Lattice QCD in extreme conditions

Gergely Endrődi

University of Bielefeld

UNIVERSITÄT BIELEFELD

The 2022 XQCD PhD school July 22 - July 25, 2022

AND (4) THE WEAK FORCE. IT [MOMBLE MUMBLE] RADIOACTIVE DECAY [MUMBLE MUMBLE] THAT'S NOT A SENTENCE. YOUJUST SAID 'RADIO-- AND THOSE ARE THE FOUR FUNDAMENTAL FORCES!

? xkcd.com/1489

Strong force

- quarks and gluons "confined" in the proton

Cold versus hot

- heavy ion collisions to break up nuclei

- two distinct phases of matter cold, confined vs. hot, deconfined hadronic vs. quark-gluon plasma
- phase transition in between
- theory: QCD
what is the nature of these phases?
what is the reason behind confinement and deconfinement?

Strongly interacting matter in extreme conditions

- heavy ion collisions

$$
T \lesssim 200 \mathrm{MeV}, n \lesssim 0.12 \mathrm{fm}^{-3}, Z / A \approx 0.4
$$

Strongly interacting matter in extreme conditions

- heavy ion collisions

$$
T \lesssim 200 \mathrm{MeV}, n \lesssim 0.12 \mathrm{fm}^{-3}, Z / A \approx 0.4
$$

- neutron stars (mergers)

$$
T \lesssim 1 \mathrm{keV}(\lesssim 50 \mathrm{MeV}), n \lesssim 2 \mathrm{fm}^{-3}, Z / A \gtrsim 0.025
$$

$\underset{\sim 0.3 \mathrm{~km}}{\overleftrightarrow{\longrightarrow}} \underset{\sim 0.6 \mathrm{~km}}{\longleftrightarrow}$

Strongly interacting matter in extreme conditions

- heavy ion collisions

$$
T \lesssim 200 \mathrm{MeV}, n \lesssim 0.12 \mathrm{fm}^{-3}, Z / A \approx 0.4
$$

- neutron stars (mergers)

$$
T \lesssim 1 \mathrm{keV}(\lesssim 50 \mathrm{MeV}), n \lesssim 2 \mathrm{fm}^{-3}, Z / A \gtrsim 0.025
$$

- eary universe, QCD epoch

$$
T \lesssim 200 \mathrm{MeV}, n_{B} / s \approx 10^{-11}, n_{Q}=0, n_{\ell} / s \lesssim 0.01
$$

Magnetic fields

- off-central heavy-ion collisions \& Kharzeev, McLerran, Warringa '07 impact: chiral magnetic effect, anisotropies, elliptic flow ...
\& Fukushima '12 \& Kharzeev, Landsteiner, Schmitt, Yee '14

Magnetic fields

- off-central heavy-ion collisions \& Kharzeev, McLerran, Warringa '07 impact: chiral magnetic effect, anisotropies, elliptic flow . . .

\& Fukushima '12 $\&$ Kharzeev, Landsteiner, Schmitt, Yee '14

- magnetars ℓ Duncan, Thompson '92
impact: equation of state, mass-radius relation ℓ Ferrer et al ' 10 gravitational collapse/merger \& Anderson et al '08

Magnetic fields

- off-central heavy-ion collisions O Kharzeev, McLerran, Warringa '07 impact: chiral magnetic effect, anisotropies, elliptic flow . . .

```
    & Fukushima '12 O Kharzeev, Landsteiner, Schmitt, Yee '14
```

- magnetars Q Duncan, Thompson '92 impact: equation of state, mass-radius relation Q Ferrer et al ' 10 gravitational collapse/merger \& Anderson et al '08
- in the early universe, generated through phase transition in electroweak epoch e Vachaspati '91 Enqvist, Olesen '93

Magnetic fields

- off-central heavy-ion collisions Kharzeev, McLerran, Warringa '07 impact: chiral magnetic effect, anisotropies, elliptic flow . . .

```
    & Fukushima '12 O Kharzeev, Landsteiner, Schmitt, Yee '14
```

- magnetars Q Duncan, Thompson '92 impact: equation of state, mass-radius relation Q Ferrer et al ' 10 gravitational collapse/merger \& Anderson et al '08
- in the early universe, generated through phase transition in electroweak epoch e Vachaspati '91 Enqvist, Olesen '93
- strength: $B \approx 10^{15} \mathrm{~T} \approx 10^{20} B_{\text {earth }} \approx 5 m_{\pi}^{2}$
\rightsquigarrow competition between strong force and electromagnetism

Outline overall

- lecture 1: introduction to QCD and thermodynamics
- lecture 2: hot Yang-Mills theory and hot QCD on the lattice
- lecture 3: QCD in extreme conditions on the lattice

Literature

- introduction to lattice

Q Gattringer, Lang Lect. Notes Phys. '10
Q Rothe '05

- finite temperature field theory
\& Laine, Vuorinen Lect. Notes Phys. '16
○ Kapusta, Gale '06
- numerical methods
\& DeGrand, DeTar '06
O Newman, Barkema '99

Outline lecture 1

- QCD, path integral and stochastic integration
- phase transitions and the Ising model

QCD and the path integral

QCD

- quark field

$$
\psi_{f, \alpha, c}
$$

- gluon field

$$
A_{\mu}=A_{\mu}^{a} T^{a}
$$

- Euclidean Lagrangian

$$
\mathcal{L}_{\mathrm{QCD}}=\frac{1}{4} \operatorname{Tr} F_{\mu \nu} F_{\mu \nu}+\bar{\psi}\left[\gamma_{\mu}\left(\partial_{\mu}+i g_{s} A_{\mu}\right)+m\right] \psi
$$

- field strength

$$
F_{\mu \nu}=F_{\mu \nu}^{a} T^{a}, \quad F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g_{s} f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

Path integral

- weak, electrodynamic interactions: $g, g_{W} \ll 1$: perturbation theory applicable
- strong interactions $g_{s} \sim 1$:
need a nonperturbative approach
- path integral \& Feynman Rev. Mod. Phys. '48

$$
\mathcal{Z}=\int \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{D} A_{\mu} \exp \left(-S\left[\bar{\psi}, \psi, A_{\mu}\right]\right)
$$

- with the action

$$
S=\int \mathrm{d}^{4} \times \mathcal{L}\left(\bar{\psi}, \psi, A_{\mu}\right)
$$

- largest weight \leftrightarrow minimum of action (equations of motion)

Stochastic integration

Numerical integration

- we want to calculate the integral

$$
\begin{aligned}
& F=\int_{0}^{1} \mathrm{~d} x P(x) f(x), \quad \int_{0}^{1} P(x)=1 \\
& \text { A GUDE To } \\
& \text { INTEGRATION BY PARTS: } \\
& \text { GNEN A PROBLEM OF THE FORM: } \\
& \int f(x) g(x) d x=\text { ? } \\
& \text { CHOOSE VARIABEES } u \text { AND } v \text { SUCH THAT: } \\
& u=f(x) \\
& d v=g(x) d x \\
& \text { NOW THE ORIGNAL EXPRESSIIN BECOMES: } \\
& \int u d v=? \\
& \text { WHICH DEFINTEEY LOOKS EASIER. } \\
& \text { ANFWAY, I GOITA RUN. } \\
& \text { BUT GO00 WCK! } \\
& \text { O xkcd.com/1201 }
\end{aligned}
$$

Stochastic integration

- uniform sampling:
generate $x_{n} \in[0,1]$ uniform random variables

$$
F=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} P\left(x_{n}\right) f\left(x_{n}\right)
$$

```
endrodi@pcend:~$ od -N2 -An < /dev/random
046620
```

\rightarrow animation

Importance sampling

- importance sampling:
generate x_{n} with probability $P\left(x_{n}\right)$

$$
F=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right)
$$

\rightarrow animation

Markov chains

- what if we cannot generate x_{n} according to P ?
- Markov chain

$$
\begin{aligned}
x_{0} & \rightarrow x_{1} \rightarrow x_{2} \rightarrow x_{3} \rightarrow \ldots \\
F & =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right)
\end{aligned}
$$

\rightarrow animation

Path integral

- same kinds of integrals, but in " ∞ " dimensions:

$$
\langle F\rangle=\int \mathcal{D} \phi P[\phi] f[\phi]
$$

x point $\leftrightarrow \phi=\phi(x, y, z, t)$ field configuration

- $P[\phi]=\exp (-S[\phi])$
- discretize space and time Q Wilson PRD '74

-10 ${ }^{9}$-dimensional integrals \rightsquigarrow high-performance computing

QCD vacuum

- how do the relevant field configurations look like?

Q animation courtesy D. Leinweber

Types of transitions

- $2^{\text {nd }}$ order phase transitions: opalescence

ρ web.mst.edu
- $1^{\text {st }}$ order phase transitions: bubbles
- crossover transition: no singularity

Types of phase transitions

- Ehrenfest classification:

$$
n \text {-th order phase transition }
$$

\Leftrightarrow
n-th derivative of $\log \mathcal{Z}$ is discontinuous

- partition function is analytic in finite volume \rightsquigarrow singularities only arise in $\log \mathcal{Z}$ as $V \rightarrow \infty$ (practically: V macroscopic)

Ising model

2D Ising model

- two-dimensional lattice $i \in \mathbb{Z}^{2}$
degrees of freedom $s_{i}= \pm 1$
exact solution Onsager Phys. Rev. '44 numerical analysis \& Newman, Barkema
- Hamiltonian with nearest-neigbor $\langle i, j\rangle$ interaction and magnetic field h

$$
H[s]=-\sum_{\langle i, j\rangle} s_{i} s_{j}-h \sum_{i} s_{i}
$$

- partition function

$$
\mathcal{Z}=\operatorname{tr} e^{-H / T}=\sum_{\{s\}} e^{-H[s] / T}
$$

- expectation values

$$
\langle A\rangle=\frac{1}{V} \frac{1}{\mathcal{Z}} \sum_{\{s\}} A[s] e^{-H[s] / T}
$$

Spontaneous symmetry breaking

- Hamiltonian

$$
H[s]=\overbrace{-\sum_{\langle i, j\rangle} s_{i} s_{j}}^{H_{0}[s]}-h \overbrace{\sum_{i} s_{i}}^{M[s]}
$$

- at $h=0$, system is invariant under parity

$$
\mathcal{P} s_{i}=-s_{i} \quad H_{0}[\mathcal{P} s]=H_{0}[s]
$$

- but dominant configurations are not invariant at low T

$$
M[\mathcal{P} s]=-M[s]
$$

- parity symmetry restored at high T
- phase transition at $T=T_{c}$
\rightarrow animation

Explicit symmetry breaking

- Hamiltonian

$$
H[s]=\overbrace{-\sum_{\langle i, j\rangle} s_{i} s_{j}}^{H_{0}[s]}-h \overbrace{\sum_{i} s_{i}}^{M[s]}
$$

- at $h \neq 0$ parity invariance is lost

$$
\mathcal{P} s_{i}=-s_{i} \quad H[\mathcal{P} s] \neq H[s]
$$

- magnetization always aligned with h

$$
h M[s]>0
$$

- transition smoothed out
\rightarrow animation

Magnetization

- sketch of results in infinite volume

- magnetization as derivative

$$
\langle M\rangle=\frac{1}{V} \frac{1}{\mathcal{Z}} \sum_{\{s\}} M[s] e^{-H[s] / T}=\frac{1}{V} \frac{\partial \log \mathcal{Z}}{\partial h}
$$

Magnetization

- sketch of results in infinite volume

- magnetization as derivative

$$
\langle M\rangle=\frac{1}{V} \frac{1}{\mathcal{Z}} \sum_{\{s\}} M[s] e^{-H[s] / T}=\frac{1}{V} \frac{\partial \log \mathcal{Z}}{\partial h}
$$

- Ehrenfest: $\langle M\rangle$ continuous, $\partial\langle M\rangle / \partial T$ discontinuous \rightsquigarrow second order phase transition at $h=0$

Order parameter

- how to define spontaneous symmetry breaking in terms of an expectation value?

$$
h=0 \quad V<\infty: \quad\langle M\rangle=0 \quad \forall T
$$

- spontaneous breaking by explicit breaking

$$
\lim _{h \rightarrow 0^{ \pm}} \lim _{V \rightarrow \infty}\langle M\rangle \gtrless 0 \quad T<T_{c}
$$

Order parameter

- a little cheating: instead of $\lim _{h \rightarrow 0^{+}} \lim _{V \rightarrow \infty}\langle M\rangle$ use $\lim _{V \rightarrow \infty}\langle | M| \rangle$ at $h=0$

Q Ibarra-García-Padilla et al. EJP '16

- critical behavior is the same for both observables

P Newman, Barkema

Susceptibility

- magnetization

$$
\langle M\rangle=\frac{1}{V} \frac{1}{\mathcal{Z}} \sum_{\{s\}} M[s] e^{-H[s] / T}=\frac{1}{V} \frac{\partial \log \mathcal{Z}}{\partial h}
$$

- susceptibility

$$
\chi_{M}=\frac{\partial\langle M\rangle}{\partial h}=V\left[\left\langle M^{2}\right\rangle-\langle M\rangle^{2}\right]
$$

Q Ibarra-García-Padilla et al. EJP '16

Critical behavior in the thermodynamic limit

- second order phase transition: correlation length ξ diverges
- critical exponents (valid at $V \rightarrow \infty$)

$$
\xi \propto\left|T-T_{c}\right|^{-\nu}
$$

$$
\langle | M\rangle \propto| T-\left.T_{c}\right|^{\beta} \quad \chi_{M} \propto\left|T-T_{c}\right|^{-\gamma} \quad\langle | M| \rangle_{T=T_{c}} \propto h^{1 / \delta}
$$

- universality: symmetries and system dimension set the exponents

Critical behavior towards the thermodynamic limit

- how to measure these in finite volume?
- in finite volume, system becomes ordered already when $\xi \approx L$ (Fisher scaling hypothesis)

$$
L \propto\left|T_{c}(L)-T_{c}\right|^{-\nu} \quad T_{c}(L)-T_{c} \propto L^{-1 / \nu} \quad \chi_{M}\left(L, T_{c}(L)\right) \propto L^{\gamma / \nu}
$$

P Ibarra-García-Padilla et al. EJP '16

- slope gives critical exponents $\gamma / \nu=7 / 4$

First-order phase transitions

First-order phase transitions

- latent heat and metastability
- distribution at $T=T_{c}$ and bubbles

First-order phase transitions

- for large volumes

$$
P(M) \approx \exp \left[-F_{+}-\frac{\left(M-M_{+}\right)^{2}}{2 c_{+}^{2}}\right]+\exp \left[-F_{-}-\frac{\left(M-M_{-}\right)^{2}}{2 c_{-}^{2}}\right]
$$

○ Ukawa '93

Finite size scaling

- partition function

$$
\mathcal{Z}=\int \mathrm{d} M P(M)
$$

- susceptibility

$$
\chi_{M}=V\left[\left\langle M^{2}\right\rangle-\langle M\rangle\right]
$$

- close to T_{c}

$$
F_{ \pm}=F_{0} \mp f \cdot\left(T-T_{c}\right)
$$

- susceptibility for large volumes

$$
\chi_{M}=V \frac{c_{+} c_{-}}{\left(e^{f\left(T-T_{c}\right)} c_{+}+e^{-f\left(T-T_{c}\right)} c_{-}\right)^{2}}\left(M_{+}-M_{-}\right)^{2}
$$

peak at $T_{c}+\mathcal{O}(1 / V)$, height $\mathcal{O}(V)$ and width $\mathcal{O}(1 / V)$

$$
\chi_{M}\left(L, T_{c}(L)\right) \propto L^{d}
$$

Crossovers

Crossover

- distribution changes smoothly

$$
P(M) \approx \exp \left[-F_{1}-\frac{\left(M-M_{1}\right)^{2}}{2 c_{1}^{2}}\right]
$$

as $M_{1}(T)$ passes from one value to another

$$
\chi_{M}\left(L, T_{c}(L)\right) \propto L^{0}
$$

- example for crossover: Ising model at $h \neq 0$

Susceptibility at a phase transition: summary

- susceptibility χ of order parameter
- finite size scaling

$$
\chi\left(L, T_{c}(L)\right) \propto L^{\rho}
$$

ρ	transition type
0	crossover
γ / ν	second order
d	first order

- transition strength

$$
d>\gamma / \nu>0 \quad 1^{\text {st }}>2^{\text {nd }}>\text { crossover }
$$

