Lattice QCD in extreme conditions

Gergely Endrődi

University of Bielefeld

UNIVERSITÄT BIELEFELD

The 2022 XQCD PhD school July 22 - July 25, 2022

Outline overall

- lecture 1: introduction to QCD and thermodynamics
- lecture 2: hot Yang-Mills theory on the lattice
- lecture 3: full QCD in extreme conditions on the lattice

Outline lecture 3

- dynamical fermions and chiral symmetry; staggered fermions
- finite temperature transition in full QCD
- equation of state
- nonzero density and the sign problem

Dynamical fermions

Full QCD path integral

- path integral over links and fermion fields

$$
\mathcal{Z}=\int \mathcal{D} \cup \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-\beta S_{G}-\bar{\psi} M \psi}
$$

- Grassmann numbers on a computer?
\Rightarrow integrate out fermions analytically

$$
\mathcal{Z}=\int \mathcal{D} U \operatorname{det} M e^{-\beta S_{G}}
$$

- fermion matrix

$$
M=\operatorname{diag}\left(\not D+m_{u}, \not D+m_{d}, \not D+m_{s}, \ldots\right)
$$

- note: $m_{f} \rightarrow \infty$ of full QCD gives back pure gauge theory

Staggered fermions

- naive Dirac operator: 16 -fold doubling

$$
\not D=\frac{1}{2} \sum_{\mu} \gamma_{\mu}[\underset{\mu}{\longrightarrow}-\overleftarrow{\mu}]
$$

- staggered Dirac operator (no Dirac indices!): 4-fold doubling

$$
\not D=\frac{1}{2} \sum_{\mu} \eta_{\mu}[\underset{\mu}{\longrightarrow}-\overleftarrow{\mu}] \quad \eta_{\mu}(n)=(-1)^{\sum_{\nu<\mu} n_{\nu}}
$$

- partition function

$$
\mathcal{Z}=\int \mathcal{D} \cup e^{-\beta S_{G}} \prod_{f} \sqrt[4]{\operatorname{det}\left(\not D+m_{f}\right)}
$$

- rooting: no doubling? but has theoretical problems \& Creutz '07
- note: local averaging of links suppresses discretization errors "stout smearing" O Morningstar, Peardon PRD '04

Staggered η_{5}-hermiticity

- γ_{5}-hermiticity $\quad\{$ forward hopping $\}=\{\text { backward hopping }\}^{\dagger}$

$$
\gamma_{5} \not \gamma_{5}=D^{\dagger}
$$

- determinant is real

$$
\operatorname{det}\left[\gamma_{5} \not D_{\gamma_{5}}\right]=\operatorname{det} \not D^{\dagger} \quad \rightarrow \quad \operatorname{det} \not D=(\operatorname{det} \not D)^{*}
$$

- one can also show $\operatorname{det} \not D>0$
- thus, path integral weight is real and positive \checkmark

Staggered η_{5}-hermiticity

- γ_{5}-hermiticity $\quad\{$ forward hopping $\}=\{\text { backward hopping }\}^{\dagger}$

$$
\gamma_{5} \not \gamma_{5}=D^{\dagger}
$$

- determinant is real

$$
\operatorname{det}\left[\gamma_{5} \not D \gamma_{5}\right]=\operatorname{det} \not D^{\dagger} \quad \rightarrow \quad \operatorname{det} \not D=(\operatorname{det} \not D)^{*}
$$

- one can also show $\operatorname{det} \not D>0$
- thus, path integral weight is real and positive \checkmark
- same holds for staggered fermions with γ_{5} replaced by $\eta_{5}=(-1)^{n_{1}+n_{2}+n_{3}+n_{4}}$

Continuum limit

- continuum limit nonperturbatively

- lattice spacing from scale setting $a(\beta)$

Continuum limit

- continuum limit nonperturbatively

- lattice spacing from scale setting $a(\beta)$
- quark masses from line of constant physics $m_{f}(\beta)$ tuned to the physical point:
$M_{\pi}=139 \mathrm{MeV}, M_{K}=495 \mathrm{MeV}, M_{p}=938 \mathrm{MeV} \ldots$

Chiral symmetry and its breaking

- massless action $\bar{\psi} \not D \psi$ has chiral symmetry: $\left\{\gamma_{5}, \not D\right\}=0$

$$
\mathrm{SU}_{V}\left(N_{f}\right) \times \mathrm{SU}_{A}\left(N_{f}\right) \times \mathrm{U}_{V}(1) \times \mathrm{U}_{A}(1)
$$

Chiral symmetry and its breaking

- massless action $\bar{\psi} \not D \psi$ has chiral symmetry: $\left\{\gamma_{5}, \not D\right\}=0$

$$
\mathrm{SU}_{V}\left(N_{f}\right) \times \mathrm{SU}_{A}\left(N_{f}\right) \times \mathrm{U}_{V}(1) \times \mathrm{U}_{A}(1)
$$

- $\mathrm{SU}_{A}\left(N_{f}\right)$ broken spontaneously in the QCD vacuum $\langle\bar{\psi} \psi\rangle \neq 0$ \rightsquigarrow Goldstone bosons: $N_{f}^{2}-1$ massless pions

Chiral symmetry and its breaking

- massless action $\bar{\psi} \not D \psi$ has chiral symmetry: $\left\{\gamma_{5}, \not D\right\}=0$

$$
\mathrm{SU}_{V}\left(N_{f}\right) \times \mathrm{SU}_{A}\left(N_{f}\right) \times \mathrm{U}_{V}(1) \times \mathrm{U}_{A}(1)
$$

- $\mathrm{SU}_{A}\left(N_{f}\right)$ broken spontaneously in the QCD vacuum $\langle\bar{\psi} \psi\rangle \neq 0$ \rightsquigarrow Goldstone bosons: $N_{f}^{2}-1$ massless pions
- massive case: $m \bar{\psi} \psi$ breaks axial symmetries \rightsquigarrow pseudo-Goldstone bosons: $N_{f}^{2}-1$ almost massless pions

Chiral symmetry and its breaking

- massless action $\bar{\psi} \not D \psi$ has chiral symmetry: $\left\{\gamma_{5}, \not D\right\}=0$

$$
\mathrm{SU}_{V}\left(N_{f}\right) \times \mathrm{SU}_{A}\left(N_{f}\right) \times \mathrm{U}_{V}(1) \times \mathrm{U}_{A}(1)
$$

- $\mathrm{SU}_{A}\left(N_{f}\right)$ broken spontaneously in the QCD vacuum $\langle\bar{\psi} \psi\rangle \neq 0$ \rightsquigarrow Goldstone bosons: $N_{f}^{2}-1$ massless pions
- massive case: $m \bar{\psi} \psi$ breaks axial symmetries \rightsquigarrow pseudo-Goldstone bosons: $N_{f}^{2}-1$ almost massless pions
- high temperature: chiral symmetry restoration

Dictionary 2.

	Ising model	QCD
symmetry group	$\mathrm{Z}(2)$	$\mathrm{SU}(2)$
spontaneous breaking	$\langle M\rangle=\frac{\partial \log \mathcal{Z}}{\partial h}$	$\left\langle\bar{\psi}_{u} \psi_{u}\right\rangle=\frac{\partial \log \mathcal{Z}}{\partial m_{u}}$
Goldstones	-	3
explicit breaking	h	$m_{u}=m_{d}$
symmetry restoration	at high T	at high T

Chiral condensate

- full QCD expectation value

$$
\begin{aligned}
\left\langle\bar{\psi}_{u} \psi_{u}\right\rangle & =\frac{T}{V} \frac{1}{\mathcal{Z}} \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-\beta S_{G}-\bar{\psi} M \psi} \bar{\psi}_{u} \psi_{u} \\
& =\frac{T}{V} \frac{1}{\mathcal{Z}} \int \mathcal{D} U \operatorname{det} M e^{-\beta S_{G}} \operatorname{tr} M_{u}^{-1} \quad \leftarrow \text { way to calculate } \\
& =\frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial m_{u}}
\end{aligned}
$$

- remember order parameter definition for Ising model

$$
\lim _{h \rightarrow 0^{+}} \lim _{V \rightarrow \infty}\langle M\rangle \quad \text { or } \quad \lim _{V \rightarrow \infty}\langle | M| \rangle_{h=0}
$$

Chiral condensate

- full QCD expectation value

$$
\begin{aligned}
\left\langle\bar{\psi}_{u} \psi_{u}\right\rangle & =\frac{T}{V} \frac{1}{\mathcal{Z}} \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-\beta S_{G}-\bar{\psi} M \psi} \bar{\psi}_{u} \psi_{u} \\
& =\frac{T}{V} \frac{1}{\mathcal{Z}} \int \mathcal{D} U \operatorname{det} M e^{-\beta S_{G}} \operatorname{tr} M_{u}^{-1} \quad \leftarrow \text { way to calculate } \\
& =\frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial m_{u}}
\end{aligned}
$$

- remember order parameter definition for Ising model

$$
\lim _{h \rightarrow 0^{+}} \lim _{V \rightarrow \infty}\langle M\rangle \quad \text { or } \quad \lim _{V \rightarrow \infty}\langle | M| \rangle_{h=0}
$$

- here only option:

$$
\lim _{m_{u} \rightarrow 0^{+}} \lim _{V \rightarrow \infty}\left\langle\bar{\psi}_{u} \psi_{u}\right\rangle
$$

Renormalization

- remember UV divergences from free case (u and s flavors) $\log \mathcal{Z}_{\text {vac }}^{\text {free }}=\mathcal{O}\left(\Lambda^{4}\right)+\mathcal{O}\left(\left(m_{u}^{2}+m_{s}^{2}\right) \Lambda^{2}\right)+\mathcal{O}\left(\left(m_{u}^{2}+m_{s}^{2}\right)^{2} \log \Lambda^{2}\right)+$ finite so the condensate

$$
\left\langle\bar{\psi}_{u} \psi_{u}\right\rangle=\frac{\partial \log \mathcal{Z}_{\mathrm{vac}}^{\mathrm{free}}}{\partial m_{u}}=\mathcal{O}\left(m_{u} \Lambda^{2}\right)+\mathcal{O}\left(m_{u}\left(m_{u}^{2}+m_{s}^{2}\right) \log \Lambda^{2}\right)+\text { finite }
$$

- multiplicative divergence (interacting case) \& Peskin, Schroeder

$$
m_{f}^{\mathrm{r}}=Z_{m} \cdot m_{f} \quad \forall f
$$

- fully renormalized combination

$$
\left[\left\langle\bar{\psi}_{u} \psi_{u}\right\rangle_{T}-\left\langle\bar{\psi}_{u} \psi_{u}\right\rangle_{T=0}\right] \cdot m_{u}
$$

- sometimes also used

$$
m_{s}\left\langle\bar{\psi}_{u} \psi_{u}\right\rangle_{T}-m_{u}\left\langle\bar{\psi}_{s} \psi_{s}\right\rangle_{T}
$$

cancels quadratic divergence but not the logarithmic one

Finite temperature transition in full QCD

Chiral restoration in full QCD

Results: condensate

- average light quark condensate after renormalization

$$
\langle\bar{\psi} \psi\rangle^{\mathrm{r}}=-\left[\left\langle\bar{\psi}_{u} \psi_{u}\right\rangle_{T}-\left\langle\bar{\psi}_{u} \psi_{u}\right\rangle_{T=0}\right] \cdot \frac{m_{u}}{m_{\pi}^{4}}
$$

watch out: this vanishes at $T=0$ and positive at high T
? Borsányi et al. JHEP '10

- does not look like a real phase transition. how to check?

Results: order of transition

- chiral susceptibility $\chi_{\bar{\psi} \psi} \quad \&$ Aoki, Endrődi et al. Nature '06

- volume scaling of peak height $\chi\left(V, T_{c}(V)\right) \propto L^{0}$

- confirmed by other discretizations © Bhattacharya et al. PRL '14 82 /

Crossover transition

- in full QCD at the physical point, there is no real phase transition but merely an analytic crossover

- there is no bubble formation in the QCD epoch of the early universe
\rightsquigarrow relevant for cosmology

Transition temperature

- at what temperature does the transition take place?
- there is no unique T_{c} but we can define it via
- inflection point of $\langle\bar{\psi} \psi\rangle$
- maximum of $\chi_{\bar{\psi} \psi}$
- any characteristic behavior

ใ Bazavov et al. PLB '19

- transition at $T_{p c}=156.5(1.5) \mathrm{MeV}$
- transition width $\mathcal{O}(15) \mathrm{MeV}$

Deconfinement in full QCD

Center symmetry in full QCD

- remember center transformation

$$
U_{t}\left(\mathbf{n}, \bar{n}_{4}\right) \rightarrow V_{\zeta} \cdot U_{t}\left(\mathbf{n}, \bar{n}_{4}\right) \quad V_{\zeta} \in \mathbb{Z}(3)
$$

- gauge action is invariant
- $\operatorname{det} M$ in heavy-quark expansion:
$\operatorname{det} M \propto \operatorname{det}\left(1+\frac{\not 口}{m}\right)=\exp \left[\operatorname{tr} \log \left(1+\frac{\not D}{m}\right)\right]=\exp \left[-\sum_{k>0} \frac{\operatorname{tr}(\not D / m)^{2 k}}{2 k}\right]$
this includes Polyakov loop
- $\operatorname{det} M$ not invariant under center transformations it serves as explicit breaking for $Z(3)$ symmetry
which center sector does it prefer?

Center symmetry in full QCD

- perturbative effective potential again Q Roberge, Weiss NPB ' 86
- in Polyakov gauge

$$
P=\operatorname{tr} \operatorname{diag}\left(e^{i \varphi_{1}}, e^{i \varphi_{2}}, e^{-i\left(\varphi_{1}+\varphi_{2}\right)}\right)
$$

it is as if we had boundary conditions φ_{i} for the fermions

- in pure gauge theory we had three degenerate minima at

$$
\varphi_{1}=\varphi_{2}=0 \quad \varphi_{1}=\varphi_{2}=2 \pi / 3 \quad \varphi_{1}=\varphi_{2}=-2 \pi / 3
$$

- for fermions this shifts Dirac eigenvalues (Matsubara frequencies $n \in \mathbb{Z}$)

$$
\frac{\bar{\omega}_{n}}{T} \rightarrow(2 n+1+0) \pi \quad(2 n+1+2 / 3) \pi \quad(2 n+1-2 / 3) \pi
$$

magnitude of lowest frequency is largest (so det M is largest) for

Center symmetry in full QCD

- perturbative effective potential again Q Roberge, Weiss NPB ' 86
- in Polyakov gauge

$$
P=\operatorname{tr} \operatorname{diag}\left(e^{i \varphi_{1}}, e^{i \varphi_{2}}, e^{-i\left(\varphi_{1}+\varphi_{2}\right)}\right)
$$

it is as if we had boundary conditions φ_{i} for the fermions

- in pure gauge theory we had three degenerate minima at

$$
\varphi_{1}=\varphi_{2}=0 \quad \varphi_{1}=\varphi_{2}=2 \pi / 3 \quad \varphi_{1}=\varphi_{2}=-2 \pi / 3
$$

- for fermions this shifts Dirac eigenvalues (Matsubara frequencies $n \in \mathbb{Z}$)

$$
\frac{\bar{\omega}_{n}}{T} \rightarrow(2 n+1+0) \pi \quad(2 n+1+2 / 3) \pi \quad(2 n+1-2 / 3) \pi
$$

magnitude of lowest frequency is largest (so det M is largest) for $\varphi_{1}=\varphi_{2}=0$

Polyakov loop in full QCD

- fermions prefer real Polyakov loops scatter plot at low T and high T

Dictionary 3.

	Ising model	QCD	
symm. group	$\mathrm{Z}(2)$	$\mathrm{Z}(3)$	$\mathrm{SU}(2)$
sp. breaking	$\langle M\rangle=\frac{\partial \log \mathcal{Z}}{\partial h}$	$\langle P\rangle$	$\left\langle\bar{\psi}_{u} \psi_{u}\right\rangle=\frac{\partial \log \mathcal{Z}}{\partial m_{u}}$
Goldstones	-	-	3
exp. breaking	$h>0$	$m_{u}=m_{d}<\infty$	$m_{u}=m_{d}>0$
symm. restoration	at high T	at low T	at high T

Results: Polyakov loop in full QCD

- fixed N_{t}-approach \otimes Borsányi et al. JHEP '10

- chiral symmetry restoration at $\approx(155 \pm 15) \mathrm{MeV}$
- deconfinement in roughly same region

Columbia-plot

- full QCD at the physical point has no exact symmetries not quite $\mathrm{SU}(2)$ chirally symmetric because $m_{u}, m_{d}>0$ not quite $\mathrm{Z}(3)$ center symmetric because $m_{f}<\infty$
- order of finite temperature transition as a function of $m_{u}=m_{d}$ and m_{s} : Columbia-plot $\&$ Brown et al. PLB '90

Q Cuteri et al. PRD '18

Columbia-plot

- full QCD at the physical point has no exact symmetries not quite $\mathrm{SU}(2)$ chirally symmetric because $m_{u}, m_{d}>0$ not quite $\mathrm{Z}(3)$ center symmetric because $m_{f}<\infty$
- order of finite temperature transition as a function of $m_{u}=m_{d}$ and m_{s} : Columbia-plot \& Brown et al. PLB '90

\& Cuteri et al. PRD '18

Equation of state

Integral method in QCD

- remember in pure gauge theory

$$
\log \mathcal{Z}\left(\beta_{1}\right)-\log \mathcal{Z}\left(\beta_{0}\right)=\int_{\beta_{0}}^{\beta_{1}} \mathrm{~d} \beta \frac{\partial \log \mathcal{Z}}{\partial \beta}
$$

- now more parameters: β, m_{f} but they are not independent

$$
\begin{array}{|l|}
\hline a(\beta) \\
m_{f}(\beta) \\
\hline
\end{array}
$$

Integral method in QCD

- remember in pure gauge theory

$$
\log \mathcal{Z}\left(\beta_{1}\right)-\log \mathcal{Z}\left(\beta_{0}\right)=\int_{\beta_{0}}^{\beta_{1}} \mathrm{~d} \beta \frac{\partial \log \mathcal{Z}}{\partial \beta}
$$

- now more parameters: β, m_{f} but they are not independent

$$
\begin{array}{|l|l|}
\hline a(\beta) & m_{f}(\beta) \\
\hline
\end{array}
$$

- therefore
$\log \mathcal{Z}\left(\beta_{1}, m_{f}\left(\beta_{1}\right)\right)-\log \mathcal{Z}\left(\beta_{0}, m_{f}\left(\beta_{0}\right)\right)=\int_{\beta_{0}}^{\beta_{1}} \mathrm{~d} \beta\left[\frac{\partial \log \mathcal{Z}}{\partial \beta}+\sum_{f} \frac{\partial \log \mathcal{Z}}{\partial m_{f}} \frac{\partial m_{f}}{\partial \beta}\right]$
gauge action $\left\langle S_{G}\right\rangle$ as well as condensates $\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle$ enter

Integral method in QCD

- renormalization same as for pure gauge theory

$$
\begin{aligned}
\frac{p^{\mathrm{r}}\left(T_{1}\right)}{T_{1}^{4}}-\frac{p^{\mathrm{r}}\left(T_{0}\right)}{T_{0}^{4}}=\frac{N_{t}^{3}}{N_{s}^{3}} \int_{\beta_{0}}^{\beta_{1}} \mathrm{~d} \beta[& -\left\langle S_{G}\right\rangle_{N_{s}^{3} N_{t}}+\left\langle S_{G}\right\rangle_{N_{s}^{4}} \\
& \left.+\sum_{f}\left(\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle_{N_{s}^{3} N_{t}}-\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle_{N_{s}^{4}}\right) \frac{\partial m_{f}}{\partial \beta}\right]
\end{aligned}
$$

with starting point β_{0} where $p^{\mathrm{r}}\left(T_{0}\right) / T_{0}^{4} \approx 0$

- renormalized interaction measure

$$
\frac{I^{\mathrm{r}}}{T^{4}}=\frac{N_{t}^{3}}{N_{s}^{3}} \frac{a(\beta)}{a^{\prime}(\beta)}\left[\left\langle S_{G}\right\rangle_{N_{s}^{3} N_{t}}-\left\langle S_{G}\right\rangle_{N_{s}^{4}}+\sum_{f}\left(\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle_{N_{s}^{3} N_{t}}-\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle_{N_{s}^{4}}\right) \frac{\partial m_{f}}{\partial \beta}\right]
$$

Integration paths

- integral is independent of integration path

- averaging over different paths \& Borsányi, Endrödi et al. JHEP '10

Results: equation of state

- most recent results using two different staggered discretizations \& Borsányi et al. PLB '14 \& Bazavov et al. PRD '14

- low T: agreement with Hadron Resonance Gas model high T : comparison to Hard Thermal Loop resummed perturbation theory

QCD at nonzero density

Chemical potential in the continuum

- Noether current for $\mathrm{U}_{V}(1)$ symmetry

$$
\psi \rightarrow e^{i \alpha} \psi \quad \partial_{\nu} \bar{\psi} \gamma_{\nu} \psi=0 \quad \hat{N}=\int \mathrm{d}^{3} \mathbf{x} \bar{\psi} \gamma_{4} \psi \quad \frac{\mathrm{~d} \hat{N}}{\mathrm{~d} t}=[\hat{H}, \hat{N}]=0
$$

- canonical path integral

$$
Z_{N}=\operatorname{tr}\left[e^{-\hat{H} / T} \delta_{\hat{N}, N}\right]
$$

- grand canonical path integral

$$
\mathcal{Z}(\mu)=\operatorname{tr} e^{-(\hat{H}-\mu \hat{N}) / T}=\int \mathcal{D} A_{\nu} \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-S_{G}-S_{F}(\mu)}
$$

with

$$
S_{F}(\mu)=S_{F}(0)+\mu \int \mathrm{d}^{4} x \bar{\psi} \gamma_{4} \psi \quad \rightarrow \quad \not D(\mu)=\not D(0)+\mu \gamma_{4}
$$

Grand canonical equation of state

- free energy (density)

$$
F(T, \mu)=-T \log \mathcal{Z} \quad f=\frac{F}{V}
$$

- entropy density

$$
s=-\frac{1}{V} \frac{\partial F}{\partial T}
$$

- pressure

$$
p=-\frac{\partial F}{\partial V} \xrightarrow{V \rightarrow \infty}-f
$$

- number density

$$
n=-\frac{1}{V} \frac{\partial F}{\partial \mu}
$$

- energy density

$$
\epsilon-\mu n=-\frac{1}{V} \frac{\partial \log \mathcal{Z}}{\partial(1 / T)}=f+T s
$$

- interaction measure / trace anomaly

$$
I=\operatorname{tr} T_{\mu \nu}=\epsilon-3 p
$$

Chemical potential on the lattice

Chemical potential on the lattice

- add $\mu \gamma_{4}$ to naive Dirac operator

$$
\not D=\frac{1}{2} \sum_{\nu} \gamma_{\nu}[\underset{\nu}{\longrightarrow}-\overleftarrow{\nu}]+\mu \gamma_{4} .
$$

- in the free case $\left(U_{\mu}=\mathbb{1}\right) \log \operatorname{det} M$ contains divergences o Hasenfratz, Karsch PLB '83
$\log \operatorname{det} M_{\text {free }}(\mu)=\mathcal{O}\left(a^{-4}\right)+\mathcal{O}\left(m^{2} a^{-2}\right)+\mathcal{O}\left(m^{4} \log a\right)+\mathcal{O}\left(\mu^{2} a^{-2}\right)$
so the number density

$$
n=\mathcal{O}\left(\mu a^{-2}\right)
$$

- but in the continuum the number density is finite (0 at $T=0$)

$$
n \propto \Pi_{00}(q=0)=\operatorname{mun}_{q} \longrightarrow \sim_{q}
$$

Chemical potential on the lattice

- add $\mu \gamma_{4}$ to naive Dirac operator

$$
\not D=\frac{1}{2} \sum_{\nu} \gamma_{\nu}\left[\underset{\nu}{\longrightarrow}-\stackrel{\nu_{\nu}}{ }\right]+\mu \gamma_{4} .
$$

- in the free case $\left(U_{\mu}=\mathbb{1}\right) \log \operatorname{det} M$ contains divergences o Hasenfratz, Karsch PLB '83
$\log \operatorname{det} M_{\text {free }}(\mu)=\mathcal{O}\left(a^{-4}\right)+\mathcal{O}\left(m^{2} a^{-2}\right)+\mathcal{O}\left(m^{4} \log a\right)+\mathcal{O}\left(\mu^{2} a^{-2}\right)$
so the number density

$$
n=\mathcal{O}\left(\mu a^{-2}\right)
$$

- but in the continuum the number density is finite (0 at $T=0$)

$$
n \propto \Pi_{00}(q=0)=\operatorname{mun}_{q} \longrightarrow \sim_{q}
$$

did we violate gauge invariance?

Chemical potential on the lattice

- imaginary chemical pot. as 4th component of $\mathrm{U}(1)$ gauge field

$$
\not D+i \theta \gamma_{4}=\not D+i \mathcal{A} \quad \mathcal{A}_{\nu}=\theta \delta_{\nu 4}
$$

- just like gluon field, via parallel transporters © Hasenfratz, Karsch PLB '83

$$
u_{\mu}=\exp \left(i \mathcal{A}_{\mu}\right) \in \mathbb{U}(1)
$$

- multiplying the $\mathrm{SU}(3)$ links (imaginary μ)

$$
\text { D }=\frac{1}{2} \sum_{i} \gamma_{i}\left[\xrightarrow[i]{\longrightarrow}-\longleftarrow_{i}\right]+\frac{1}{2} \gamma_{4}\left[\frac{e^{i \theta}}{t}-\stackrel{e^{-i \theta}}{{ }_{t}}\right]
$$

- no μ-dependent divergences in $\log \operatorname{det} M_{\text {free }} \checkmark$

Chemical potential on the lattice

- imaginary chemical pot. as 4th component of $\mathrm{U}(1)$ gauge field

$$
\not D+i \theta \gamma_{4}=\not D+i \mathcal{A} \quad \mathcal{A}_{\nu}=\theta \delta_{\nu 4}
$$

- just like gluon field, via parallel transporters © Hasenfratz, Karsch PLB '83

$$
u_{\mu}=\exp \left(i \mathcal{A}_{\mu}\right) \in \mathbb{U}(1)
$$

- multiplying the $\mathrm{SU}(3)$ links (real μ)

$$
\not D=\frac{1}{2} \sum_{i} \gamma_{i}\left[\underset{i}{\longrightarrow}-\overleftarrow{i}^{\longrightarrow}\right]+\frac{1}{2} \gamma_{4}\left[\frac{e^{\mu}}{t}-\stackrel{e^{-\mu}}{t}\right]
$$

- no μ-dependent divergences in $\log \operatorname{det} M_{\text {free }} \checkmark$

Chemical potential and unitarity

- staggered quarks again
- imaginary chemical potential

$$
D_{n m}=\frac{1}{2 a} \sum_{\nu} \eta_{\nu}(n)\left[U_{\nu}(n) e^{i \theta \delta_{\nu 4}} \delta_{n+\hat{\nu}, m}-U_{\nu}^{\dagger}(n-\hat{\nu}) e^{-i \theta \delta_{\nu 4}} \delta_{n-\hat{\nu}, m}\right]
$$

links still unitary

- real chemical potential

$$
\not D_{n m}=\frac{1}{2 a} \sum_{\nu} \eta_{\nu}(n)\left[U_{\nu}(n) e^{\mu \delta_{\nu 4}} \delta_{n+\hat{\nu}, m}-U_{\nu}^{\dagger}(n-\hat{\nu}) e^{-\mu \delta_{\nu 4}} \delta_{n-\hat{\nu}, m}\right]
$$

forward/backward propagation enhanced/suppressed links not unitary anymore

Sign problem

- remember η_{5}-hermiticity of staggered Dirac operator at $\mu=0$
- now: $\{$ forward hopping $\} \neq\{\text { backward hopping }\}^{\dagger}$

$$
\eta_{5} \not D(\mu) \eta_{5}=\not D^{\dagger}(-\mu)
$$

η_{5}-hermiticity is lost $\Rightarrow \operatorname{det} M(\mu) \in \mathbb{C}$

- path integral

$$
\mathcal{Z}=\int \mathcal{D} U[\operatorname{det} M(\mu)]^{1 / 4} e^{-\beta S_{G}}
$$

no probabilistic interpretation anymore

- complex action problem

Sign problem

- remember η_{5}-hermiticity of staggered Dirac operator at $\mu=0$
- now: $\{$ forward hopping $\} \neq\{\text { backward hopping }\}^{\dagger}$

$$
\eta_{5} \not D(\mu) \eta_{5}=\not D^{\dagger}(-\mu)
$$

η_{5}-hermiticity is lost $\Rightarrow \operatorname{det} M(\mu) \in \mathbb{C}$

- path integral

$$
\mathcal{Z}=\int \mathcal{D} U[\operatorname{det} M(\mu)]^{1 / 4} e^{-\beta S_{G}}
$$

no probabilistic interpretation anymore

- complex action problem
- actually we know $\mathcal{Z} \in \mathbb{R}$

$$
\mathcal{Z}=\int \mathcal{D} \cup \operatorname{Re}[\operatorname{det} M(\mu)]^{1 / 4} e^{-\beta S_{G}}
$$

- sign problem

Sign problem

- remember η_{5}-hermiticity of staggered Dirac operator at $\mu=0$
- now: $\{$ forward hopping $\} \neq\{\text { backward hopping }\}^{\dagger}$

$$
\eta_{5} \not D(\mu) \eta_{5}=\not D^{\dagger}(-\mu)
$$

η_{5}-hermiticity is lost $\Rightarrow \operatorname{det} M(\mu) \in \mathbb{C}$

- path integral

$$
\mathcal{Z}=\int \mathcal{D} U[\operatorname{det} M(\mu)]^{1 / 4} e^{-\beta S_{G}}
$$

no probabilistic interpretation anymore

- complex action problem
- actually we know $\mathcal{Z} \in \mathbb{R}$

$$
\mathcal{Z}=\int \mathcal{D} \cup \operatorname{Re}[\operatorname{det} M(\mu)]^{1 / 4} e^{-\beta S_{G}}
$$

- sign problem
- bonus staggered problem: ambiguous complex rooting

Sign problem - workarounds

- here: brief description of
- imaginary chemical potentials and analytical continuation
- many other approaches
- reweighting
- Taylor expansion in μ around $\mu=0$
- complex Langevin
- Lefschetz thimbles
- ...

Analytic continuation from imaginary μ

- again $\{$ forward hopping $\}=\{\text { backward hopping }\}^{\dagger}$

$$
\eta_{5} \not D(i \theta) \eta_{5}=म^{\dagger}(i \theta)
$$

- so standard simulations work at $\theta \neq 0\left(\mu^{2}<0\right)$ Borsányi et al. PRL '20

Analytic continuation from imaginary μ

- again $\{$ forward hopping $\}=\{\text { backward hopping }\}^{\dagger}$

$$
\eta_{5} \not D(i \theta) \eta_{5}=म^{\dagger}(i \theta)
$$

- so standard simulations work at $\theta \neq 0\left(\mu^{2}<0\right)$ Q Borsányi et al. PRL '20

- fit and analytically continue to $\mu^{2}>0$

Phase diagram

- analytically continue susceptibility peak positions
© Borsányi et al. PRL '20

Roberge-Weiss transitions

Imaginary chemical potentials

- remember center sectors (Polyakov loop eigenvalues)

$$
\varphi_{1}=\varphi_{2}=0 \quad \varphi_{1}=\varphi_{2}=2 \pi / 3 \quad \varphi_{1}=\varphi_{2}=-2 \pi / 3
$$

shifting the Matsubara frequencies
$\frac{\bar{\omega}_{n}+\theta}{T} \rightarrow(2 n+1+\theta+0) \pi \quad(2 n+1+\theta+2 / 3) \pi \quad(2 n+1+\theta-2 / 3) \pi$

- magnitude of lowest frequency is largest for:

Imaginary chemical potentials

- remember center sectors (Polyakov loop eigenvalues)

$$
\varphi_{1}=\varphi_{2}=0 \quad \varphi_{1}=\varphi_{2}=2 \pi / 3 \quad \varphi_{1}=\varphi_{2}=-2 \pi / 3
$$

shifting the Matsubara frequencies

$$
\frac{\bar{\omega}_{n}+\theta}{T} \rightarrow(2 n+1+\theta+0) \pi \quad(2 n+1+\theta+2 / 3) \pi \quad(2 n+1+\theta-2 / 3) \pi
$$

- magnitude of lowest frequency is largest for:

$$
\begin{array}{c|c}
-\pi T / 3<\theta<\pi T / 3 & \varphi=0 \\
\hline \pi T / 3<\theta<\pi T & \varphi=-2 \pi / 3 \\
\hline-\pi T<\theta<-\pi T / 3 & \varphi=2 \pi / 3
\end{array}
$$

Roberge-Weiss transitions

- preferred center sectors at nonzero θ

- $f(\theta+2 \pi T)=f(\theta)$ periodicity already in free case
- in QCD $f(\theta+2 \pi T / 3)=f(\theta)$
(only $N \% 3=0$ states allowed) \quad Roberge, Weiss NPB ' 86

Roberge-Weiss transitions

- phase diagram at nonzero θ

Q Roberge, Weiss NPB '86 Czaban et al. PRD '16

- analytical continuation limited by $\theta<\pi T / 3$ at high temperature
- note: ongoing research on RW endpoint

Summary

- lattice QCD is a first-principles approach to study elementary particles and also a lot of fun
- inputs
- QCD Lagrangian
- 1 quantity to set lattice scale $a(\beta)$
- N_{f} quantities to set bare quark masses $m_{f}(\beta)$
- research on QCD thermodynamics
- at physical quark masses at zero density:
- in the massless limit: ongoing
- at physical quark masses at $\mu / T \lesssim 1$:
- large densities: \times
- background magnetic fields:
- isospin density:
- more on that at XQCD 2022 in Trondheim

