Lattice QCD in extreme conditions

Gergely Endrődi

University of Bielefeld

The 2022 XQCD PhD school July 22 - July 25, 2022

- lecture 1: introduction to QCD and thermodynamics
- lecture 2: hot Yang-Mills theory on the lattice
- lecture 3: full QCD in extreme conditions on the lattice

Outline lecture 3

- dynamical fermions and chiral symmetry; staggered fermions
- finite temperature transition in full QCD
- equation of state
- nonzero density and the sign problem

Dynamical fermions

Full QCD path integral

path integral over links and fermion fields

$$\mathcal{Z} = \int \mathcal{D} U \, \mathcal{D} ar{\psi} \, \mathcal{D} \psi \, \mathsf{e}^{-eta \mathsf{S}_{\mathsf{G}} - ar{\psi} \mathsf{M} \psi}$$

► Grassmann numbers on a computer? ⇒ integrate out fermions analytically

$$\mathcal{Z} = \int \mathcal{D} U \, \det M \, e^{-eta S_G}$$

fermion matrix

$$M = \operatorname{diag}(
ot\!\!\!/ D + m_u,
ot\!\!\!/ D + m_d,
ot\!\!\!/ D + m_s, \ldots)$$

• note: $m_f \rightarrow \infty$ of full QCD gives back pure gauge theory

Staggered fermions

naive Dirac operator: 16-fold doubling

$$onumber = rac{1}{2} \sum_{\mu} \gamma_{\mu} \left[\begin{array}{c} & & \\ & \mu \end{array} \right] - \left(\begin{array}{c} & & \\ & \mu \end{array} \right)$$

staggered Dirac operator (no Dirac indices!): 4-fold doubling

$$onumber D = rac{1}{2} \sum_{\mu} \eta_{\mu} \left[\longrightarrow - \longleftarrow _{\mu} \right] \qquad \eta_{\mu}(n) = (-1)^{\sum_{\nu < \mu} n_{\nu}}$$

partition function

$$\mathcal{Z} = \int \mathcal{D} U \, e^{-eta \mathcal{S}_G} \prod_f \sqrt[4]{\det({
ot\!\!/} + m_f)}$$

 rooting: no doubling? but has theoretical problems & Creutz '07
 note: local averaging of links suppresses discretization errors "stout smearing" & Morningstar, Peardon PRD '04

$$\xrightarrow[n]{\mu} + \sum_{\nu} \stackrel{\nu}{\underset{n}{\longrightarrow}} \stackrel{\mu}{\underset{n}{\longrightarrow}} \nu$$

74 / 107

Staggered η_5 -hermiticity

• γ_5 -hermiticity {forward hopping} = {backward hopping}^{\dagger}

determinant is real

$$\det[\gamma_5 \not\!\!\! D \gamma_5] = \det \not\!\!\! D^\dagger \qquad o \qquad \det \not\!\!\! D = (\det \not\!\!\! D)^*$$

• one can also show det D > 0

 \blacktriangleright thus, path integral weight is real and positive \checkmark

Staggered η_5 -hermiticity

• γ_5 -hermiticity {forward hopping} = {backward hopping}^{\dagger}

determinant is real

$$\det[\gamma_5 \not\!\!\! D \gamma_5] = \det \not\!\!\! D^\dagger \qquad o \qquad \det \not\!\!\! D = (\det \not\!\!\! D)^*$$

• one can also show det D > 0

- \blacktriangleright thus, path integral weight is real and positive \checkmark
- ▶ same holds for staggered fermions with γ_5 replaced by $\eta_5 = (-1)^{n_1+n_2+n_3+n_4}$

Continuum limit

continuum limit nonperturbatively

Continuum limit

continuum limit nonperturbatively

• lattice spacing from scale setting $|a(\beta)|$

• quark masses from line of constant physics $m_f(\beta)$ tuned to the *physical point*:

 $M_{\pi}=139$ MeV, $M_{K}=495$ MeV, $M_{p}=938$ MeV \ldots

Chiral symmetry and its breaking

► massless action $\bar{\psi} \not{\!\!\!D} \psi$ has chiral symmetry: $\{\gamma_5, \not{\!\!\!D}\} = 0$ $\mathrm{SU}_V(N_f) \times \mathrm{SU}_A(N_f) \times \mathrm{U}_V(1) \times \mathrm{U}_A(1)$ • massless action $\bar{\psi} \not \!\!\!/ \psi \psi$ has chiral symmetry: $\{\gamma_5, \not \!\!\!/ b\} = 0$

 $\mathrm{SU}_V(N_f) \times \mathrm{SU}_A(N_f) \times \mathrm{U}_V(1) \times \mathrm{U}_A(1)$

▶ $SU_A(N_f)$ broken spontaneously in the QCD vacuum $\langle \bar{\psi}\psi \rangle \neq 0$ \rightsquigarrow Goldstone bosons: $N_f^2 - 1$ massless pions • massless action $\bar{\psi} \not \!\!\!/ \psi \psi$ has chiral symmetry: $\{\gamma_5, \not \!\!\!/ b\} = 0$

 $\mathrm{SU}_{V}(N_{f}) \times \mathrm{SU}_{A}(N_{f}) \times \mathrm{U}_{V}(1) \times \mathrm{U}_{A}(1)$

- ▶ $SU_A(N_f)$ broken spontaneously in the QCD vacuum $\langle \bar{\psi}\psi \rangle \neq 0$ \rightsquigarrow Goldstone bosons: $N_f^2 - 1$ massless pions
- ▶ massive case: $m\bar{\psi}\psi$ breaks axial symmetries \rightsquigarrow pseudo-Goldstone bosons: $N_f^2 - 1$ almost massless pions

• massless action $\bar{\psi} \not\!\!\!D \psi$ has chiral symmetry: $\{\gamma_5, \not\!\!D\} = 0$

 $\mathrm{SU}_{V}(N_{f}) \times \mathrm{SU}_{A}(N_{f}) \times \mathrm{U}_{V}(1) \times \mathrm{U}_{A}(1)$

- ▶ $SU_A(N_f)$ broken spontaneously in the QCD vacuum $\langle \bar{\psi}\psi \rangle \neq 0$ \rightsquigarrow Goldstone bosons: $N_f^2 - 1$ massless pions
- ▶ massive case: $m\bar{\psi}\psi$ breaks axial symmetries \rightsquigarrow pseudo-Goldstone bosons: $N_f^2 - 1$ almost massless pions
- high temperature: chiral symmetry restoration

	Ising model	QCD
symmetry group	Z(2)	SU(2)
spontaneous breaking	$\langle M \rangle = \frac{\partial \log \mathcal{Z}}{\partial h}$	$\langle \bar{\psi}_u \psi_u angle = rac{\partial \log \mathcal{Z}}{\partial m_u}$
Goldstones	_	3
explicit breaking	h $m_u = m_d$	
symmetry restoration	at high T	at high T

Chiral condensate

full QCD expectation value

$$\begin{split} \langle \bar{\psi}_{u}\psi_{u}\rangle &= \frac{T}{V}\frac{1}{\mathcal{Z}}\int \mathcal{D}U\mathcal{D}\bar{\psi}\mathcal{D}\psi \ e^{-\beta S_{G}-\bar{\psi}M\psi} \ \bar{\psi}_{u}\psi_{u} \\ &= \frac{T}{V}\frac{1}{\mathcal{Z}}\int \mathcal{D}U \ \text{det} \ M \ e^{-\beta S_{G}} \ \text{tr} \ M_{u}^{-1} \quad \leftarrow \text{way to calculate} \\ &= \frac{T}{V}\frac{\partial \log \mathcal{Z}}{\partial m_{u}} \end{split}$$

remember order parameter definition for Ising model

$$\lim_{h \to 0^+} \lim_{V \to \infty} \langle M \rangle \qquad \text{or} \qquad \lim_{V \to \infty} \langle |M| \rangle_{h=0}$$

Chiral condensate

full QCD expectation value

$$\begin{split} \langle \bar{\psi}_{u} \psi_{u} \rangle &= \frac{T}{V} \frac{1}{\mathcal{Z}} \int \mathcal{D}U \, \mathcal{D}\bar{\psi} \, \mathcal{D}\psi \, e^{-\beta S_{G} - \bar{\psi}M\psi} \, \bar{\psi}_{u} \psi_{u} \\ &= \frac{T}{V} \frac{1}{\mathcal{Z}} \int \mathcal{D}U \, \det M \, e^{-\beta S_{G}} \operatorname{tr} M_{u}^{-1} \quad \leftarrow \text{way to calculate} \\ &= \frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial m_{u}} \end{split}$$

remember order parameter definition for Ising model

$$\lim_{h \to 0^+} \lim_{V \to \infty} \langle M \rangle \qquad \text{or} \qquad \lim_{V \to \infty} \langle |M| \rangle_{h=0}$$

here only option:

$$\lim_{m_u\to 0^+}\lim_{V\to\infty}\langle\bar{\psi}_u\psi_u\rangle$$

Renormalization

► remember UV divergences from free case (*u* and *s* flavors) $\log \mathcal{Z}_{\text{vac}}^{\text{free}} = \mathcal{O}(\Lambda^4) + \mathcal{O}((m_u^2 + m_s^2)\Lambda^2) + \mathcal{O}((m_u^2 + m_s^2)^2 \log \Lambda^2) + \text{finite}$ so the condensate

$$\langle \bar{\psi}_u \psi_u \rangle = \frac{\partial \log \mathcal{Z}_{\text{vac}}^{\text{free}}}{\partial m_u} = \mathcal{O}(m_u \Lambda^2) + \mathcal{O}(m_u (m_u^2 + m_s^2) \log \Lambda^2) + \text{finite}$$

multiplicative divergence (interacting case) & Peskin, Schroeder

$$m_f^{\mathrm{r}} = Z_m \cdot m_f \qquad \forall f$$

fully renormalized combination

$$\left[\langle \bar{\psi}_{u}\psi_{u}\rangle_{T}-\langle \bar{\psi}_{u}\psi_{u}\rangle_{T=0}\right]\cdot m_{u}$$

sometimes also used

$$m_s \langle \bar{\psi}_u \psi_u \rangle_T - m_u \langle \bar{\psi}_s \psi_s \rangle_T$$

cancels quadratic divergence but not the logarithmic one

Finite temperature transition in full QCD

Chiral restoration in full QCD

Results: condensate

average light quark condensate after renormalization

$$\langle \bar{\psi}\psi\rangle^{\mathrm{r}} = -\left[\langle \bar{\psi}_{u}\psi_{u}\rangle_{T} - \langle \bar{\psi}_{u}\psi_{u}\rangle_{T=0}\right] \cdot \frac{m_{u}}{m_{\pi}^{4}}$$

watch out: this vanishes at T = 0 and positive at high T \mathscr{P} Borsányi et al. JHEP '10

does not look like a real phase transition. how to check?

Results: order of transition

• volume scaling of peak height $\chi(V, T_c(V)) \propto L^0$

confirmed by other discretizations & Bhattacharya et al. PRL '14 82 / 107

Crossover transition

in full QCD at the physical point, there is no real phase transition but merely an analytic crossover

there is no bubble formation in the QCD epoch of the early universe ~> relevant for cosmology

Transition temperature

at what temperature does the transition take place?
there is no unique T_c but we can define it via
inflection point of ⟨ψψ⟩
maximum of χ_{ψψ}
any characteristic behavior

• transition at $T_{pc} = 156.5(1.5)$ MeV

▶ transition width O(15) MeV

Deconfinement in full QCD

Center symmetry in full QCD

remember center transformation

$$U_t(\mathbf{n}, \bar{n}_4) \rightarrow V_{\zeta} \cdot U_t(\mathbf{n}, \bar{n}_4) \quad V_{\zeta} \in \mathbb{Z}(3)$$

gauge action is invariant

det *M* in heavy-quark expansion:

$$\det M \propto \det \left(1 + \frac{\not{D}}{m}\right) = \exp \left[\operatorname{tr} \log \left(1 + \frac{\not{D}}{m}\right)\right] = \exp \left[-\sum_{k>0} \frac{\operatorname{tr}(\not{D}/m)^{2k}}{2k}\right]$$

this includes Polyakov loop

 det M <u>not</u> invariant under center transformations it serves as explicit breaking for Z(3) symmetry

which center sector does it prefer?

Center symmetry in full QCD

perturbative effective potential again PRoberge, Weiss NPB '86
 in Polyakov gauge

$$P = \operatorname{tr}\operatorname{diag}(e^{i\varphi_1}, e^{i\varphi_2}, e^{-i(\varphi_1 + \varphi_2)})$$

it is as if we had boundary conditions φ_i for the fermions in pure gauge theory we had three degenerate minima at

$$\varphi_1 = \varphi_2 = 0$$
 $\varphi_1 = \varphi_2 = 2\pi/3$ $\varphi_1 = \varphi_2 = -2\pi/3$

For fermions this shifts Dirac eigenvalues (Matsubara frequencies n ∈ Z)

$$rac{ar \omega_n}{T} o (2n+1+0)\pi \qquad (2n+1+2/3)\pi \qquad (2n+1-2/3)\pi$$

magnitude of lowest frequency is largest (so det M is largest) for

Center symmetry in full QCD

perturbative effective potential again PRoberge, Weiss NPB '86
 in Polyakov gauge

$$P = \operatorname{tr}\operatorname{diag}(e^{i\varphi_1}, e^{i\varphi_2}, e^{-i(\varphi_1 + \varphi_2)})$$

it is as if we had boundary conditions φ_i for the fermions in pure gauge theory we had three degenerate minima at

$$\varphi_1 = \varphi_2 = 0$$
 $\varphi_1 = \varphi_2 = 2\pi/3$ $\varphi_1 = \varphi_2 = -2\pi/3$

For fermions this shifts Dirac eigenvalues (Matsubara frequencies n ∈ Z)

$$rac{ar \omega_n}{T} o (2n+1+0)\pi \qquad (2n+1+2/3)\pi \qquad (2n+1-2/3)\pi$$

magnitude of lowest frequency is largest (so det M is largest) for $\underline{\varphi_1=\varphi_2=0}$

Polyakov loop in full QCD

fermions prefer real Polyakov loops scatter plot at low T and high T

	Ising model	QCD	
symm. group	Z(2)	Z(3)	SU(2)
sp. breaking	$\langle M \rangle = \frac{\partial \log \mathcal{Z}}{\partial h}$	$\langle P angle$	$\langle \bar{\psi}_{u}\psi_{u} angle = rac{\partial\log\mathcal{Z}}{\partial m_{u}}$
Goldstones	_	_	3
exp. breaking	h > 0	$m_u = m_d < \infty$	$m_u = m_d > 0$
symm. restoration	at high <i>T</i>	at low T	at high <i>T</i>

Results: Polyakov loop in full QCD

Fixed N_t -approach \mathscr{P} Borsányi et al. JHEP '10

- \blacktriangleright chiral symmetry restoration at pprox (155 \pm 15) MeV
- deconfinement in roughly same region

Columbia-plot

- ▶ full QCD at the physical point has no exact symmetries not quite SU(2) chirally symmetric because m_u, m_d > 0 not quite Z(3) center symmetric because m_f < ∞</p>
- order of finite temperature transition as a function of $m_u = m_d$ and m_s : Columbia-plot \mathscr{P} Brown et al. PLB '90

Cuteri et al. PRD '18

Columbia-plot

- ▶ full QCD at the physical point has no exact symmetries not quite SU(2) chirally symmetric because m_u, m_d > 0 not quite Z(3) center symmetric because m_f < ∞</p>
- order of finite temperature transition as a function of $m_u = m_d$ and m_s : Columbia-plot \mathscr{P} Brown et al. PLB '90

Cuteri et al. PRD '18

Equation of state

Integral method in QCD

remember in pure gauge theory

$$\log \mathcal{Z}(\beta_1) - \log \mathcal{Z}(\beta_0) = \int_{\beta_0}^{\beta_1} \mathsf{d}\beta \, \frac{\partial \log \mathcal{Z}}{\partial \beta}$$

• now more parameters: β , m_f but they are not independent

$$a(\beta) \qquad m_f(\beta)$$

Integral method in QCD

remember in pure gauge theory

$$\log \mathcal{Z}(\beta_1) - \log \mathcal{Z}(\beta_0) = \int_{\beta_0}^{\beta_1} \mathsf{d}\beta \, \frac{\partial \log \mathcal{Z}}{\partial \beta}$$

• now more parameters: β , m_f but they are not independent

$$a(\beta)$$
 $m_f(\beta)$

► therefore

$$\log \mathcal{Z}(\beta_1, m_f(\beta_1)) - \log \mathcal{Z}(\beta_0, m_f(\beta_0)) = \int_{\beta_0}^{\beta_1} \mathrm{d}\beta \left[\frac{\partial \log \mathcal{Z}}{\partial \beta} + \sum_f \frac{\partial \log \mathcal{Z}}{\partial m_f} \frac{\partial m_f}{\partial \beta} \right]$$

gauge action $\langle S_G
angle$ as well as condensates $\langle \bar{\psi}_f \psi_f
angle$ enter

Integral method in QCD

renormalization same as for pure gauge theory

$$\frac{p^{\mathrm{r}}(T_{1})}{T_{1}^{4}} - \frac{p^{\mathrm{r}}(T_{0})}{T_{0}^{4}} = \frac{N_{t}^{3}}{N_{s}^{3}} \int_{\beta_{0}}^{\beta_{1}} \mathrm{d}\beta \Big[-\langle S_{G} \rangle_{N_{s}^{3}N_{t}} + \langle S_{G} \rangle_{N_{s}^{4}} \\ + \sum_{f} \Big(\langle \bar{\psi}_{f} \psi_{f} \rangle_{N_{s}^{3}N_{t}} - \langle \bar{\psi}_{f} \psi_{f} \rangle_{N_{s}^{4}} \Big) \frac{\partial m_{f}}{\partial \beta} \Big]$$

with starting point β_0 where $p^{\rm r}(T_0)/T_0^4 \approx 0$

renormalized interaction measure

$$\frac{I^{\mathrm{r}}}{T^{4}} = \frac{N_{t}^{3}}{N_{s}^{3}} \frac{a(\beta)}{a'(\beta)} \left[\langle S_{G} \rangle_{N_{s}^{3}N_{t}} - \langle S_{G} \rangle_{N_{s}^{4}} + \sum_{f} \left(\langle \bar{\psi}_{f} \psi_{f} \rangle_{N_{s}^{3}N_{t}} - \langle \bar{\psi}_{f} \psi_{f} \rangle_{N_{s}^{4}} \right) \frac{\partial m_{f}}{\partial \beta} \right]$$

Integration paths

integral is independent of integration path

averaging over different paths & Borsányi, Endrődi et al. JHEP '10

Results: equation of state

most recent results using two different staggered discretizations & Borsányi et al. PLB '14 & Bazavov et al. PRD '14

Iow T: agreement with Hadron Resonance Gas model high T: comparison to Hard Thermal Loop resummed perturbation theory

QCD at nonzero density

Chemical potential in the continuum

• Noether current for $U_V(1)$ symmetry

$$\psi \to e^{i\alpha}\psi \quad \partial_{\nu}\,\bar{\psi}\gamma_{\nu}\psi = 0 \quad \hat{N} = \int d^{3}\mathbf{x}\,\bar{\psi}\gamma_{4}\psi \quad \frac{d\hat{N}}{dt} = [\hat{H},\hat{N}] = 0$$

canonical path integral

$$Z_N = \operatorname{tr}\left[e^{-\hat{H}/T}\delta_{\hat{N},N}
ight]$$

grand canonical path integral

$$\mathcal{Z}(\mu) = {
m tr}\, {
m e}^{-(\hat{H}-\mu\hat{N})/T} = \int \mathcal{D} {
m A}_{
u}\, \mathcal{D}ar{\psi}\, \mathcal{D}\psi\, {
m e}^{-S_G-S_F(\mu)}$$

with

$$S_F(\mu) = S_F(0) + \mu \int d^4 x \, \bar{\psi} \gamma_4 \psi \qquad o \qquad D(\mu) = D(0) + \mu \gamma_4$$

Grand canonical equation of state

free energy (density) $F(T,\mu) = -T \log \mathcal{Z}$ $f = \frac{F}{V}$ entropy density $s = -\frac{1}{V} \frac{\partial F}{\partial T}$ pressure $p = -\frac{\partial F}{\partial V} \xrightarrow{V \to \infty} -f$ number density $n = -\frac{1}{V} \frac{\partial F}{\partial w}$ energy density $\epsilon - \mu n = -\frac{1}{V} \frac{\partial \log \mathcal{Z}}{\partial (1/T)} = f + Ts$ interaction measure / trace anomaly $I = \operatorname{tr} T_{\mu\nu} = \epsilon - 3p$

96 / 107

• add $\mu\gamma_4$ to naive Dirac operator

$$onumber D = rac{1}{2} \sum_{
u} \gamma_{
u} \left[\underbrace{\ }_{
u} \rightarrow - \underbrace{\ }_{
u} \right] + \mu \gamma_4 \mathbf{.}$$

▶ in the free case $(U_{\mu} = 1)$ log det M contains divergences *P* Hasenfratz, Karsch PLB '83

$$\log \det M_{\rm free}(\mu) = \mathcal{O}(a^{-4}) + \mathcal{O}(m^2 a^{-2}) + \mathcal{O}(m^4 \log a) + \mathcal{O}(\mu^2 a^{-2})$$

so the number density

$$\textit{n} = \mathcal{O}(\mu a^{-2})$$

• but in the continuum the number density is finite (0 at T = 0)

$$n\propto \Pi_{00}(q=0)=$$

• add $\mu\gamma_4$ to naive Dirac operator

$$onumber D = rac{1}{2} \sum_{
u} \gamma_{
u} \left[\underbrace{\ }_{
u} \rightarrow - \underbrace{\ }_{
u} \right] + \mu \gamma_4 \mathbf{.}$$

▶ in the free case $(U_{\mu} = 1)$ log det M contains divergences *P* Hasenfratz, Karsch PLB '83

$$\log \det M_{\rm free}(\mu) = \mathcal{O}(a^{-4}) + \mathcal{O}(m^2 a^{-2}) + \mathcal{O}(m^4 \log a) + \mathcal{O}(\mu^2 a^{-2})$$

so the number density

$$n = \mathcal{O}(\mu a^{-2})$$

• but in the continuum the number density is finite (0 at T = 0)

$$n \propto \Pi_{00}(q=0) =$$

did we violate gauge invariance?

• imaginary chemical pot. as 4th component of U(1) gauge field

$$\mathcal{D} + i\theta\gamma_4 = \mathcal{D} + i\mathcal{A} \qquad \mathcal{A}_{\nu} = \theta\delta_{\nu4}$$

just like gluon field, via parallel transporters
 P Hasenfratz, Karsch PLB '83

$$u_{\mu} = \exp(i\mathcal{A}_{\mu}) \in \mathbb{U}(1)$$

• multiplying the SU(3) links (imaginary μ)

$$\not D = \frac{1}{2} \sum_{i} \gamma_{i} \left[\underbrace{}_{i} - \underbrace{}_{i} \right] + \frac{1}{2} \gamma_{4} \left[\underbrace{\begin{array}{c} e^{i\theta} \\ t \end{array}}_{t} - \underbrace{\begin{array}{c} e^{-i\theta} \\ t \end{array}}_{t} \right]$$

 \blacktriangleright no μ -dependent divergences in log det $M_{
m free}$ \checkmark

• imaginary chemical pot. as 4th component of U(1) gauge field

$$\mathcal{D} + i\theta\gamma_4 = \mathcal{D} + i\mathcal{A} \qquad \mathcal{A}_{\nu} = \theta\delta_{\nu4}$$

just like gluon field, via parallel transporters
 P Hasenfratz, Karsch PLB '83

$$u_{\mu} = \exp(i\mathcal{A}_{\mu}) \in \mathbb{U}(1)$$

• multiplying the SU(3) links (real μ)

$$\not D = \frac{1}{2} \sum_{i} \gamma_{i} \left[\underbrace{}_{i} - \underbrace{}_{i} \right] + \frac{1}{2} \gamma_{4} \left[\underbrace{}_{t} - \underbrace{}_{t} \right]$$

 $\blacktriangleright\,$ no $\mu\text{-dependent}$ divergences in log det $M_{
m free}$ $\checkmark\,$

Chemical potential and unitarity

- staggered quarks again
- imaginary chemical potential

$$\mathcal{D}_{nm} = \frac{1}{2a} \sum_{\nu} \eta_{\nu}(n) \left[U_{\nu}(n) e^{i\theta \delta_{\nu 4}} \delta_{n+\hat{\nu},m} - U_{\nu}^{\dagger}(n-\hat{\nu}) e^{-i\theta \delta_{\nu 4}} \delta_{n-\hat{\nu},m} \right]$$

links still unitary

real chemical potential

$$\mathcal{D}_{nm} = \frac{1}{2a} \sum_{\nu} \eta_{\nu}(n) \left[U_{\nu}(n) e^{\mu \delta_{\nu 4}} \delta_{n+\hat{\nu},m} - U_{\nu}^{\dagger}(n-\hat{\nu}) e^{-\mu \delta_{\nu 4}} \delta_{n-\hat{\nu},m} \right]$$

forward/backward propagation enhanced/suppressed links \underline{not} unitary anymore

remember η₅-hermiticity of staggered Dirac operator at μ = 0
 now: {forward hopping} ≠ {backward hopping}[†]

$$\eta_5
ot\!{D}(\mu) \eta_5 = {oldsymbol{D}}^\dagger(-\mu)$$

 η_5 -hermiticity is lost $\Rightarrow \det M(\mu) \in \mathbb{C}$

path integral

$$\mathcal{Z} = \int \mathcal{D} U \left[\det M(\mu)
ight]^{1/4} e^{-eta \mathcal{S}_{\mathcal{G}}}$$

no probabilistic interpretation anymore

complex action problem

remember η₅-hermiticity of staggered Dirac operator at μ = 0
 now: {forward hopping} ≠ {backward hopping}[†]

$$\eta_5
ot\!{D}(\mu) \eta_5 = {oldsymbol{D}}^\dagger(-\mu)$$

 η_5 -hermiticity is lost $\Rightarrow \det M(\mu) \in \mathbb{C}$

path integral

$$\mathcal{Z} = \int \mathcal{D} U \left[\det M(\mu)
ight]^{1/4} e^{-eta \mathcal{S}_{\mathcal{G}}}$$

no probabilistic interpretation anymore

- complex action problem
- \blacktriangleright actually we know $\mathcal{Z} \in \mathbb{R}$

$$\mathcal{Z} = \int \mathcal{D} U \; \mathsf{Re}[\mathsf{det}\; \mathit{M}(\mu)]^{1/4} \: e^{-eta \mathcal{S}_{\mathcal{G}}}$$

sign problem

remember η₅-hermiticity of staggered Dirac operator at μ = 0
 now: {forward hopping} ≠ {backward hopping}[†]

$$\eta_5
ot\!{D}(\mu) \eta_5 = {oldsymbol{D}}^\dagger(-\mu)$$

 η_5 -hermiticity is lost $\Rightarrow \det M(\mu) \in \mathbb{C}$

path integral

$$\mathcal{Z} = \int \mathcal{D} U \, [\det M(\mu)]^{1/4} e^{-eta S_G}$$

no probabilistic interpretation anymore

- complex action problem
- \blacktriangleright actually we know $\mathcal{Z} \in \mathbb{R}$

$$\mathcal{Z} = \int \mathcal{D} U \; \mathsf{Re}[\mathsf{det}\; \mathit{M}(\mu)]^{1/4} \: e^{-eta \mathcal{S}_{\mathcal{G}}}$$

sign problem

bonus staggered problem: ambiguous complex rooting

here: brief description of

imaginary chemical potentials and analytical continuation

- many other approaches
 - reweighting
 - Taylor expansion in μ around $\mu = 0$
 - complex Langevin
 - Lefschetz thimbles

Analytic continuation from imaginary μ

▶ again {forward hopping} = {backward hopping}[†]

$$\eta_5
ot\!{D}(i heta)\eta_5 = {oldsymbol{D}}^\dagger(i heta)$$

▶ so standard simulations work at $\theta \neq 0$ ($\mu^2 < 0$) \mathscr{P} Borsányi et al. PRL '20

Analytic continuation from imaginary μ

again {forward hopping} = {backward hopping}[†]

$$\eta_5
ot\!{D}(i heta)\eta_5 = {oldsymbol{D}}^\dagger(i heta)$$

▶ so standard simulations work at $\theta \neq 0$ ($\mu^2 < 0$) \mathscr{P} Borsányi et al. PRL '20

102 / 107

Phase diagram

analytically continue susceptibility peak positions

Borsányi et al. PRL '20

Roberge-Weiss transitions

Imaginary chemical potentials

remember center sectors (Polyakov loop eigenvalues)

$$\varphi_1 = \varphi_2 = 0$$
 $\varphi_1 = \varphi_2 = 2\pi/3$ $\varphi_1 = \varphi_2 = -2\pi/3$

shifting the Matsubara frequencies

$$\frac{\bar{\omega}_n+\theta}{T} \to (2n+1+\theta+0)\pi \qquad (2n+1+\theta+2/3)\pi \qquad (2n+1+\theta-2/3)\pi$$

magnitude of lowest frequency is largest for:

Imaginary chemical potentials

remember center sectors (Polyakov loop eigenvalues)

$$\varphi_1 = \varphi_2 = 0$$
 $\varphi_1 = \varphi_2 = 2\pi/3$ $\varphi_1 = \varphi_2 = -2\pi/3$

shifting the Matsubara frequencies

$$\frac{\bar{\omega}_n + \theta}{T} \rightarrow (2n + 1 + \theta + 0)\pi \qquad (2n + 1 + \theta + 2/3)\pi \qquad (2n + 1 + \theta - 2/3)\pi$$

magnitude of lowest frequency is largest for:

$$\begin{array}{c|c} -\pi T/3 < \theta < \pi T/3 & \varphi = 0 \\ \hline \pi T/3 < \theta < \pi T & \varphi = -2\pi/3 \\ \hline -\pi T < \theta < -\pi T/3 & \varphi = 2\pi/3 \end{array}$$

Roberge-Weiss transitions

• preferred center sectors at nonzero θ

Roberge-Weiss transitions

• phase diagram at nonzero θ

- analytical continuation limited by $\theta < \pi T/3$ at high temperature
- note: ongoing research on RW endpoint

Summary

Summary

- lattice QCD is a first-principles approach to study elementary particles and also a lot of fun
- inputs
 - QCD Lagrangian
 - 1 quantity to set lattice scale a(β)
 - N_f quantities to set bare quark masses $m_f(\beta)$
- research on QCD thermodynamics
 - \blacktriangleright at physical quark masses at zero density: \checkmark
 - in the massless limit: ongoing
 - \blacktriangleright at physical quark masses at $\mu/T \lesssim 1$: \checkmark
 - large densities: ×
 - 🕨 background magnetic fields: 🗸
 - 🕨 isospin density: 🗸

more on that at XQCD 2022 in Trondheim