XQCD school, July. 22-25, 2022

Neutron stars & multi-messenger physics

QCD Astro condensed matter Toru Kojo

(Tohoku Univ.)

Observations: summary see Lect. I & 2

Soft to stiff is challenging: see Lect. I

Lect I) Overview

- glancing at NS properties
- M-R relation and EOS
- $R_{1.4}$ & low density EOS

Lect 2) NS-NS mergers

- gravitational waves
- pre-mergers [inspiral & tidal deformation]
- post-mergers [EM-counterparts]

Lect 3) From hadrons to quarks in NS

- quark matter
- 3-window modeling
- stiffening of matter in quark-hadron continuity

Quark matter

from high density down to NS domain

Some notations

We often need to **switch** from nuclear notation to quark's.

Basic relations

number $n_q = n_a^R + n_a^G + n_a^B = N_c n_B$ (single baryon has N_c-quarks) density note also $n_a^R = n_a^G = n_a^B = n_B$ chemical $\mu_B n_B = \mu_q n_q$ (this combo appearing in thermodynamic relations) potential $\mu_B = N_c \mu_q$ thermodynamic either $P(\mu_a)$ or $\varepsilon(n_B)$ (all relations derivable from these) functions note: $P(n_{R})$ or $P(\varepsilon)$ are less informative

Bag model: simplest quark EOS

massless, N_f-flavors, no-interactions

I/3 often called conformal limit : kin E >> interactions

Pure quark stars

onset of matter:
$$P(\mu_q = \mu_c) = 0$$

 $n_B(\mu_c) \simeq 1.8n_0 \times \left(\frac{N_f}{3}\right)^{1/4} \left(\frac{B^{1/4}}{146 \text{ MeV}}\right)^3$
(P = 0, but $n_B \neq 0 \rightarrow \text{self-bound}$)

For a given B, the EOS leads to

$$M_{\rm max} \simeq 2M_{\odot} \times \left(\frac{146\,{
m MeV}}{B^{1/4}}
ight)^2$$

 $R|_{M_{\rm max}} \simeq 10.7\,{
m km} imes rac{M_{\rm max}}{2M_{\odot}}$

if we **accept** quark matter at $n_B < \sim 1.8 n_0$ (small B), quark stars pass the $2M_{\odot}$ constraint...

$$c_s^2 = 1/3 = 0.33...$$
 (at 1-3n₀) is large

[e.g., ChEFT, Drischler+ '21]

10/45

If we switch to $c_s^2 = 1/3$ at **low** density...

For systematic analyses, see e.g., Annala+ '20

c_s² in purely nucleonic models

Dilemma in purely nucleonic models

low density softness & 2M_o constraint

many-body forces are crucial

but

the dominance of such forces signals the breakdown of the theory

[2-, 3-, 4-,... –body forces]

this trend is quite common

e.g., APR EOS up to 3NF

Quark matter baseline

 $c_s^2 = 1/3$ is the baseline

Now let us first consider corrections assuming weak coupling:

(should be valid at very large density)

$$P(\mu_q) = P_{pQCD}(\mu_q) - B + \dots$$

pQCD generally contains corrections of $\sim [\alpha_s(\Lambda_{reno}) \ln(E/\Lambda_{reno})]^n$

E is supposed to be ~ μ_q , then natural to choose $\Lambda_{reno} \sim \mu_q$

(note: "complete" cal. **should** lead to results independent of Λ_{reno})

Some history of dense pQCD

- 1977: Freedman-McLerran I, II, III
 - clarify the structure of perturbation theory at finite density
 - N²LO EOS for massless quarks
 - **plasmon sums** (needed to handle IR divergences)
- 2010: Kurkela-Romatschke-Vuorinen
 - N²LO EOS with mass corrections
 - renormalization scale dependence of $\alpha_s \rightarrow \mathbf{reliability test}$
- 2021: Gorda-Kurkela-Paatelainen-Sappi-Vuorinen
 - partial completion of N³LO EOS; soft components (HTL)

[see also Fujimoto+ '21, Fernandez+ '21]

$P_{PQCD}(\mu_B) / P_{SB}(\mu_B)$

ideally, the result should be indep. of Λ_{reno}

15/45

 \rightarrow measure of truncation errors

validity range: $n_B > \sim 40n_0$

cf) ChEFT with different cutoff scales

Note: Λ_{QCD} appears only through logarithms; but in QCD power corrections often play important roles (non-perturbative effects) [e.g., Wilson, Shifman+ '70s]

power corrections for stiff/soft EOS ?

what kinds of interactions lead to stiff/soft EOS? cf) [TK-Powell-Song-Baym, '14]

rela. kin. energy interactions

$$\varepsilon(n) = an^{4/3} + \underline{b}n^{\underline{\alpha}} \qquad \longrightarrow \qquad P = \frac{\varepsilon}{3} + \underline{b}\left(\underline{\alpha} - \frac{4}{3}\right)n^{\alpha}$$
For stiff EoS: for $\alpha > 4/3$: $b > 0$ (e.g. bulk repulsion, $\sim + n_B^2/\Lambda_{QCD}^2$)
(for large P) for $\alpha < 4/3$: $b < 0$ (e.g. surface pairings, $\sim -\Lambda_{QCD}^2 n_B^{2/3}$)

quark Fermi sea (ideal combo)

Physics near the Fermi surface (!) is important

possible physics near the Fermi surface

2-particle correlation

3-particle correlation

18/45

[Bailin-Love, Alford, Rajagopal, Wilczek, ...]

quarkyonic matter

[McLerran-Pisarski '07, Hidaka, TK, ...]

c_s^2 vs pQCD + power corrections

e.g. diquark pairing (CFL) terms

For $\Delta \sim 0.2$ GeV $\sim \Lambda_{OCD}$ $(\Delta / \mu_{\rm a})^2 \sim 4 \%$ nevertheless, c² approach 1/3 from above should be more

should be more important toward low density

Non-perturbative effects at very high density? hints: 2-color QCD \rightarrow no sign problem in lattice Monte-Carlo

 $\mu_{q} \sim I \text{ GeV or } n_{B} \sim 40 \text{ n}_{0} \rightarrow \text{ chances for power corrections}$

Three window modeling

[see also Fraga+ '14, Gorda '22,.... for $QCD \rightarrow EOS$ constraints]

[TK+'14, Baym+'18,.... for EOS constraints \rightarrow insights]

26/45 A quark model for $n_{\rm R} > \sim 5n_0$ (~ 1 fm⁻³) A guide : Quark-Hadron Continuity : eff. Hamiltonian continuously evolves from hadron physics "3-window" [Manohar-Georgi 1983, Weinberg 2010,...] 0.2 GeV < Q < I-2 GeV ~2 GeV < O Q < ~0.2 GeV constituent quarks + OGE short range very long-range (> I fm) (quasi-particles) chiral SB & color-mag. int. pQCD confinement & **baryon-baryon**. int. A template) chiral color-mag. nB-nB int. solve within **MF** $\mathcal{H} = \mathcal{H}_{\text{NJL}} - \underline{H} \sum (q\Gamma_A q) (\bar{q}\Gamma_A \bar{q}) + \underline{g_V} (\bar{q}\gamma_0 q)^2$ + color- & charge- neutrality + β-equilibrium [Masuda+2015, TK+2014, Blaschke+....] (gv, H): both inspired from color-mag. interactions

[e.g., Oka-Yazaki '80]

Color-magnetic interaction play many roles

Coupling ∝ velocity ~ p/E

become important in relativistic regime & high density

2) **Pairing** : strongly channel dependent

hadron mass ordering: N-Δ, etc. [DeRujula+ (1975), Isgur-Karl (1978), ...] color-super-conductivity [Alford, Wilczek, Rajagopal, Schafer,... 1998-]

3) **Baryon-Baryon int.** : short-range correlation

(Pauli + color-mag.) [Oka-Yazaki (1980),...]

channel dep. \rightarrow non-universal hard core (some are attractive!)

mass dep. \rightarrow stronger hard core in relativistic quarks

 \rightarrow consistent with the lattice QCD [HAL-collaboration]

 n/n_0

 $g_{\rm v}/G$

• nuclear uncertainties $\rightarrow \Delta R_{1.4} \sim 0.7$ km, but the peak in c_s^2 robust

 \cdot QHC type models \rightarrow earlier stiffening than in pure hadronic models

Trends found in this exercise (for quark matter part)

for quark EoS consistent with all constraints

• bottom line: $(g_V, H)_{@3.5-5n0} \sim (G_s)_{@vac}$

interactions remain non-perturbative (!)

Slow chiral restoration

at $5n_0$: $M_u \sim M_d \sim \frac{50}{100}$ MeV >> ~ 5 MeV, $M_s \sim \frac{300}{100}$ MeV >> ~100 MeV

• Pairing effects important

at $5n_0$: $\Delta_{CEI} \sim 200 - 250$ MeV (!) $\sim \Lambda_{OCD}$

• For allowed range of (g_v, H) , $M_{max} \sim 2.4 M_{sun}$ (with ChEFT B.C. at 1.5n₀)

Stiffening of matter in quark-hadron continuity

Strategy

Follow quark states from nuclear to quark matter

(within a single model, e.g., percolation model, Fukushima-TK-Weise '20)

Quarks in a baryon N_c (=3): number of colors

$$Q_{\rm in}(\boldsymbol{p},\boldsymbol{P}_B) = \mathcal{N}e^{-\frac{1}{\Lambda^2}\left(\boldsymbol{p}-\frac{\boldsymbol{P}_B}{N_{\rm c}}\right)^2} \xrightarrow{\boldsymbol{p}_3} \boldsymbol{p}_2 \xrightarrow{\boldsymbol{p}_1} \boldsymbol{p}_2 \xrightarrow{\boldsymbol{p}_2} \boldsymbol{p}_2 \xrightarrow{\boldsymbol{p}_1} \boldsymbol{p}_2$$

probability density:

av

mean:
$$\langle \boldsymbol{P}_B \rangle = N_c \int_{\boldsymbol{p}} \boldsymbol{p} Q_{\rm in}(\boldsymbol{p}, \boldsymbol{P}_B)$$

variance: $\left\langle \left(\boldsymbol{p} - \frac{\boldsymbol{P}_B}{N_c} \right)^2 \right\rangle \sim \Lambda^2$ energetic !

$$E_{q}(\boldsymbol{p}) \geq \underline{P}_{B} = \mathcal{N} \int_{\boldsymbol{p}} E_{q}(\boldsymbol{p}) e^{-\frac{1}{\Lambda^{2}} \left(\boldsymbol{p} - \frac{P_{B}}{N_{c}}\right)^{2}} \simeq \langle E_{q}(\boldsymbol{p}) \rangle_{\boldsymbol{P}_{B}=0} + \frac{1}{6} \left\langle \frac{\partial^{2} E_{q}}{\partial p_{i} \partial p_{i}} \right\rangle_{\boldsymbol{P}_{B}=0} \left(\frac{P_{B}}{N_{c}} \right)^{2} + \frac{1}{2} \left\langle \mathbf{N}_{c} \right\rangle_{\boldsymbol{P}_{B}=$$

baryon mass

baryon kin. energy

 \mathbf{Z}

A new unified model for QHC

"quark saturation" constraint

 \rightarrow relativistic baryons at low density, $n_B \sim 1-3n_0!$

cf) McLerran-Reddy model (2018) of quarkyonic matter

Jump in pressure : schematic picture

 ϵ , n_B are continuous (f_q continuous)

Peak in c_s^2 on the lattice (2-color) $T \sim 80 \text{ MeV}$

Quantum numbers ?

quark quantum numbers; N_c , N_f , 2-spins (for a given spatial w.f.)

how many baryon species are needed to saturate quark states?

 \rightarrow need only **2N_f = 6** species for N_f = 3

(full members of singlet, octet, decuplet are NOT necessary)

convenient color-flavor-spin bases

[neglect N- \varDelta splitting etc. for simplicity] $\Delta_{s_z=\pm 3/2}^{++} = [u_R \uparrow u_G \uparrow u_B \uparrow], \quad [u_R \downarrow u_G \downarrow u_B \downarrow],$ $\Delta_{s_z=\pm 3/2}^{-} = [d_R \uparrow d_G \uparrow d_B \uparrow], \quad [d_R \downarrow d_G \downarrow d_B \downarrow],$ $\Omega_{s_z=\pm 3/2}^{-} = [s_R \uparrow s_G \uparrow s_B \uparrow], \quad [s_R \downarrow s_G \downarrow s_B \downarrow],$

A model for crossover; flavor-dep.

$$f_{\boldsymbol{q}}(\boldsymbol{k};n_B) = \sum_{I} \int_{\boldsymbol{K}_B} \mathcal{B}_{I}(\boldsymbol{K}_B;n_B) Q_{\text{in}}^{I\boldsymbol{q}}(\boldsymbol{k},\boldsymbol{K}_B)$$

43/45

Issues to be addressed (work in progress):

 $I) \quad f_{u,d,s} < I \quad \rightarrow \text{ constraints on } (B_p, B_n, B_{\Sigma}, B_{\Xi}, B_{\Lambda}, B_{\Delta}, ...)$ [baryons are NOT independent]

2) the onset of quark saturation -> sensitive to baryon size [size in medium ???]

3) Hamiltonian ?? minimization problems to be formulated

Summary of Lecture 3

- Quark matter from high density approach
- 3-window modeling \rightarrow insights for 2-5n₀ & 5-40n₀
- stiffening of matter in quark-hadron continuity

 c_s^2 peak is associated with the quark substructure of hadrons

 c_{s}^{2} peak \rightarrow signature of quark matter formation

it may appear at density not far from n_0

attempts to find signatures in NS-NS merger simulations [Huang+ '22, Fujimoto+ '22, ...]

Summary of Lecture I-3

I)
$$R_{1.4} \sim R_{2.08} \sim 12.5 \text{ km} \rightarrow \text{hints for soft-to-stiff EOS}$$

- 2) GW170817; EM signals \rightarrow M < \sim 2.3 M_{\odot}
- 3) $c_s^2 peak \rightarrow quark matter formation$

(need further check, stay tuned)

Future

- more data from astrophysics will come
- more theoretical constraints on $<\sim 2n_0$ from ChEFT,...
- more theoretical constraints for $5-40n_0$ based on QCD
- quark descriptions for hadron physics \rightarrow more insights for 2-5n₀