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From Thermal Field Theory to real-time observables



The plan

• QFT at finite temperature, the role of time and the Schwinger-Keldysh 
contour 

• Bases for real-time perturbation theory 

• Soft modes and HTL resummation 

• Collinear modes and LPM resummation 

• All this in the frame of the LO photon production rate
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QFT at T=0
A brief recap of what we learned during our master’s

• small number of particles 

• the primary observable is the scattering amplitude 

• we have well defined asymptotic states at  
(or sort of, think of collinear factorisation)

t = ± ∞

vacuum to vacuum amplitudes, fields act on 
vacuum to create the asymptotic states

S



QFT at T=0
A brief recap of what we learned during our master’s

• Perturbatively 
 
includes loops: quantum-mechanical vacuum fluctuations (Heisenberg 
principle) 

• Indeed, the vacuum is a quantum-mechanical pure state. Vacuum 
expectation values only accounts for vacuum fluctuations



QFT in a medium
Statistical fluctuations

• In a medium we also have statistical fluctuations, arising from our limited, 
statistical knowledge of the system 

• If at  the system is described by states  with probabilities  
(a mixed state) then  
 
 
with  the density operator 

• In what follows we will concentrate on thermal equilibrium. Out-of-
equilibrium is very fascinating&important, see Aleksi’s lectures

t = t0 | i⟩ Pi(t0)

̂ρ(t0) = ∑
i

Pi(t0) | i⟩⟨i |

⟨Ô(t0)⟩ ≡ ∑
i

Pi(t0)⟨i | Ô | i⟩ = Tr[ ̂ρ(t0)Ô(t0)]



Thermal equilibrium
The grand canonical ensemble

• The density operator is now time-independent 
 

• Z is the partition function (Zustandssumme), ,  the Hamiltonian, 
 the number operators for conserved global charges, with associated 

chemical potentials  

• For instance, in QCD 

β ≡ 1/T Ĥ
N̂i

μi

The labels 1 and 2 should not be confused with the ijkl ones. While the latter
refer to the field configurations of the corresponding states |ii, . . ., the former
are only used to label the time evolution of the ket (1) and bra (2), which by
the unitarity of the evolution operator lead to the relative minus sign in the
exponent of the action. This labeling is oftentimes called doubling of the degrees
of freedom. It represents a crucial point of time-dependent statistical field theory
and we will explore its details and physical implications in Sec. 3.

In the special case of thermal equilibrium in the grand canonical ensemble,
the density operator takes the form

⇢̂eq =
1

Z
e
��(Ĥ�µiN̂i), Z = Tr e��(Ĥ�µiN̂i), (8)

where µi and N̂i correspond to the chemical potentials and associated number
operators for possible conserved charges that commute with each other and with
the Hamiltonian. In the case of QCD, these are, e.g., quark numbers of flavor f

N̂f =

Z
d
3
x q̄f (x)�

0
qf (x). (9)

The normalization constant Z, the partition function, enforces h1i = 1.
As can be readily verified, the equilibrium form of the density matrix resem-

bles that of an evolution operator with a time argument of �i�. This allows
one to write also the density matrix in the path integral form

(⇢eq)jk ⌘ h�j |⇢̂eq|�ki =
1

Z

Z
�E(t0�i�)=±�j

�E(t0)=�k

D�E e
�SE(�E)

, (10)

where SE is the Euclidean action, SE =
R
�

0 d⌧ LE , or in the presence of nonzero

chemical potentials SE =
R
�

0 d⌧ (LE � µfNf ). The field at t = t0 � i� is equal
to ±�j , with the upper sign enforcing a periodic boundary condition for bosons
and the lower one an antiperiodic boundary condition for fermions (see e.g. [2]
for a careful derivation of both boundary conditions).

It is clear that the equilibrium density operator commutes with the Hamilto-
nian, [⇢̂eq, Ĥ] = 0, and is thus time-translation invariant. Therefore, in equilib-
rium, the initial time t0 is completely arbitrary, and for an operator local in time
we may simply choose t0 = t1. In this case, the D�1(t) and D�2(t) integrals
disappear and we are left with only the Euclidean branch of the path integral.
This purely Euclidean path integral will be the starting point of our discussion
in Sec. 6. On the other hand, in case of operators separated in (real) time, such
as Ô = Ôi(t1)Ôj(t2) with t1 < t2, the action of the first operator Oi(t1) on the
density operator creates a non-equilibrium state characterized by a new density
matrix ⇢̂(t1) = ⇢̂eqÔi(t1). This new density operator no longer commutes with
the Hamiltonian and therefore the integrals over the real branches no longer
trivialize. The contour formed by the two real branches and the imaginary one
is called the Schwinger–Keldysh contour [8, 9], and is depicted in Fig. 1 (see
also [3] for a more pedagogical introduction).
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Observables

• Typical observables 

• thermodynamics ( , , susceptibilities…) 

• transport coe"icients ( , diffusion,…) 

• thermal production rates 

• hard-probe observables (jets, quarkonia) 

• equilibration and thermalisation rates 

• ……

p e
η



Classifying observables
An important difference

• Even if the equilibrium state is time-independent, we can classify these 
observables by how they are affected by time 

• For thermodynamics,  for an ideal fluid in its rest 
frame. In QFT , which is a local operator ( ). Then 

 (with vacuum subtraction) 

• Thermodynamics deals with operators which are local in time. As we shall 
soon see, that is a big simplification 

• These lectures will mostly be about observables that are non-local in time

Tμν = diag(e, p, p, p)
Tμν → Θμν Θμν(X)

e = ⟨Θ00⟩



Dealing with local observables
The Matsubara formalism

• : used t-invariance of eq. operator 

• Now use  and identify  as a time-evolution operator in the 
imaginary direction , i.e  ( ) 
 

• The trace, when transformed into a path integral, implies 
 for bosons (periodicity) 

 for fermions (antiperiodicity) 
 

⟨Ô(t)⟩ = Tr[ ̂ρ(t)Ô(t)] = ∑
i

⟨i | ̂ρ(t)Ô(t) | i⟩

̂ρ = e−β(Ĥ−μiN̂i)/Z e−βĤ

τ it ↔ β U(t) = e−iĤt

ϕ(0, ⃗x ) = ϕ(β, ⃗x )
ψ(0, ⃗x ) = − ψ(β, ⃗x )

<latexit sha1_base64="pt9MBfYgiU2cSGFxB43dsyKdTmo="></latexit>

hÔi =
R
D� Ô e

�SE

R
D� e�SE

<latexit sha1_base64="4MJKh1qMtYp3Xcq4deJH7Pla5lE=">AAACJ3icbVBNS8NAEN3U7/pV9ehlsQieSiKinqQoggcPilaFpobNZlqXbjZxd1IoIf/Gi3/Fi6AievSfuK09+PVg4PHezO7MC1MpDLruu1MaG5+YnJqeKc/OzS8sVpaWL0ySaQ4NnshEX4XMgBQKGihQwlWqgcWhhMuwezDwL3ugjUjUOfZTaMWso0RbcIZWCip7Z8GhD7eZ6FFfKAzy3B8+mmuICrcorn8IfgjIioJGPrKMHgeHQaXq1twh6F/ijUiVjHASVJ78KOFZDAq5ZMY0PTfFVs40Ci6hKPuZgZTxLutA01LFYjCtfLhBQdetEtF2om0ppEP1+0TOYmP6cWg7Y4Y35rc3EP/zmhm2d1u5UGmGoPjXR+1MUkzoIDQaCQ0cZd8SxrWwu1J+wzTjaKMt2xC83yf/JRebNW+7tnW6Va3vj+KYJqtkjWwQj+yQOjkiJ6RBOLkjD+SZvDj3zqPz6rx9tZac0cwK+QHn4xPT96e/</latexit>

SE ⌘
Z �

0
d⌧LE



Dealing with local observables
The Matsubara formalism

• We thus have 3D Euclidean space X compactified Euclidean time 

• Ideal (at vanishing chem. pots) for lattice 

• Perturbatively: Euclidean field theory with discrete Matsubara frequencies 
 for bosons,  for fermions, .  

 

• Exercise: for a theory of massless, non-interacting real scalars compute the 

energy density using dim reg. Recall that . 

Solution: 

ωn = 2πTn ω̃n = πT(2n + 1) n ∈ ℤ

∫ dω/(2π) → T∑
n

Θμν = ∂μϕ∂νϕ −
δμν

2 ∂ρϕ∂ρϕ

e = 4π2T4ζ(−3) = π2T4

30

<latexit sha1_base64="bbwnDVOU7CsWx+04f1unqbjFPu8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0swm7m2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WjmSToR3QgecgZNVZqdcfIsqdpr1xxq+4cZJV4OalAjnqv/NXtxyyNUBomqNYdz02Mn1FlOBM4LXVTjQllIzrAjqWSRqj9bH7ulJxZpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3vgZl0lqULLFojAVxMRk9jvpc4XMiIkllClubyVsSBVlxiZUsiF4yy+vkuZF1buqXj5cVmq3eRxFOIFTOAcPrqEG91CHBjAYwTO8wpuTOC/Ou/OxaC04+cwx/IHz+QO00Y/T</latexit>

~x
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0 = �



The thermal photon rate
A non-local observable

• Photons are not in equilibrium in the short-lived QCD plasma in a heavy-
ion collision 

• If a photon is produced from the QCD plasma (rare event, ) it is 
unlikely to rescatter (rare event, )^2 

• They are thus a good hard probe: they carry information from the thermal 
phase, unaffected by later stages such as hadronisation

α ≪ 1
α ≪ 1



The thermal photon rate
A non-local observable

• Since  we can work to first order in the EM coupling. Photon 
production is then Poissonian and back-reaction (cooling of the plasma) 
negligible 

• Compute single photon production  
 
 
P probability, U(t) time evolution operator 

• The rate is  

α ≪ 1

<latexit sha1_base64="p/yIREJ28BgmUkDu8pKPD7ptlsA="></latexit>

2k(2⇡)3
dP

d3k
=

X

X

Tr⇢eqU
†(t)|X, �ihX, �|U(t)

<latexit sha1_base64="pMY/5qDNcK785/i3I+ziGiVVTZY="></latexit>

dN�

d4Xd3k
⌘ d��

d3k

kkz
=

�e2

(2⇡)32k

Z
d4Xeik(t�z)hJµ(0)Jµ(X)i



The thermal photon rate
A non-local observable

• The rate is   

• Two-point function of the em current  

•  would be the current density of the plasma. Vanishes for a charge-
neutral plasma. But a charge-neutral plasma still produces photons 

• The formula is valid to first order in electromagnetism but to all orders in 
the QCD coupling. For practical and pheno reasons require 

Jμ = ∑
i

Qiq̄iγμqo

⟨Jμ⟩

k ∼ T

<latexit sha1_base64="pMY/5qDNcK785/i3I+ziGiVVTZY="></latexit>

dN�

d4Xd3k
⌘ d��

d3k

kkz
=

�e2

(2⇡)32k

Z
d4Xeik(t�z)hJµ(0)Jµ(X)i



Dealing with non-local observables
The Schwinger-Keldysh formalism

• : chose  for the density op. 
 and assume  

•  can be considered as a new, non-equilibrium state 

• , we must evolve it to ,  

• Plug this into the trace above and use cyclicity  
 

• Translating this into path integrals we get the Schwinger-Keldysh contour

⟨Ôa(ta)Ôb(tb)⟩ = Tr[ ̂ρ(ta)Ôa(ta)Ôb(tb)] ta
tb > ta

̂ρa(ta) ≡ ̂ρ(ta)Ôa(ta)

[Ĥ, ̂ρa] ≠ 0 tb ̂ρa(tb) = U(tb, ta) ̂ρa(ta)U(ta, tb)

Tr[ ̂ρa(tb)Ôb(tb)] = Tr[ ̂ρ(ta)Ôa(ta)U(ta, tb)Ôb(tb)U(tb, ta)]



The Schwinger-Keldysh contour
Tr[ ̂ρa(tb)Ôb(tb)] = Tr[ ̂ρ(ta)Ôa(ta)U(ta, tb)Ôb(tb)U(tb, ta)]

• Time ordered branch 

• Anti-time ordered branch 

• Statistical (Euclidean) branch

t

Ôa Ôb

ta

ta − iβ

tb

<latexit sha1_base64="hWfTA0oi7thdf/VzxVAKqDy8YfQ="></latexit>

hÔa(ta)Ôb(tb)i =
1

Z

X

li

Z �1(tb)=�i

�1(ta)=�E(t0�i�)
D�1

Z �2(tb)=�l

�2(ta)=�E(t0)
D�2 e

i(S(�1)�S(�2))

Z �E(t0�i�)

�E(t0)
D�E e

�SE(�E)
Oli

<latexit sha1_base64="SQq2mefizmwyjC/WQi2pbSayiSg=">AAACIHicbVDLSgMxFM3UV62vqks3wSK4KjNSrBuh6MadCrYVOmW4k6ZtaCYzJHeEMvRT3Pgrblwoojv9GtOHoNUDgcM553JzT5hIYdB1P5zcwuLS8kp+tbC2vrG5VdzeaZg41YzXWSxjfRuC4VIoXkeBkt8mmkMUSt4MB+djv3nHtRGxusFhwtsR9JToCgZopaBYvQwyKUanvgTVk5xK36aR+n3A7HIUwDcJp7qgvp4Eg2LJLbsT0L/Em5ESmeEqKL77nZilEVfIJBjT8twE2xloFEzyUcFPDU+ADaDHW5YqiLhpZ5MDR/TAKh3ajbV9CulE/TmRQWTMMAptMgLsm3lvLP7ntVLsnrQzoZIUuWLTRd1UUozpuC3aEZozlENLgGlh/0pZHzQwtJ0WbAne/Ml/SeOo7B2XK9eVUu1sVkee7JF9ckg8UiU1ckGuSJ0wck8eyTN5cR6cJ+fVeZtGc85sZpf8gvP5BdkcpAY=</latexit>

Oli = hl|ÔaÔb|ii

• Applicable out of equilibrium too 

• Doubling of the degrees of freedom, an imprecise statement



The Schwinger-Keldysh contour
Doubling of the degrees of freedom

<latexit sha1_base64="hWfTA0oi7thdf/VzxVAKqDy8YfQ=">AAAD+XicjVPLbtQwFE0zQMvwaAtLNhEV0kRqR7bnkWRRqQIqsWtR6UOMp5HjemasOg8lTqXK8p+wYQFCbPkTdvwNTmYK05QFliKde++5OffcxFEmeCEB+LVit+7df7C69rD96PGTp+sbm89OirTMKTumqUjzs4gUTPCEHUsuBTvLckbiSLDT6PJNVT+9YnnB0+SDvM7YOCbThE84JdKkwk17HQuSTAXDMyLVgQ5JR4bEvYkix4SRi/Oa4+w6eJITqqBWHzUuyjhUgmuF6zlG+TQaK9AN/CEaoG3QBcBDvWEFkNdHPY15IkOFsxkPYa2yW+N9g8EOxxGTxNXnfwnRgsA1jomcUSLUWz2v6nZDFKJhP6i0Am8wgJ4Bw57nB4NlUdQU/aOGltTEHTWk8bbDzhXv/K/To858TFfvNOeEPoT9ak4IAq9nwCDwez3/pgW52m0uFJgzrN8OoA9g1Rz4CAXL3m77ub3Spp99vG3c7BwZ2jx2tWMsHtQfM9zYmisC4NwFcAG2rMU5DDd+4ouUljFLJBWkKEYQZHKsSC45FUy3cVmwjNBLMmUjAxMSs2KsaoPaeWUyF84kzc2TSKfOLncoEhfFdRwZZmWiaNaq5L9qo1JO/LHiSVZKltC50KQUjkyd6ho4FzxnVIprAwjNuZnVoTNi/m1pLkvbLAE2Ld8FJ6gLh93++/7W3uvFOtasF9ZLq2NBy7P2rHfWoXVsUfvK/mR/sb+2VOtz61vr+5xqryx6nlu3TuvHb1IbOrw=</latexit>
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• An imprecise statement: as we shall see,  
the propagator becomes a matrix in 1 and  
2 fields. If one computes a time-ordered  
product of operators, then external fields  
are of type 1 and internally these ``2’’ dofs  
pop in. But T-ordered operators are not that important in thermal eq. (with 
some exceptions 

• The more important operator orderings are the Wightman  and 
retarded two-point fncs. They measure correlation and causation respectively

⟨ϕ(t)ϕ(0)⟩

t

Ôa Ôb

ta

ta − iβ

tb



• Wightman functions 

• Retarded and advanced functions 

• Their difference: the spectral function 

• Cyclicity of the trace and the (exponential) form of eq. density yield the 
Kubo-Martin-Schwinger (KMS)  relation between the Wightman 
functions , D>(t) ≡ D>(t,0) = D<(t + iβ) S>(t) = − eβμS<(t + iβ)

The Schwinger-Keldysh contour
Operator orderings

t0

t0 � i�

Im t

Re tt1

t1 � i✏

Figure 1: The Schwinger–Keldysh contour on the complex t-plane.

The second important di↵erence with ordinary T = 0 QFT is that a ther-
mal medium induces random interactions which, in turn, do not preserve any
state. Therefore, one cannot separate à la LSZ the far-away asymptotics from
the space-time region where the interactions take place. Hence the observables
of interest are not the S-matrix elements or the associated time-ordered expec-
tation values, which, as we remarked previously, are the ones relevant in vacuum
perturbation theory. In a medium, on the other hand, operator ordering plays
a much more enhanced role: at nonzero temperatures and/or densities, most
observables of interest depend either on the forward or backward Wightman
functions, describing physical correlations in the medium, or on retarded and
advanced functions, describing causation in medium. For bosons,2 the Wight-
man functions read

D
>(t1, t0) = h�(t1)�(t0)i, (11)

D
<(t1, t0) = h�(t0)�(t1)i, (12)

2Note that we do not display the spatial coordinates or possible color, Lorentz or spin
indices of the fields in these definitions. It is understood that the indices correspond
to those of the fields at the given time arguments; for example, D<ab

µ⌫(t0, t1;x0,x1) =

hAb
⌫(t1,x1)Aa

µ(t0,x0)i.
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whereas the retarded and advanced correlators are

D
R(t1, t0) = ✓(t1 � t0)⇢B(t1, t0), (13)

D
A(t1, t0) = �✓(t0 � t1)⇢B(t1, t0), (14)

which are written in terms of the spectral function

⇢B(t1, t0) = h[�(t1),�(t0)]i. (15)

For a fermionic field  , the corresponding expressions on the other hand read

S
>(t1, t0) = h (t1) (t0)i, (16)

S
<(t1, t0) = �h (t0) (t1)i, (17)
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In simple terms, the significance of the di↵erent correlators defined above
can be summarized as follows: the Wightman function measures correlation,
whereas the retarded function measures causation. That is, the Wightman
function between firetrucks and fires is non-zero, whereas the retarded function
between them vanishes, as firetrucks are often found around fires but the trucks
do not cause them.

With a generic density operator ⇢̂, three of the above five correlators are
independent.3 However, in equilibrium even these functions are related to each
other through the fluctuation-dissipation theorem, known in this context as the
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�� < Im(t) < 0 and 0 < Im(t) < �, respectively (see for instance [3, 4]). This
is seen particularly clearly by writing the forward Wightman function in its
(normal-ordered) spectral representation

D
>(t1, t0) =
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Z

X

m,n

e
��Ene

�iEn(t1�t0)e
iEm(t0�t1)|hn|�̂(0)|mi|2. (23)

3As is clearly seen in position space from Eqs. (13) and (14), knowledge of ⇢ determines
the retarded and advanced correlators.
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Figure 1: The Schwinger–Keldysh contour on the complex t-plane.

The second important di↵erence with ordinary T = 0 QFT is that a ther-
mal medium induces random interactions which, in turn, do not preserve any
state. Therefore, one cannot separate à la LSZ the far-away asymptotics from
the space-time region where the interactions take place. Hence the observables
of interest are not the S-matrix elements or the associated time-ordered expec-
tation values, which, as we remarked previously, are the ones relevant in vacuum
perturbation theory. In a medium, on the other hand, operator ordering plays
a much more enhanced role: at nonzero temperatures and/or densities, most
observables of interest depend either on the forward or backward Wightman
functions, describing physical correlations in the medium, or on retarded and
advanced functions, describing causation in medium. For bosons,2 the Wight-
man functions read

D
>(t1, t0) = h�(t1)�(t0)i, (11)

D
<(t1, t0) = h�(t0)�(t1)i, (12)

2Note that we do not display the spatial coordinates or possible color, Lorentz or spin
indices of the fields in these definitions. It is understood that the indices correspond
to those of the fields at the given time arguments; for example, D<ab

µ⌫(t0, t1;x0,x1) =

hAb
⌫(t1,x1)Aa

µ(t0,x0)i.
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• In Fourier space 

• Hence we get the Wightman functions in terms of the spectral function 
,  

 
 

• In equilibrium all operator orderings are determined from the spectral 
function through KMS and causality

D<(ω) = (eβω − 1)−1ρB(ω) ≡ nB(ω)ρB(ω)
D>(ω) = (1 + nB(ω))ρB(ω)
S<(ω) = − (eβ(ω−μ) + 1)ρF(ω) ≡ − nF(ω)ρF(ω)

The Schwinger-Keldysh contour
Operator orderings

Now, assuming that the convergence of the sum is governed by the exponentials,
it is clear that the sum is absolutely convergent, and therefore the resulting
function analytic, for �� < Im(t) < 0.4

Using the cyclicity of the trace, the exponential form of the thermal den-
sity operator, and the commutation relations of the conserved charge, the two
Wightman functions can be related to each other via

D
>(t) = D

<(t+ i�), (24)

S
>(t) = �e

��µ
S
<(t+ i�) , (25)

where, due to our interest in QCD, we have omitted the possibility of assigning
a chemical potential to bosons.

In momentum space5 the above relations take a particularly useful form,

D
>(!) ⌘

Z
dte

i!t
D

>(t) = e
�!

D
<(!), (26)

S
>(!) ⌘

Z
dte

i!t
S
>(t) = �e

�(!�µ)
S
<(!), (27)

or equivalently in terms of the Wightman and spectral functions

nB(!)⇢B(!) = D
<(!), (28)

(1 + nB(!))⇢B(!) = D
>(!), (29)

nF (! � µ)⇢F (!) = �S
<(!), (30)

where nB(!) = (e�!�1)�1 and nF (!) = (e�!+1)�1 are the Bose–Einstein and
Fermi–Dirac distributions, respectively.

3. Real time formalism

In this section, we go on to explore in detail the implications of the Schwinger–
Keldysh contour on thermal expectation values, illustrating general methods
without a specific focus on QCD. In Sec. 3.1, we review the most commonly
used bases for the fields on that contour. while in Sec. 3.2 we explain how one
of the most important objects in perturbation theory, the self energy, behaves
under such bases. This is of particular relevance for the resummations that will
be introduced in Sec. 4. Sec. 3.3 is then dedicated to expounding the structure
of cutting rules at finite T and µ, which are of great relevance e.g. for calcula-
tions of thermal production rates, as we will again show later in Sec. 4. After
this, we contrast the finite temperature and density theory with the behavior

4The zero-temperature limit of this statement is equivalent with the well known vacuum
field theory result that the forward (backward) Wightman function has support only for
positive (negative) frequencies.

5According to our conventions, the retarded function is related to the spectral function via
⇢B(!) = 2ReDR(!), and ⇢F (!) = 2ReSR(!)
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• Go back to the contour: ``2’’ fields are always to  
the left (contour-later) of ``1’’ fields,  

,          .  
This determines the off-diagonal elements of the propagator. 

• The two contours are (anti)-time ordered ⇒ Feynman and anti-F propagators 

 
 

• Vertices are diagonal in ``1-2’’ indices,  
``2’’ indices have opposite sign

⟨ϕ2(t)ϕ1(0)⟩ = D>(t) ⟨ϕ1(t)ϕ2(0)⟩ = D<(t)

The ``1-2’’ formalism
Operator orderings and the contour

Figure 2: The two vertices appearing in the example featuring the 1/2 basis.The vertex with
type 2 fields comes with a relative minus sign because of the di↵erent signs of the actions in
Eq. 31.

generating functional, it should not come as a surprise that the diagonal entries
of the propagators are the time- and anti-time-ordered Feynman propagators,

D
F (t1, t0) = ✓(t1 � t0)h�(t1)�(t0)i+ ✓(t0 � t1)h�(t0)�(t1)i, (33)

D
F̄ (t1, t0) = ✓(t0 � t1)h�(t1)�(t0)i+ ✓(t1 � t0)h�(t0)�(t1)i, (34)

whereas the o↵-diagonal terms are the forward and backward Wightman func-
tions6

D =

✓
h�1�1i h�1�2i
h�2�1i h�2�2i

◆
=

✓
D

F
D

<

D
>

D
F̄

◆
. (35)

Through the definition of (anti-)time-ordering and the Wightman and retarded
correlators together with their relation to the spectral function, Eqs. (28) and
(29), the momentum-space forms of Eqs. (33) and (34) become

D
F (!, k) =

1

2

⇥
DR(!, k) +DA(!, k)

⇤
+

✓
1

2
+ nB(!)

◆
⇢(!, k), (36)

D
F̄ (!, k) = �1

2

⇥
DR(!, k) +DA(!, k)

⇤
+

✓
1

2
+ nB(!)

◆
⇢(!, k). (37)

As the actions S(�1) and S(�2) do not mix fields with indices 1 and 2, the
vertices have their usual vacuum field theory form with the minor modification
that all the lines in the vertex carry the Schwinger–Keldysh index 1 or 2, and
that the vertices with index 2 come with an extra minus sign, as shown in Fig. 2.

3.1.2. The r/a basis
Instead of using the basis of 1 and 2 fields, as we have done so far, it is

oftentimes convenient to introduce a second basis. To this end, we define [9, 12]

�r ⌘ 1

2
(�1 + �2) �a ⌘ �1 � �2, (38)

6We use boldface letters to identify the propagator matrix, but drop the spacetime or
four-momentum dependence, as these equations are valid both in position and momentum
space.
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DF,F̄(ω) = ± 1
2 [DR(ω) + DA(ω)] + ( 1

2 + nB(ω)) ρB(ω)DF,F̄(t) = θ(±t)D>(t) + θ(∓t)D<(t)
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Figure 2: The two vertices appearing in the example featuring the 1/2 basis.The vertex with
type 2 fields comes with a relative minus sign because of the di↵erent signs of the actions in
Eq. 31.
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• We can now go back to our energy density problem and see how it appears 
more transparent in the real-time formalism 

 

• Recall that the bare spf is  

• Important: time-dependent observables can also be obtained from the 
Matsubara formalism, but one needs to perform analytical continuations 
(after all the sums have been performed).  

e = ∫ d4P
(2π)4 p2D>(P)

ρB(ω) = 2πϵ(ω)δ(ω2 − E2
k )

D>(−iτ) = GE(τ)

The ``1-2’’ formalism
Operator orderings and the contour



• For a time-ordered vacuum expectation value 
all external field are type ``1’’. ``2’’ fields  
can only appear in islands 

• They are thus connected to the rest of the  
diagram by  propagators 

•   have to be negative by momentum conservation.  

• Recall that  at zero temperature: 
the familiar statement that forward Wightman vac. amplitudes have support 
at positive frequencies only is what prevents these islands from popping up

D>(ωi)
n ≥ 1 ωi

D>(ω) = (1 + nB(ω))ρB(ω) → θ(ω)ρB(ω)

The ``1-2’’ formalism
Why there is no doubling in vacuum

1

1

1

1

1

1

Only type 1 vertices

Only type 2 vertices

1 1 1 1 1

2 2 2 2 2
!i

Figure 9: A generic diagram with with only type 1 fields as external lines. The diagram is
organized such that all the vertices and propagators with index 1 are in the upper ellipse, while
the type 2 vertices and propagators live in the lower ellipse. The two regions are connected
by Wightman functions D>(!i) (the direction of momentum flow is indicated by the small
arrow). Conservation of energy implies that the frequencies !i that flow between the two
regions must sum up to zero,

P
i !i = 0, and therefore some of them must be negative.

In vacuum, the Wightman function D>(!i) has support only for positive frequencies, and
therefore such diagrams containing type 2 fields vanish.

As discussed earlier, the di↵erence of the two actions contains only terms with
an odd number of �a-fields. If it is the case that there is a scale hierarchy
between the �a-fields and the �r-fields, then the leading-order term in the ex-
pansion in �a fields is a linear function of �a, and the integral over �a can
be explicitly performed. To quantify when the condition is fulfilled, consider
that in equilibrium h�r(�!)�r(!)i ⇠ (1/2 + nB(!))⇢B(!). For ! ⌧ T , the
bosonic distribution function nB(!) ⇡ T/! is parametrically larger than the

constant 1/2, and the �
r fields are then O(n1/2

B
(!)). Whenever ! ⌧ T and

thus nB(!) � 1 we speak of Bose enhancement. To estimate instead the size
of �a consider then h�r(�!)�a(!)i, which is the retarded correlator. Since it
does not depend on nB(!), the ra correlator is O(n0

B
(!)). Therefore �a(!) is

of order n
�1/2
B

(!). Hence the approximation becomes accurate in the limit of
large occupation numbers nB(!), which in thermal equilibrium corresponds to
! ⌧ T . In the case of non-equilibrium systems, nB(!) is replaced with the
non-equilibrium occupation number f(!).

For example, in ��
4 theory with the Lagrangian of Eq. (42), the leading

term in the expansion in �a reads

S = �
Z

d
4
x�a


(�@µ@

µ +m
2)�r +

1

3!
�(�r)3

�
, (57)
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The ``1-2’’ formalism
Are we ready to go?

• This is a < Wightman function, . We could in principle just take 
these propagators and Feynman rules and compute. However 

• this basis is not optimal, and we have not discussed cutting rules yet 

• we will rapidly run into failures of the loop expansion
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