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The plan

QFT at finite temperature, the role of time and the Schwinger-Keldysh
contour

Bases for real-time perturbation theory
Soft modes and HTL resummation
Collinear modes and LPM resummation

All this in the frame of the LO photon production rate
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QFT atT=0

A brief recap of what we learned during our master’s
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. the primary observable is the scattering amplitude e
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vacuum to vacuum amplitudes, fields act on
vacuum to create the asymptotic states €D crcrees,

Michael E. Peskin ® Daniel V. Schroeder



QFT atT=0

A brief recap of what we learned during our master’s

- \

» Perturbatively E S+

includes loops: quantum-mechanical vacuum fluctuations (Heisenberg
principle)

« Indeed, the vacuum is a guantum-mechanical pure state. Vacuum
expectation values only accounts for vacuum fluctuations



QFT in a medium

Statistical fluctuations

» |n a medium we also have statistical fluctuations, arising from our limited,
statistical knowledge of the system

. If at t = 1, the system is described by states |i) with probabilities P ()
(a mixed state) then

(O(t)) = Y’ Pito)i| Oi) = Tr[p(ty)O(t)]

with p(t,) = Z P(ty)|i)(i| the density operator
i

 |In what follows we will concentrate on thermal equilibrium. Out-of-
equilibrium is very fascinating& important, see Aleksi’s lectures



Thermal equilibrium

The grand canonical ensemble

« The density operator is now time-independent

Doq = 16—3(1?—#7:1%)7 7 — Ty 6—5(1%—#7:1%)7

A

. Z is the partition function (Zustandssumme), f = 1/T7, H the Hamiltonian,
Ni the number operators for conserved global charges, with associated

chemical potentials y.

 For instance, In QCD Nf — /dgx q_f(x)voqf(x)



Observables

Typical observables
- thermodynamics (p, e, susceptibilities...)

. transport coefticients (», diffusion,...)
- thermal production rates
- hard-probe observables (jets, quarkonia)

« equilibration and thermalisation rates



Classifying observables

An important difference

Even if the equilibrium state is time-independent, we can classify these
observables by how they are affected by time

For thermodynamics, 7" = diag(e, p, p, p) for an ideal fluid in its rest
frame. In QFT T#¥ — O**, which is a local operator (®*(X)). Then

e = (O™ (with vacuum subtraction)

Thermodynamics deals with operators which are local in time. As we shall
soon see, that is a big simplification

These lectures will mostly be about observables that are non-local in time



Dealing with local observables

The Matsubara formalism

. (é(t)) = Tr[ﬁ(t)é(t)] — Z (i \ﬁ(t)@(t) | 7): used t-invariance of eq. operator

.+ Now use p = e PH=1N) | 7 and identify e P as a time-evolution operator in the

imaginary direction 7, i.e it « [ (U(?) = e_’ﬁt)
o fD¢Oe_SE 7
0) =S Sy = /O drLs

- The trace, when transformed into a path integral, implies
$(0,x) = ¢(f, x) for bosons (periodicity)
w(0,X) = — w(pf, x) for fermions (antiperiodicity)



Dealing with local observables

The Matsubara formalism

« We thus have 3D Euclidean space X compactified Euclidean time g O

. |deal (at vanishing chem. pots) for lattice

« Perturbatively: Euclidean field theory with discrete Matsubara frequencies
w, = 2x1n for bosons, @, = n1(2n + 1) for fermions, n € Z.

de/(Zﬂ) N TZ

- Exercise: for a theory of massless, non-interacting real scalars compute the

0
energy density using dim reg. Recall that ® ,, = 9,99 ¢ — W& ,00,0.

T

30

Solution: ¢ = 47°T*{(—3) =



The thermal photon rate

A non-local observable

« Photons are not in equilibrium in the short-lived QCD plasma in a heavy-
ion collision

. If a photon is produced from the QCD plasma (rare event, ¢ << 1) it is
unlikely to rescatter (rare event, a < 1)"2

» They are thus a good hard probe: they carry information from the thermal
phase, unaffected by later stages such as hadronisation



The thermal photon rate

A non-local observable

. Since a < 1 we can work to first order in the EM coupling. Photon
production is then Poissonian and back-reaction (cooling of the plasma)

negligible
» Compute single photon production

dP
2]{7(27‘-)3 @ — Z rTrpequJr (t) |X7 7> <X7 V‘U(t)
X

P probability, U(t) time evolution operator

« Therate s AN, _ dTy k= —€? Ly ik
_ alk ik(t—=z)/ 710
AAXd3k &k (20)32k / dxe WJH0)Ju(X))




The thermal photon rate

A non-local observable

The rate is T = dS; = G /d Xe*U=2)(J1(0).], (X))

Two-point function of the em current J* = 2 Qid:v" 4,

l

(J#) would be the current density of the plasma. Vanishes for a charge-
neutral plasma. But a charge-neutral plasma still produces photons

The formula is valid to first order in electromagnetism but to all orders in
the QCD coupling. For practical and pheno reasons require k ~ T



Dealing with non-local observables

The Schwinger-Keldysh formalism

. (0, (t.)0,(t,)) = Tr[p(t,)O (t,)O,(t,)]: chose ¢, for the density op.

and assume f, >,

. (1) = ﬁ(ta)éa(ta) can be considered as a new, non-equilibrium state

. [H,p,] # 0, we mustevolveittot,, p(t,) = Ut,, t)p (t)U(t,t,)

- Plug this into the trace above and use cyclicity %
Tr[p,(t,)OK(1,)] = Tr[p(2,)0,(2,) O,(1,)U(1y, 1,)]

» Translating this into path integrals we get the Schwinger-Keldysh contour



The Schwinger-Keldysh contour

Tr[ﬁa(tb)Ob(tb)] — Tr[ﬁ(ta)Oa(ta) Ob(tb) U(tba ta)]
« Time ordered branch n
« Anti-time ordered branch
 Statistical (Euclidean) branch f f,
. S O 1
061 0,
O = (110,01} o = 1P
X X 1 P1(tp) =i | ¢ (to—1i5)
0,0 (t)) = — D (S (¢1)— ) D —Se(¢E) O,
(Oa(ta)Op(ts)) Z%:/qbl(ta)qu(tow) P1 e /qu(tO) P € z

» Applicable out of equilibrium too

ubling-of the degreesoffreedem, an imprecise statement



The Schwmger Keldysh contour

N N b1 (ty) =0
Oulta)On(ts)) = = 3 /0> D,

Z i Y P1(ta)=90E(to—iB) \L
« An imprecise statement: as we shall see,
the propagator becomes a matrix in 1 and [ f,
. . = —|—’_|—\ >
2 fields. If one computes a time-ordered 0, 0,
product of operators, then external fields l ;
fo—

are of type 1 and internally these "2 dofs
pop in. But T-ordered operators are not that important in thermal eq. (with

some exceptions

. The more important operator orderings are the Wightman (¢ (1)¢(0)) and
retarded two-point fncs. They measure correlation and causation respectively



The Schwinger-Keldysh contour

Operator orderings

Wightman functions D7 (ti,to) = (¢(t1)¢(to)) D~ (t1,t0) = ((to)d(t1))
Retarded and advanced functions D~(ti,t) = (ts — to)ps(ti,te),  DA(tr,te) = —0(to — t1)p5(t1, to)

Their difference: the spectral function pgp(ti,to) = (|o(t1), d(to)])

pB(t17tO) — DR(tlatO) _ DA(tlvtO) — D>(t17t0) _ D<(t17t0)

Cyclicity of the trace and the (exponential) form of eq. density yield the
Kubo-Martin-Schwinger (KMS) relation between the Wightman

functions D> (¢) = D> (1,0) = D<(t + if}), S”(t) = — e*S<(t + i)



The Schwinger-Keldysh contour

Operator orderings

. In Fourier space D7) = [ a0 () = D)

S”(w) E/dteiwt5>(t) = —ePl1) §<(w)

« Hence we get the Wightman functions in terms of the spectral function
D<(w) = (/" = )™ pg(w) = ng(w)pp(w),

D~ (w) = (1 + ng(w))ppg(w)

S<(w) = = ("™ + Dpp(w) = — nHw)p(w)

 |n equilibrium all operator orderings are determined from the spectral
function through KMS and causality



The 1-2'' formalism

Operator orderings and the contour I

« Go back to the contour: 2" fields are always to t
the left (contour-later) of 1" fields, O = "0, g

(P,()p,(0)) = D~ (1), (P (P,(0)) = D=(1). lta—iﬂ

This determines the off-diagonal elements of the propagator.

» The two contours are (anti)-time ordered = Feynman and anti-F propagators
D = ( \P101)  (P102) ) _ < D"  Ds )

(P2001)  (P202) D> DF
_ _ 1 1
D" (1) = 0(xnD” (1) + O(FD (1) D" (@) = + —[Dy(@) + Dy(@)] + (5 + nB<w>> pp()
 Vertices are diagonal in ' 1-2” indices, ’ ’ ?
2" indices have opposite sign >< i



The 1-2'' formalism

Operator orderings and the contour

« We can now go back to our energy density problem and see how it appears
more transparent in the real-time formalism

d*P ,
= |G ®

- Recall that the bare spf is pz(@w) = 27?6(60)5(602 — E,?)

« [mportant: time-dependent observables can also be obtained from the
Matsubara formalism, but one needs to perform analytical continuations
(after all the sums have been performed).

D7 (—it) = Gi(7)



The 1-2"” formalism
Why there is no doeubling in vacuum

1
Only type 1 Vﬁl

11111 1

Only type 2 vertices

n > 1 w, have to be negative by momentum conservation.

1

For a time-ordered vacuum expectation value
all external field are type 1”. 2" fields 1
can only appear in islands

They are thus connected to the rest of the

diagram by D~ (w,) propagators

Recall that D7 (@) = (1 + ng(w))pz(w) — O(w)pyz(w) at zero temperature:

the familiar statement that forward Wightman vac. amplitudes have support
at positive frequencies only is what prevents these islands from popping up



The 1-2'' formalism

Are we ready to go?

dNW dFV k|| z —e? / A (4 —
— — d X v (t Z) M X
AXBE Bk (20)32%k ‘ (J0)Ju(X))

. This is a < Wightman function, IT<(K). We could in principle just take
these propagators and Feynman rules and compute. However

» this basis is not optimal, and we have not discussed cutting rules yet

- we will rapidly run into failures of the loop expansion



