XQCD school, July. 22-25, 2022

Neutron stars & multi-messenger physics

QCD Astro condensed matter Toru Kojo

(Tohoku Univ.)

Scales & units to be used

saturation density: n₀ = 0.16 fm⁻³
 (~ central density of nuclei)

• nuclear binding E : O(I-I0) MeV (unnaturally small !!)

State of matter: overview

few meson exchange

nucleons only

٠

- many-quark exchange
- structural change,...
- hyperons, Δ , ...

3-body)

 $(n_0 = 0.16 \text{ fm}^{-3})$

[Masuda+ '12; TK+ '14] (pQCD) [Freedman-McLerran, Kurkela+, Fujimoto+...] n_B

Lect I) Overview: NS phenomenology & QCD

- glancing at NS properties
- M-R relation and EOS
- R_{1.4} & low density EOS

<mark>Plan</mark>

Lect 2) NS-NS mergers

- gravitational waves
- pre-mergers [inspiral & tidal deformation]
- post-mergers [EM-counterparts]

Lect 3) From hadrons to quarks in NS

- quark matter
- 3-window modeling
- stiffening of matter in quark-hadron continuity

Glancing at neutron star properties

Neutron stars (NSs)

rot. period :	$P \sim Ims - Is$	(~ 10 ⁻⁹ − 10 ⁻⁶ P _☉)	
Mass :	$M \sim$ I-2 M_{\odot}		
Radius :	$R \sim$ II-I3 km	(~I0 ⁻⁶ R _☉)	
n _p /n _B :	$Y_p \sim 0.05$	(neutron rich)	
Temp.:	$T \sim { m KeV}$	(<< p _F of nucleons)	(source: E _{QCD})
mag. field :	$B \sim 10^6 \cdot 10^{15}$ Gauss	(~ 10 ⁵ − 10 ¹¹ B _⊙)	QCD pressure
h	<mark>ow can we infer</mark>		gravitationally bound
these of	extreme properties	<mark>?</mark>	0

fast rotating pulsars & NS

the **existence** of pulsars with pulse period (for earth) < Is (very quickly rotating, large ω) with constraints $v_{surf} = \omega R < I$ (light velocity) R ~ 10-100 km (!)

compact objects !!

fast rotating pulsars & NS

pulse periods are known to be extremely stable & precise

how can such compact objects be stable ?

$$GMm/R^{2} = mR\omega^{2} \quad \text{mechanical balance}$$

$$\rightarrow \omega = [GM/R^{3}]^{1/2} \quad \stackrel{Kepler}{frequency}$$

$$large \ \omega \rightarrow M_{pulsar} \sim M_{sun}$$

$$(unless R is extremely small < ~10 km)$$

massive & compact \rightarrow hardly affected by other objects

How dense?

very dense

10/45

For $M \sim M_{sun} \& R \sim 10 \text{ km} \implies n_B \sim M/(4\pi R^3 \times m_N) \sim O(0.1-1) \text{ fm}^{-3}$

density distribution from the surface to the center

for $M \sim M_{sun}$

the majority of matter is very dense, $n_B > n_0$

gravitational compression & matter content

assuming ideal gases of rela. electrons + non-rela. nucleons

charge neutrality
$$\rightarrow n_{p} (=Y_{p} n_{B}) = n_{e} \text{ or } p_{F}^{P} = p_{F}^{e}$$

$$\begin{array}{ll} \textbf{\textit{θ-equilibrium}$} \rightarrow m_{N} + (p_{F}^{n})^{2}/2M_{N} = m_{N} + (p_{F}^{p})^{2}/2M_{N} + p_{F}^{e} + ... \\ (\mu_{n} = \mu_{p} + \mu_{e}) \end{array}$$

$$\begin{array}{l} \text{small} \qquad (= p_{F}^{p}) \end{array}$$

$$\underset{(P_F^{n})^2 = 2M_N P_F^{p} + ... (P_F^{n} >> P_F^{p})$$
 neutron rich !

12/45

in intuitive terms,

electron kin. energy cost is sensitive to Y_p , while nucleon kin E cost is NOT (tempered by I/M_N)

the priority is to reduce electron density as much as possible \rightarrow small Y_p

the trend continues until nucleon interactions become important

how wide neutron rich domain?

saturation density

self-bound vs gravitationally bound stars

Core collapse supernovae: birth of NS

Supernova matter & proto-NS

Temperature [MeV]

Proton fraction

Temperature in NSs

in the <mark>core</mark>:

• thermal nucleons lose energy via direct URCA (Fast): $n \rightarrow p + e^- + \bar{\nu}_e$ $e^- + p \rightarrow n + \nu_e$ modified URCA (Slow): $n + n \rightarrow n + p + e^- + \bar{\nu}_e$

 $e^- + p + n \rightarrow n + n + \nu_e$

~10-100s after the birth, the T_{surf} drops to ~ keV

Neutron stars (NSs)

rot. period :	$P \sim Ims - Is$	(~ 10 ⁻⁹ − 10 ⁻⁶ P _☉)	
Mass :	$M \sim$ I-2 M_{\odot}		
Radius :	$R \sim$ II-I3 km	(~I0 <mark>-6</mark> R _☉)	
n _p /n _B :	$Y_p\sim~0.05$	(neutron rich)	
Temp.:	$T \sim { m KeV}$	(<< p _F of nucleons)	gravity (source: E _{QCD}
mag. field :	B ~ 10 ⁶ -10 ¹⁵ Gauss	(~ 0 ⁵ − 0 B _⊙)	QCD pressure

now we have (very) rough ideas on NS

gravitationally bound

How many NSs?

earth to sun: ~ 10^{-8} pc ~ 10^{8} km

diameter of Milky Way galaxy: ~ 10^4 pc

range of GW detection (aLIGO): $\sim 10^8 \, \text{pc}$

diameter of visible universe (CMB): $\sim 10^{10} \text{ pc}$

In our Milky Way galaxy:

- NS formation (SNe) \rightarrow a few events per century
- age of the galaxy $\rightarrow \sim 10^9$ years

the num. of NSs ~ $10^8 - 10^9$; only ~ 2×10^3 were observed

I parsec (pc) = 3.26. light year

Types of NSs? observed ~ 2 x 10³ pulsars

isolated radio pulsars

NS NS BH

pulsars in binaries

22/45

> 1500 NS (including ~ 400 millisec. pulsars) ~ 100 NSs (pulsars) : member of binaries

... + many invisible NSs (old, age > ~10⁸ yrs)

which have exhausted the rot. energy to power radio pulses

23/45

EOS & NS structure

NS: brief history --- where are we now?

24/45

1934) Zwicky & Baade (prediction) [1931: neutron discovered (Chadwick)]

"supernova: ordinary star $\rightarrow NS$ "

1967) Bell & Hewish: discovery of a pulsar (NS) "existence of NS"

1974) Taylor & Hulse: a binary pulsar (double NSs)

"indirect confirmation of gravitation waves (GWs)"

2010) Demorest+: discovery of $2M_{\odot}$ -NS

"new guide on high density equations of state"

2017) LIGO-Virgo: GWs from NS mergers (+ electromagnetic counterparts) "dawn of multi-messenger (GW, EM, neutrino) astronomy"

The first (established) ~2M_☉ NS : PSR J 16 14-2230 ^{25/45}

NS – WD (white dwarf) binary

[v1) Demorest+ (2010); v2) Fonseca+ (2016)]

spin period = 2.15 ms; orbital period = 8.7 days inclination angle = 89.17 \pm 0.02; edge on

 $M_{NS} = 1.928 \pm 0.017 M_{\odot}$

 $M_{WD} = 0.500 \pm 0.006 M_{\odot}$

- 1) **binary orbit** \rightarrow relations btw M_{NS} & M_{WD}
- 2) WD in the direction of pulses (!)

Shapiro delay of light

I & 2 \rightarrow separate determination of M_{NS} & M_{WD}

The heaviest NS known: PSR J0740+6620

NS – WD (white dwarf) binary

[v1) Cromartie+ (2019); v2) Fonseca+ (2021)]

spin period = 2.89 ms; orbital period = 4.77 days inclination angle = 87.56 \pm 0.17; edge on

 $M_{NS} = 2.08 \pm 0.07 M_{\odot}$

 $M_{wp} = 0.253 \pm 0.005 M_{\odot}$

distance from the earth : 1.14 kpc

Also, a target of NICER M & R (see below)

Mass-Radius (M-R) relations

Since the speed of sound: $c_s^{2} = dP/d\epsilon < I$ (causality)

The constraints are tighter if

- •high density EOS is stiffer
- •low density EOS is softer

" **soft-to-stiff**" combination is theoretically challenging

(but likely from observations & nuclear physics)

Key questions to be addressed

• low density:

• high density:

 $(n_{\rm B} > \sim 5n_0)$

 $(n_{\rm B} < \sim 2n_0)$

- **observational** constraints for **R**_{1.4}?
- domain of applicability? (1.1-2.0n₀?)
 - precision of low density calculations?
- mechanisms for stiff EOS?
- effective **d.o.f**? Hadrons or quarks or..?
 - when matter becomes weakly coupled?

- Inbetween:
- hadron-to-quark phase transitions?
- mechanism for stiffening? peaks in c_s²?

Lect.3

33/45

see

below

34/45

$R_{1.4}$ & low density EOS (<~2 n_0)

35/45 Soft vs stiff low density EOS ($n_{\rm B} < \sim 2n_0$) sources of info **NS observations**: $R_{4} \rightarrow EOS \text{ at } -3n_0$ $[Y_{D} \text{ for } \beta\text{-equilibrium}]$ **Nuclear physics**: EOS at $< \sim 2n_0$ [theory for all Y_p , exp. for $Y_p \sim 0.5$] Heavy lon experiments : "EOS" for $2-5(?)n_0$ [but $Y_p \sim 0.5 \& T \sim 20-100 MeV$, considerable extrapolations needed]

NICER (Neutron star Interior Composition Explorer, 2017-)

NICER analyses for R (&M)

...reality is more complicated

hot spots → not simple dipole types shapes? numbers of spots? [examined by two teams]

PSR J0030+0451

$$M = \frac{1.44^{+0.15}}{0.14} M_{\odot}$$

$$R = \frac{13.02^{+1.24}}{0.14} km$$

$$M = 1.34^{+0.15} M_{\odot} Riley+'19$$

$$R = 12.71^{+1.14} km$$

PSR J0740+6620 $M = 2.08^{+0.07} \text{ M}_{\odot}$ NICER + XMM Newton $R = 13.7^{+2.6} \text{ Miller+ '21}$ $R = 12.39^{+1.30} \text{ Miller+ '21}$

Nuclear calculations (microscopic)

I) Prepare **NN** + **3N** forces + ...

a) meson exchange models (traditional) [e.g., Illinois, Bonn, Argonne, Nijmegen,...]

b) Chiral EFT (ChEFT) for π & N [e.g., Weinberg, Epelbaum, Meissner, Schwenk,...]

c) Lattice QCD for NN, NY, YY int. [e.g., HAL collaboration,...]

2) Use the microscopic forces in many-body methods

a) variational [e.g., Pandharipande, Takano, Togashi, ...] (w. <mark>soft nucleons</mark> p²/m_N < m_π)

b) Quantum Monte-Carlo [e.g., Carlson, Gandolfi,...]

c) Hartree-Fock + many-body perturbation [e.g., Schwenk, Drischler, ...]

Advantage: can check how systematic uncertainties propagate; \rightarrow the methods can predict the domains of applicability.

Domain of nuclear methods: rough estimate ^{39/45}

$$\epsilon(n_B) = \begin{cases} 2\text{-body int.} \sim n_B^2 \pmod{2} & n_B^{4/3} \pmod{2} \\ 3\text{-body int.} \sim n_B^3 \pmod{2} & n_B^{5/3} \pmod{2} \end{cases}$$

Interactions **dominate** over kin. E (NR) ~ n_B^{5/3}/m_N

e.g.I) Akmal-Pandharipande-Ravenhall EoS (APR)

PNM	<mark>2 –body int.</mark>		<mark>3 –body int.</mark>	
n _B	$\langle v_{ij}^{\pi} \rangle$	$\langle v_{ij}^R \rangle$	$\langle V_{ijk}^{2\pi} \rangle$	$\langle V^R_{ijk} \rangle$
n ₀	-4.1	-29.9	1.2	4.5
2 n ₀	-25.1	-36.4	-17.4	30.6
3 n ₀	- 35.7	- 44.7	- 34.1	78.0
<mark>4</mark> n ₀	- 52.2	-41.1	- 76.9	160.3
grow rapidly				

e.g.2) parameterized **pure neutron** matter EoS [Gandolfi+ '09]

fit to Quantum Monte-Carlo

$$\sim kin. + 2\text{-body} \qquad \sim 3\text{-body}$$
$$n_0 = n_0 \left[(12 \pm 1 \text{ MeV}) \left(\frac{n_B}{n_0} \right)^{1.45 \pm 0.05} + (4 \pm 2 \text{ MeV}) \left(\frac{n_B}{n_0} \right)^{3.3 \pm 0.3} \right]$$

 $n_B \sim 2n_0$ is the upper bound

Chiral EFT [Weinberg 1990-]

<mark>chiral symmetry</mark>

- I) pions must appear together with derivatives or explicit sym. breaking terms
- 2) Short distance nucleon contact terms
- 3) other heavy d.o.fs :"integrated out"
- → systematic organization of terms in Lagrangian (!)

advantages especially in organizing <mark>many-body forces</mark>

expansions of Q/Λ_{χ} , m_{π}/Λ_{χ}

Low energy constants

2N forces (well determined)

3N forces (progressing)

excellent fits (~6000 data)

~40 LECs (N⁴LO, 2NF)

2NF to N⁴LO miss some contributions

d(np) – p scatt. [Sekiguchi+'17]

spectra of light nuclei

significant improvement with 3NF

42/45 EOS with N³LO ChEFT band [Drischler+'21]

if we trust ChEFT to $2n_0$, the causality $\rightarrow R_{1.4} < \sim 12.9$ km

NICER + XMM + GW + nuclear physics
$$(+ "c_s^2 < 1")^{43/45}$$

NICER + XMM Newton
 $R_{2.08} = \frac{13.7}{1.5} \text{ km}$
Miller+ '21
 $R_{2.08} = \frac{12.35}{0.75} \text{ km}$
 $R_{1.4} = \frac{12.45}{0.65} \text{ km}$
reduction of errors (!)
NICER + XMM Newton
 $R_{2.08} = \frac{12.39}{0.98} \text{ km}$
Riley+ '21
 $R_{2.08} = \frac{12.33}{0.98} \text{ km}$
Riley+ '21
 $R_{1.4} = \frac{12.33}{0.98} \text{ km}$
reduction of errors (!)
 $R_{2.08} \sim R_{1.4}$ (!)

Summary of Lecture I

- glancing at NS properties; M, R, Y_p, B, T, ...
- EOS and M-R relations
- EOS at low density; NICER $R_{1.4}$ and ChEFT

 $R_{2.08} \sim R_{1.4}$ (!) hints for soft-to-stiff EOS

Lect. 2 : Gravitational waves & NS-NS mergers Lect. 3 : From hadrons to quarks in NS