Modern perturbation theory
 From Thermal Field Theory to real-time observables

Jacopo Ghiglieri, SUBATECH, Nantes xQCD PhD school, UiS Stavanger, July 22-25 2022

The plan

- QFT at finite temperature, the role of time and the Schwinger-Keldysh contour
- Bases for real-time perturbation theory
- Soft modes and HTL resummation
- Collinear modes and LPM resummation
- All this in the frame of the LO photon production rate

Bibliography

Never ask the innkeeper if the wine is good

- Perturbative Thermal QCD: Formalism and Applications J. Ghiglieri, A. Kurkela, M. Strickland, A.Vuorinen, 2002.10188 chapters 2-3-4 will be the basis of these lectures
- Basics of Thermal Field Theory
M. Laine, A.Vuorinen, 1701.01554
solid reference for perturbative calculations
- Some Aspects of the Theory of Heavy Ion Collisions
F. Gelis, 2102.07604
to learn about applications to heavy-ion physics

QFT at T=0

A brief recap of what we learned during our master's

- small number of particles
- the primary observable is the scattering amplitude
- we have well defined asymptotic states at $t= \pm \infty$ (or sort of, think of collinear factorisation)

vacuum to vacuum amplitudes, fields act on vacuum to create the asymptotic states

QFT at T=0

A brief recap of what we learned during our master's

- Perturbatively

includes loops: quantum-mechanical vacuum fluctuations (Heisenberg principle)
- Indeed, the vacuum is a quantum-mechanical pure state. Vacuum expectation values only accounts for vacuum fluctuations

QFT in a medium
 Statistical fluctuations

- In a medium we also have statistical fluctuations, arising from our limited, statistical knowledge of the system
- If at $t=t_{0}$ the system is described by states $|i\rangle$ with probabilities $P_{i}\left(t_{0}\right)$ (a mixed state) then

$$
\left\langle\hat{O}\left(t_{0}\right)\right\rangle \equiv \sum_{i} P_{i}\left(t_{0}\right)\langle i| \hat{O}|i\rangle=\operatorname{Tr}\left[\hat{\rho}\left(t_{0}\right) \hat{O}\left(t_{0}\right)\right]
$$

with $\hat{\rho}\left(t_{0}\right)=\sum_{i} P_{i}\left(t_{0}\right)|i\rangle\langle i|$ the density operator

- In what follows we will concentrate on thermal equilibrium. Out-ofequilibrium is very fascinating\&important, see Aleksi's lectures

Thermal equilibrium
 The grand canonical ensemble

- The density operator is now time-independent

$$
\hat{\rho}_{\mathrm{eq}}=\frac{1}{Z} e^{-\beta\left(\hat{H}-\mu_{i} \hat{N}_{i}\right)}, \quad Z=\operatorname{Tr} e^{-\beta\left(\hat{H}-\mu_{i} \hat{N}_{i}\right)},
$$

- Z is the partition function (Zustandssumme), $\beta \equiv 1 / T, \hat{H}$ the Hamiltonian, \hat{N}_{i} the number operators for conserved global charges, with associated chemical potentials μ_{i}
- For instance, in QCD

$$
\hat{N}_{f}=\int d^{3} x \bar{q}_{f}(x) \gamma^{0} q_{f}(x)
$$

Observables

- Typical observables
- thermodynamics (p, e, susceptibilities...)
- transport coefficients (η, diffusion,...)
- thermal production rates
- hard-probe observables (jets, quarkonia)
- equilibration and thermalisation rates
-

Classifying observables

An important difference

- Even if the equilibrium state is time-independent, we can classify these observables by how they are affected by time
- For thermodynamics, $T^{\mu \nu}=\operatorname{diag}(e, p, p, p)$ for an ideal fluid in its rest frame. In QFT $T^{\mu \nu} \rightarrow \Theta^{\mu \nu}$, which is a local operator $\left(\Theta^{\mu \nu}(X)\right)$. Then $e=\left\langle\Theta^{00}\right\rangle$ (with vacuum subtraction)
- Thermodynamics deals with operators which are local in time. As we shall soon see, that is a big simplification
- These lectures will mostly be about observables that are non-local in time

Dealing with local observables

The Matsubara formalism

. $\langle\hat{O}(t)\rangle=\operatorname{Tr}[\hat{\rho}(t) \hat{O}(t)]=\sum_{i}\langle i| \hat{\rho}(t) \hat{O}(t)|i\rangle$: used t-invariance of eq. operator

- Now use $\hat{\rho}=e^{-\beta\left(\hat{H}-\mu_{i} \hat{N}_{i}\right)} / Z$ and identify $e^{-\beta \hat{H}}$ as a time-evolution operator in the imaginary direction τ, i.e it $\leftrightarrow \beta\left(U(t)=e^{-i \hat{H} t}\right)$

$$
\langle\hat{O}\rangle=\frac{\int \mathcal{D} \phi \hat{O} e^{-S_{E}}}{\int \mathcal{D} \phi e^{-S_{E}}} \quad S_{E} \equiv \int_{0}^{\beta} d \tau L_{E}
$$

- The trace, when transformed into a path integral, implies $\phi(0, \vec{x})=\phi(\beta, \vec{x})$ for bosons (periodicity)
$\psi(0, \vec{x})=-\psi(\beta, \vec{x})$ for fermions (antiperiodicity)

Dealing with local observables

The Matsubara formalism

- We thus have 3D Euclidean space X compactified Euclidean time
- Ideal (at vanishing chem. pots) for lattice

- Perturbatively: Euclidean field theory with discrete Matsubara frequencies $\omega_{n}=2 \pi T n$ for bosons, $\tilde{\omega}_{n}=\pi T(2 n+1)$ for fermions, $n \in \mathbb{Z}$.

$$
\int d \omega /(2 \pi) \rightarrow T \sum_{n}
$$

- Exercise: for a theory of massless, non-interacting real scalars compute the
energy density using dim reg. Recall that $\Theta_{\mu \nu}=\partial_{\mu} \phi \partial_{\nu} \phi-\frac{\delta_{\mu \nu}}{2} \partial_{\rho} \phi \partial_{\rho} \phi$.
Solution: $e=4 \pi^{2} T^{4} \zeta(-3)=\frac{\pi^{2} T^{4}}{30}$

The thermal photon rate
 A non-local observable

- Photons are not in equilibrium in the short-lived QCD plasma in a heavyion collision
- If a photon is produced from the QCD plasma (rare event, $\alpha \ll 1$) it is unlikely to rescatter (rare event, $\alpha \ll 1$)^2
- They are thus a good hard probe: they carry information from the thermal phase, unaffected by later stages such as hadronisation

The thermal photon rate
 A non-local observable

- Since $\alpha \ll 1$ we can work to first order in the EM coupling. Photon production is then Poissonian and back-reaction (cooling of the plasma) negligible
- Compute single photon production

$$
2 k(2 \pi)^{\frac{3}{}} \frac{d P}{d^{3} k}=\sum_{X} \operatorname{Tr}_{\rho} \rho_{\mathrm{eq}} U^{\dagger}(t)|X, \gamma\rangle\langle X, \gamma| U(t)
$$

P probability, $U(t)$ time evolution operator

- The rate is

$$
\frac{d N_{\gamma}}{d^{4} X d^{3} k} \equiv \frac{d \Gamma_{\gamma}}{d^{3} k} \stackrel{k \| z}{=} \frac{-e^{2}}{(2 \pi)^{3} 2 k} \int d^{4} X e^{i k(t-z)}\left\langle J^{\mu}(0) J_{\mu}(X)\right\rangle
$$

The thermal photon rate
 A non-local observable

- The rate is $\quad \frac{d N_{\gamma}}{d^{4} X d^{3} k} \equiv \frac{d \Gamma_{\gamma}}{d^{3} k} \stackrel{k \| z}{=} \frac{-e^{2}}{(2 \pi)^{3} 2 k} \int d^{4} X e^{i k(t-z)}\left\langle J^{\mu}(0) J_{\mu}(X)\right\rangle$
- Two-point function of the em current $J^{\mu}=\sum_{i} Q_{i} \bar{q}_{i} \gamma^{\mu} q_{o}$
- $\left\langle J^{\mu}\right\rangle$ would be the current density of the plasma. Vanishes for a chargeneutral plasma. But a charge-neutral plasma still produces photons
- The formula is valid to first order in electromagnetism but to all orders in the QCD coupling. For practical and pheno reasons require $k \sim T$

Dealing with non-local observables

The Schwinger-Keldysh formalism

- $\left\langle\hat{O}_{a}\left(t_{a}\right) \hat{O}_{b}\left(t_{b}\right)\right\rangle=\operatorname{Tr}\left[\hat{\rho}\left(t_{a}\right) \hat{O}_{a}\left(t_{a}\right) \hat{O}_{b}\left(t_{b}\right)\right]$: chose t_{a} for the density op. and assume $t_{b}>t_{a}$
- $\hat{\rho}_{a}\left(t_{a}\right) \equiv \hat{\rho}\left(t_{a}\right) \hat{O}_{a}\left(t_{a}\right)$ can be considered as a new, non-equilibrium state
- $\left[\hat{H}, \hat{\rho}_{a}\right] \neq 0$, we must evolve it to $t_{b^{\prime}} \hat{\rho}_{a}\left(t_{b}\right)=U\left(t_{b}, t_{a}\right) \hat{\rho}_{a}\left(t_{a}\right) U\left(t_{a}, t_{b}\right)$
- Plug this into the trace above and use cyclicity

$$
\operatorname{Tr}\left[\hat{\rho}_{a}\left(t_{b}\right) \hat{O}_{b}\left(t_{b}\right)\right]=\operatorname{Tr}\left[\hat{\rho}\left(t_{a}\right) \hat{O}_{a}\left(t_{a}\right) U\left(t_{a}, t_{b}\right) \hat{O}_{b}\left(t_{b}\right) U\left(t_{b}, t_{a}\right)\right]
$$

- Translating this into path integrals we get the Schwinger-Keldysh contour

The Schwinger-Keldysh contour
 $\operatorname{Tr}\left[\hat{\rho}_{a}\left(t_{b}\right) \hat{O}_{b}\left(t_{b}\right)\right]=\operatorname{Tr}\left[\hat{\rho}\left(t_{a}\right) \hat{O}_{a}\left(t_{a}\right) U\left(t_{a}, t_{b}\right) \hat{O}_{b}\left(t_{b}\right) U\left(t_{b}, t_{a}\right)\right]$

- Time ordered branch
- Anti-time ordered branch
- Statistical (Euclidean) branch
$O_{l i}=\langle l| \hat{O}_{a} \hat{O}_{b}|i\rangle$
$\left\langle\hat{O}_{a}\left(t_{a}\right) \hat{O}_{b}\left(t_{b}\right)\right\rangle=\frac{1}{Z} \sum_{l i} \int_{\phi_{1}\left(t_{a}\right)=\phi_{E}\left(t_{0}-i \beta\right)}^{\phi_{1}\left(t_{b}\right)=\phi_{i}} \mathcal{D} \phi_{1} \int_{\phi_{2}\left(t_{a}\right)=\phi_{E}\left(t_{0}\right)}^{\phi_{2}\left(t_{b}\right)=\phi_{l}} \mathcal{D} \phi_{2} e^{i\left(S\left(\phi_{1}\right)-S\left(\phi_{2}\right)\right)} \int_{\phi_{E}\left(t_{0}\right)}^{\phi_{E}\left(t_{0}-i \beta\right)} \mathcal{D} \phi_{E} e^{-S_{E}\left(\phi_{E}\right)} O_{l i}$
- Applicable out of equilibrium too
- Doubling of the degrees of freedom, an imprecise statement

The Schwinger-Keldysh contour Doubling of the degrees of freedom

$$
\left\langle\hat{O}_{a}\left(t_{a}\right) \hat{O}_{b}\left(t_{b}\right)\right\rangle=\frac{1}{Z} \sum_{l i} \int_{\phi_{1}\left(t_{a}\right)=\phi_{E}\left(t_{0}-i \beta\right)}^{\phi_{1}\left(t_{b}\right)=\phi_{i}} \mathcal{D} \phi_{1} \int_{\phi_{2}\left(t_{a}\right)=\phi_{E}\left(t_{0}\right)}^{\phi_{2}\left(t_{b}\right)=\phi_{l}} \mathcal{D} \phi_{2} e^{i\left(S\left(\phi_{1}\right)-S\left(\phi_{2}\right)\right)} \int_{\phi_{E}\left(t_{0}\right)}^{\phi_{E}\left(t_{0}-i \beta\right)} \mathcal{D} \phi_{E} e^{-S_{E}\left(\phi_{E}\right)} O_{l i}
$$

- An imprecise statement: as we shall see, the propagator becomes a matrix in 1 and 2 fields. If one computes a time-ordered product of operators, then external fields are of type 1 and internally these " 2 " dofs pop in. But T-ordered operators are not that important in thermal eq. (with some exceptions
- The more important operator orderings are the Wightman $\langle\phi(t) \phi(0)\rangle$ and retarded two-point fncs. They measure correlation and causation respectively

The Schwinger-Keldysh contour Operator orderings

- Wightman functions $\quad D^{>}\left(t_{1}, t_{0}\right)=\left\langle\phi\left(t_{1}\right) \phi\left(t_{0}\right)\right\rangle \quad D^{<}\left(t_{1}, t_{0}\right)=\left\langle\phi\left(t_{0}\right) \phi\left(t_{1}\right)\right\rangle$
- Retarded and advanced functions $D^{R}\left(t_{1}, t_{0}\right)=\theta\left(t_{1}-t_{0}\right) \rho_{B}\left(t_{1}, t_{0}\right), \quad D^{A}\left(t_{1}, t_{0}\right)=-\theta\left(t_{0}-t_{1}\right) \rho_{B}\left(t_{1}, t_{0}\right)$
- Their difference: the spectral function $\rho_{B}\left(t_{1}, t_{0}\right)=\left\langle\left[\phi\left(t_{1}\right), \phi\left(t_{0}\right)\right]\right\rangle$ $\rho_{B}\left(t_{1}, t_{0}\right)=D^{R}\left(t_{1}, t_{0}\right)-D^{A}\left(t_{1}, t_{0}\right)=D^{>}\left(t_{1}, t_{0}\right)-D^{<}\left(t_{1}, t_{0}\right)$
- Cyclicity of the trace and the (exponential) form of eq. density yield the Kubo-Martin-Schwinger (KMS) relation between the Wightman functions $D^{>}(t) \equiv D^{>}(t, 0)=D^{<}(t+i \beta), S^{>}(t)=-e^{\beta \mu} S^{<}(t+i \beta)$

The Schwinger-Keldysh contour Operator orderings

- In Fourier space

$$
\begin{aligned}
& D^{>}(\omega) \equiv \int d t e^{i \omega t} D^{>}(t)=e^{\beta \omega} D^{<}(\omega), \\
& S^{>}(\omega) \equiv \int d t e^{i \omega t} S^{>}(t)=-e^{\beta \beta(\omega-\mu)} S^{<}(\omega)
\end{aligned}
$$

- Hence we get the Wightman functions in terms of the spectral function

$$
\begin{aligned}
& D^{<}(\omega)=\left(e^{\beta \omega}-1\right)^{-1} \rho_{B}(\omega) \equiv n_{B}(\omega) \rho_{B}(\omega) \\
& D^{>}(\omega)=\left(1+n_{B}(\omega)\right) \rho_{B}(\omega) \\
& S^{<}(\omega)=-\left(e^{\beta(\omega-\mu)}+1\right) \rho_{F}(\omega) \equiv-n_{F}(\omega) \rho_{F}(\omega)
\end{aligned}
$$

- In equilibrium all operator orderings are determined from the spectral function through KMS and causality

The " $1-2$ " formalism

 Operator orderings and the contour

 Operator orderings and the contour}

- Go back to the contour: " 2 " fields are always to the left (contour-later) of " 1 " fields,

$$
\left\langle\phi_{2}(t) \phi_{1}(0)\right\rangle=D^{>}(t), \quad\left\langle\phi_{1}(t) \phi_{2}(0)\right\rangle=D^{<}(t) .
$$

This determines the off-diagonal elements of the propagator.

- The two contours are (anti)-time ordered \Rightarrow Feynman and anti-F propagators

$$
\begin{gathered}
\mathbf{D}=\left(\begin{array}{cc}
\left\langle\phi_{1} \phi_{1}\right\rangle & \left\langle\phi_{1} \phi_{2}\right\rangle \\
\left\langle\phi_{2} \phi_{1}\right\rangle & \left\langle\phi_{2} \phi_{2}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
D^{F} & D^{<} \\
D^{>} & D^{\bar{F}}
\end{array}\right) \\
D^{F, \bar{F}}(t)=\theta(\pm t) D^{>}(t)+\theta(\mp t) D^{<}(t)
\end{gathered} D^{F, \bar{F}(\omega)= \pm \frac{1}{2}\left[D_{R}(\omega)+D_{A}(\omega)\right]+\left(\frac{1}{2}+n_{B}(\omega)\right) \rho_{B}(\omega)} .
$$

- Vertices are diagonal in " $1-2$ " indices,
' 2 " indices have opposite sign

The " $1-2$ " formalism
 Operator orderings and the contour

- We can now go back to our energy density problem and see how it appears more transparent in the real-time formalism
$e=\int \frac{d^{4} P}{(2 \pi)^{4}} p^{2} D^{>}(P)$
- Recall that the bare spf is $\rho_{B}(\omega)=2 \pi \epsilon(\omega) \delta\left(\omega^{2}-E_{k}^{2}\right)$
- Important: time-dependent observables can also be obtained from the Matsubara formalism, but one needs to perform analytical continuations (after all the sums have been performed).

$$
D^{>}(-i \tau)=G_{E}(\tau)
$$

The " $1-2$ " formalism Why there is no doubling in vacuum

- For a time-ordered vacuum expectation value all external field are type " 1 ". " 2 " fields can only appear in islands
- They are thus connected to the rest of the
 diagram by $D^{>}\left(\omega_{i}\right)$ propagators
- $n \geq 1 \omega_{i}$ have to be negative by momentum conservation.
- Recall that $D^{>}(\omega)=\left(1+n_{B}(\omega)\right) \rho_{B}(\omega) \rightarrow \theta(\omega) \rho_{B}(\omega)$ at zero temperature: the familiar statement that forward Wightman vac. amplitudes have support at positive frequencies only is what prevents these islands from popping up

The " $1-2$ " formalism

Are we ready to go?

$$
\frac{d N_{\gamma}}{d^{4} X d^{3} k} \equiv \frac{d \Gamma_{\gamma}}{d^{3} k} \stackrel{k \| z}{=} \frac{-e^{2}}{(2 \pi)^{3} 2 k} \int d^{4} X e^{i k(t-z)}\left\langle J^{\mu}(0) J_{\mu}(X)\right\rangle
$$

- This is a < Wightman function, $\Pi^{<}(K)$. We could in principle just take these propagators and Feynman rules and compute. However
- this basis is not optimal, and we have not discussed cutting rules yet
- we will rapidly run into failures of the loop expansion

