation of a Wightman function, ⇧<(K). As such,

the optimal technique for its evaluation lies in the cutting rules of Sec. 3.3, where
the “<” version of Eq. (55) is easily obtained by changing all occurrences of >

to <. At zeroth order in g, we would then have the simple one-loop diagram
shown in Fig. 10.

As shown there, the cut of that diagram corresponds to the square of the
tree-level photon emission, which is well known to vanish kinematically for real
photons, which cannot be emitted from on-shell quarks. Indeed, the straight-
forward application of Eq. (55) to that diagram results in

⇧<

g0(K) = �
Z

d
4P

(2⇡)4
Tr

⇥
(eQ�µ)S<(P +K)(eQ�µ)S

<(�P)
⇤
, (61)

where the retarded and advanced amplitudes in Eq. (55) are Marr(K;P +
K,�P) = eQ�

µ. As Eq. (30) shows, the S
< propagators are proportional

to the fermion spectral density ⇢F (P), S<(P) = �nF(p0)⇢F (P), which in the
bare limit used in ordinary perturbation theory in the interaction representation
reads ⇢F (P) = �/P✏(p0)2⇡�(P2).8 It is then straightforward to verify that the
d
4P integration vanishes over the product of the two �-functions putting the

two quarks on shell, as anticipated.

8 Our convention for the Dirac algebra is slightly nonstandard, in that we choose {�µ, �⌫
} =

�2gµ⌫ . Normally (see the extensive discussion in App. E of [35]) the mostly-plus metric is
associated with a factor of i to the � matrices, so that the anticommutator maintains a plus
sign, as in the case of the mostly-minus metric.
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We conclude this overview of the leading-order calculation by noting that the momen-

tum integration regions that contribute here are best identified by their scaling in terms

of P . In Fig. 7 we map these momentum regions in the (p+, p?) plane. The scaling of p�

can be obtained from momentum conservation.

p?

p+
gT

gT

T

µLO
?

T

�| s
oft

�| h
ard

�|coll

CollinearSoft

Hard

Figure 7. Momentum integration regions in the (p+, p?) plane contributing to the leading-order
calculation. The µLO

? label indicates a LO cancellation of UV/IR log divergences between the soft
and hard regions respectively. {fig_lomap}

2.2 Next-to-leading order corrections
{sub_overview_NLO}

At next to leading order, the full result is a sum of the leading order rate and its O(g)

correction

d��

d3k

����
LO+NLO

=
d��

d3k

����
LO

+
d���

d3k
. (2.13)

As in the leading order calculation, the NLO rate arises from distinct kinematic regions

and the NLO correction can be parametrized as

d���

d3k
=

d���

d3k

����
soft

+
d���

d3k

����
coll

+
d���

d3k

����
semi�coll

. (2.14)

The soft and collinear regions are the same kinematic regions as in the leading-order calcu-

lation, while the semi-collinear region is an additional kinematic region whose contribution

starts at NLO.
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• If  the intermediate quark is close to the mass shell: photon 
emission is collinear and enhanced 

• This Bethe-Heitler process is of the same order as the hard+soft 2<->2 
contributions

Q ∼ gT

Q Q



Collinear physics
Another failure of the naive loop expansion

• The formation time is  

• This is of the same size of the mean free time between soft collisions 
when 

1
mvirt

k
mvirt

= k
(P + K)2 = p+

p2⊥

p⊥ ∼ gT



Collinear physics
Another failure of the naive loop expansion

• The formation time is  

• This is of the same size of the mean free time between soft collisions 
when  

• Multiple soft interactions have to be resummed, Landau-Pomeranchuk-
Migdal effect. Resumming to all orders the  kernel

1
mvirt

k
mvirt

= k
(P + K)2 = p+

p2⊥

p⊥ ∼ gT

(

Figure 5. Collinear diagrams. In the first case, called the bremsstrahlung diagram, the angle
between the emitted photon and the outgoing emitting fermion is of order g. In the second case,
called the pair annihilation diagram, it is the angle between the annihilating quark and antiquark
that is of order g. The diagrams where the gluon is attached to the other fermionic line are not
shown. In both graphs the gluon is soft and is scattering o↵ the hard quarks and gluons of the
plasma as indicated by the crosses, i.e. it is an HTL gluon in the Landau cut. {fig_collinear}

involving multiple soft scatterings are not suppressed by powers of g. These multiple

scatterings lead to destructive interference, that is known as the Landau-Pomeranchuk-

Migdal (LPM) e↵ect that leads to an O(1) suppression of the collinear rate.

In terms of the two-point function these processes correspond to diagrams with the two

nearly collinear fermion lines connected with arbitrary number of soft spacelike gluons with

same kinematics as Q. In [14, 15] Arnold, Moore and Ya↵e (AMY) showed that it is only

the ladder-type diagrams shown in Fig. 6 that contribute to a leading order calculation; the

factors of g arising from additional vertices are canceled by near on-shell propagators and

large statistical factors arising from the gluonic propagators. The near on-shellness of the

quark lines makes the diagrams sensitive to the thermal mass m2
1 ⇠ g2T 2 and the thermal

width � ⇠ g2T of the quark lines, which need to be consistently resummed. Furthermore

AMY showed how these diagrams can be resummed in terms of a Schrödinger equation

type di↵erential equation, and they obtained the complete leading-order results in [15]. In

Sec. 3 we will discuss in detail this equation in the context of the treatment of its NLO

corrections.

d��

d3k

����
coll

= = Re

0

BBBBBBBBB@

1

CCCCCCCCCA

⇤ 0

BBBBBBBBB@

1

CCCCCCCCCA

Figure 6. The uncrossed ladder diagrams that need to be resummed to account for the LPM e↵ect
in the collinear region. The cut shown here corresponds to the interference term on the right-hand
side. The rungs on the l.h.s. are HTL gluons in the Landau cut. On the r.h.s., the crosses at the
lower end of the gluons represent the hard scattering centers, either gluons or fermions. {fig_lpm}
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The leading-order photon rate
I sat here for 5 hours and all I got was this lousy plot
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Conclusions

• Many modern perturbative calculations of dynamical quantities (not 
thermodynamics) follow the pattern of the thermal photon rate:  

• multiple scales 

• breakdown of loop expansion 

• HTL resummation for soft modes 

• LPM resummation for collinear modes 

• If you are lucky and can map the soft contribution to space-like separated 
amplitudes, then you can use analyticity to make life much easier


