Lattice QCD in extreme conditions

Gergely Endrődi

University of Bielefeld

UNIVERSITÄT BIELEFELD

The 2022 XQCD PhD school July 22 - July 25, 2022

Outline overall

- lecture 1: introduction to QCD and thermodynamics
- lecture 2: hot Yang-Mills theory and hot QCD on the lattice
- lecture 3: QCD in extreme conditions on the lattice

Outline lecture 2

- some elements of finite temperature field theory
- lattice discretization of the QCD action
- confinement and deconfinement
- Polyakov loop and center clusters
- equation of state

Finite temperature field theory

Equation of state

- free energy (density)

$$
F=-T \log \mathcal{Z} \quad f=\frac{F}{V}
$$

- entropy density

$$
s=-\frac{1}{V} \frac{\partial F}{\partial T}
$$

- pressure

$$
p=-\frac{\partial F}{\partial V} \xrightarrow{V \rightarrow \infty}-f
$$

- energy density

$$
\epsilon=-\frac{1}{V} \frac{\partial \log \mathcal{Z}}{\partial(1 / T)}=f+T_{s}
$$

- interaction measure

$$
I=\operatorname{tr} T_{\mu \nu}=\epsilon-3 p
$$

- all we need is $\log \mathcal{Z}$

Scalar quantum field theory

- partition function for real scalars

$$
\mathcal{Z}=\int_{\phi(x, 0)=\phi(x, 1 / T)} \mathcal{D} \phi e^{-S[\phi]}
$$

over commuting numbers $\phi(x, \tau)$

- partition function for complex scalars

$$
\mathcal{Z}=\int_{\substack{\phi(x, 0)=\phi(x, 1 / T) \\ \phi^{*}(x, 0)=\phi^{*}(x, 1 / T)}} \mathcal{D} \phi^{*} \mathcal{D} \phi e^{-S\left[\phi^{*}, \phi\right]}
$$

- for quadratic actions (free case)

$$
\begin{aligned}
\int \mathcal{D} \phi e^{-\frac{1}{2} \phi M \phi} & =C \cdot[\operatorname{det}(M)]^{-1 / 2} \\
\int \mathcal{D} \phi^{*} \mathcal{D} \phi e^{-\phi^{*} M \phi} & =C^{\prime} \cdot[\operatorname{det}(M)]^{-1}
\end{aligned}
$$

Fermionic quantum field theory

- partition function for fermions

$$
\mathcal{Z}=\int_{\psi(x, 0)=-\psi(x, 1 / T)} \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-S[\bar{\psi}, \psi]}
$$

over Grassmann numbers $\psi(x, \tau)$

- for bilinear actions (not just free case!)

$$
\int \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-\bar{\psi} M \psi}=C^{\prime \prime} \cdot \operatorname{det}(M)
$$

- Euclidean Dirac operator

$$
M=\not \partial+m=\gamma_{\mu} \partial_{\mu}+m \quad\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \delta_{\mu \nu}
$$

Gauge field theory

- gauge field $A_{\mu}(\mathrm{U}(1))$ or A_{μ}^{a} with $a=1 \ldots N_{c}^{2}-1\left(\mathrm{SU}\left(N_{c}\right)\right)$
- partition function

$$
\mathcal{Z}=\int_{A_{\mu}^{a}(x, 0)=A_{\mu}^{a}(x, 1 / T)} \mathcal{D} A_{\mu}^{a} e^{-S\left[A_{\mu}^{a}\right]}
$$

- note 1: this is gauge invariant, but to derive it we needed to fix a gauge
- note 2: to evaluate \mathcal{Z} via perturbation theory, we need to fix a gauge again
- free case

$$
f_{\mathrm{U}(1)}=f_{\text {real scalar }} \cdot(4-2) \quad f_{\mathrm{SU}\left(N_{c}\right)}=f_{\text {real scalar }} \cdot(4-2) \cdot\left(N_{c}^{2}-1\right)
$$

ghosts cancel half the gauge field contribution

Remark: ultraviolet divergences

- vacuum contribution to free energy is UV divergent

$$
f_{\mathrm{vac}}=\frac{1}{2} \int_{0}^{\Lambda} \frac{4 \pi p^{2} \mathrm{~d} p}{(2 \pi)^{3}} \sqrt{p^{2}+m^{2}}=\underline{\mathcal{O}\left(\Lambda^{4}\right)+\mathcal{O}\left(m^{2} \Lambda^{2}\right)+\mathcal{O}\left(m^{4} \log \Lambda^{2}\right)+\mathcal{O}\left(m^{4}\right)}
$$

- renormalize free energy at $T=0$ to zero

$$
f^{r}=f-f(T=0)
$$

(normal ordering in operator language)

- for the equation of state

$$
p^{r}=p-p(T=0) \quad \epsilon^{r}=\epsilon-\epsilon(T=0)
$$

Remark: ultraviolet divergences

- vacuum contribution to free energy is UV divergent
$f_{\mathrm{vac}}=\frac{1}{2} \int_{0}^{\Lambda} \frac{4 \pi p^{2} \mathrm{~d} p}{(2 \pi)^{3}} \sqrt{p^{2}+m^{2}}=\underline{\mathcal{O}\left(\Lambda^{4}\right)+\mathcal{O}\left(m^{2} \Lambda^{2}\right)+\mathcal{O}\left(m^{4} \log \Lambda^{2}\right)+\mathcal{O}\left(m^{4}\right)}$
- renormalize free energy at $T=0$ to zero

$$
f^{r}=f-f(T=0)
$$

(normal ordering in operator language)

- for the equation of state

$$
p^{r}=p-p(T=0) \quad \epsilon^{r}=\epsilon-\epsilon(T=0)
$$

no renormalization necessary for entropy $s=-\partial f / \partial T$

Perturbation theory

- pure glue free pressure

$$
p_{\mathrm{SU}(3)}^{r}=-f_{\mathrm{SU}(3)}^{r}=-16 \cdot \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} T \log \left(1-e^{-|\mathbf{p}| / T}\right)=\frac{8 \pi^{2}}{45} \cdot T^{4}
$$

- perturbation theory in g (vertices A^{3} and A^{4})
\& Blaizot, lancu, Rebhan PRD '03

bands: renormalization scale depence $g^{2}(\pi T \leq \bar{\mu} \leq 4 \pi T)$
- need for lattice gauge theory

In the continuum

- Euclidean path integral

$$
\mathcal{Z}=\int \mathcal{D} A_{\mu} \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left[-\int_{0}^{1 / T} \mathrm{~d} x_{4} \int_{L^{3}} \mathrm{~d}^{3} x \mathcal{L}(x)\right]
$$

- Lagrangian

$$
\mathcal{L}=\sum_{f} \bar{\psi}_{f}\left(\not \square+m_{f}\right) \psi_{f}+\frac{1}{2 g^{2}} \operatorname{Tr} G_{\mu \nu} G_{\mu \nu}
$$

- fields

$$
\begin{aligned}
A_{\mu} & =A_{\mu}^{a} T_{c d}^{a}, & G_{\mu \nu} & =\partial_{\mu} A_{\nu}-\partial_{\mu} A_{\nu}+\left[A_{\mu}, A_{\nu}\right] \\
\psi_{f} & =\psi_{f, \alpha, c}, & D_{c d}^{\alpha \beta} & =\gamma_{\mu}^{\alpha \beta}\left(\partial_{\mu}+i A_{\mu}^{a} T_{c d}^{a}\right)
\end{aligned}
$$

- parameters: m_{f} quark masses and g strong coupling

Discretization

- discretize space $L=a \cdot N_{s}$ and imaginary time $1 / T=a \cdot N_{t}$ $x=a \cdot n$

- path integral

$$
\mathcal{Z}=\lim _{\substack{a \rightarrow 0 \\ N_{t} \rightarrow \infty \\ N_{s} \rightarrow \infty}} \int \prod_{n, \mu} \mathrm{~d} A_{\mu}(n) \mathrm{d} \bar{\psi}(n) \mathrm{d} \psi(n) \exp \left[-S_{F+G}^{\text {lat }}\right]
$$

- nonzero T : bosons periodic, fermions antiper. in imag. time
- finite volume: periodic boundary conditions in space

Lattice action

- variable substitution to parallel transporter

$$
U_{\mu}=\exp \left(i a A_{\mu}\right) \in \mathrm{SU}(3)
$$

- symbolically

$$
U_{\mu}(n)=\underset{n \mu}{\longrightarrow} \quad U_{\mu}^{\dagger}(n-\hat{\mu})=\overleftarrow{\mu n}
$$

- gauge transformation (Ω unitary)

$$
\begin{aligned}
& A_{\mu}(n) \rightarrow \Omega(n) A_{\mu}(n) \Omega^{\dagger}(n)+i\left(\partial_{\mu} \Omega(n)\right) \Omega^{\dagger}(n) \\
& U_{\mu}(n) \rightarrow \Omega(n) U_{\mu}(n) \Omega^{\dagger}(n+\hat{\mu})
\end{aligned}
$$

Lattice action

- variable substitution to parallel transporter

$$
U_{\mu}=\exp \left(i a A_{\mu}\right) \in \mathrm{SU}(3)
$$

- symbolically

$$
U_{\mu}(n)=\underset{n \mu}{\longrightarrow} \quad U_{\mu}^{\dagger}(n-\hat{\mu})=\overleftarrow{\mu n}
$$

- smallest closed (=gauge invariant) curves

Lattice action

- variable substitution to parallel transporter

$$
U_{\mu}=\exp \left(i a A_{\mu}\right) \in \mathrm{SU}(3)
$$

- symbolically

$$
U_{\mu}(n)=\underset{n \mu}{\longrightarrow} \quad U_{\mu}^{\dagger}(n-\hat{\mu})=\overleftarrow{\mu n}
$$

- smallest closed (=gauge invariant) curves
or winding loops (Polyakov loop)

$$
\operatorname{Tr} L_{\mu}(n)=\xrightarrow[n_{\mu}]{\mu} \cdots \vec{\mu}_{\mu}{ }_{n+N_{\mu} \hat{\mu}}
$$

Gluon action

- expansion towards continuum limit

$$
\operatorname{Re} \operatorname{Tr}\left(\mathbb{1}-P_{\mu \nu}(n)\right)=\frac{a^{4}}{2} \operatorname{Tr} G_{\mu \nu}(n) G_{\mu \nu}(n)+\mathcal{O}\left(a^{6}\right)
$$

- full action

$$
S_{G}^{\text {lat }}=\frac{\beta}{3} \sum_{n} \sum_{\mu<\nu} \operatorname{Re} \operatorname{Tr}\left(\mathbb{1}-P_{\mu \nu}(n)\right)
$$

- strong coupling parameter

$$
\beta=\frac{6}{g^{2}}
$$

- path integral over links

$$
\mathcal{Z}=\int \mathcal{D} U \exp \left[-\beta \cdot \frac{1}{3} \sum_{n, \mu<\nu} \operatorname{Re}\left(3-{\underset{\nu}{n \mu}}_{\stackrel{\mu}{\longleftrightarrow} \nu}^{\stackrel{\mu}{n}}\right)\right]
$$

Continuum limit

- continuum RG equation perturbatively

$$
\bar{\mu} \frac{\partial g_{R}(\bar{\mu})}{\partial \bar{\mu}}=-b_{1} g_{R}^{3}(\bar{\mu})+\ldots
$$

- lattice RG equation perturbatively

$$
a^{-1} \frac{\partial g\left(a^{-1}\right)}{\partial\left(a^{-1}\right)}=-b_{1} g^{3}\left(a^{-1}\right)+\ldots
$$

- asymptotic freedom: cont. limit at $g \rightarrow 0, \beta=6 / g^{2} \rightarrow \infty$
- continuum limit nonperturbatively

- lattice spacing from scale setting $a(\beta)$

Finite temperature on the lattice

Finite temperature on the lattice

- spatial size: $L=N_{s} a(\beta)$
- temporal size: $1 / T=N_{t} a(\beta)$

Finite temperature on the lattice

- spatial size: $L=N_{s} a(\beta)$
- temporal size: $1 / T=N_{t} a(\beta)$
- fixed- β approach: change T by changing N_{t}
- only discrete temperatures possible \times
- all temperatures have same lattice spacing \checkmark
- scale setting and renormalization only once \checkmark

Finite temperature on the lattice

- spatial size: $L=N_{s} a(\beta)$
- temporal size: $1 / T=N_{t} a(\beta)$
- fixed- β approach: change T by changing N_{t}
- only discrete temperatures possible \times
- all temperatures have same lattice spacing \checkmark
- scale setting and renormalization only once \checkmark

- fixed $-N_{t}$ approach: change T by changing β
- continuous temperatures possible \checkmark
- different temperatures have different lattice spacing \times
- scale setting and renormalization for each $\beta \times$

Confinement and deconfinement

Confinement

- free energy of thermal medium: $F=-T \log \mathcal{Z}$ free energy in presence of static quark: $F_{q}=-T \log \mathcal{Z}_{q}$
- confinement: $F_{q}-F=\infty$ deconfinement: $F_{q}-F<\infty$
- operator language

$$
e^{-\left(F_{q}-F\right) / T}=\frac{\mathcal{Z}_{q}}{\mathcal{Z}}=\frac{\operatorname{tr} e^{-\hat{H} / T} \hat{P}_{q}}{\operatorname{tr} e^{-\hat{H} / T}}
$$

with P_{q} projector to states including static quark $\&$ Ukawa '93

- with path integral

$$
P(\mathbf{x})=\operatorname{tr} \mathcal{P} \exp \left(i \int_{0}^{1 / T} \mathrm{~d} x_{4} A_{4}(x)\right)
$$

Polyakov loop

- on the lattice

$$
P(\mathbf{n})=\operatorname{tr} \prod_{n_{4}=0}^{N_{t}-1} U_{t}(n)=\underset{n_{t}}{\longrightarrow} \cdots{\underset{t}{t}}_{n+N_{t} \hat{t}}
$$

- average Polyakov loop $P=\frac{1}{V} \sum_{\mathbf{n}} P(\mathbf{n})$
- order parameter for confinement

$$
\langle P\rangle=e^{-\left(F_{q}-F\right) / T} \begin{cases}=0 & \text { confinement } \\ \neq 0 & \text { deconfinement }\end{cases}
$$

- static quark and antiquark at separation r

$$
e^{-\left(F_{q \bar{q}}(r)-F\right) / T}=\left\langle P(0) P^{\dagger}(r)\right\rangle \xrightarrow{r \rightarrow \infty}\langle P\rangle\left\langle P^{\dagger}\right\rangle+\mathcal{O}\left(e^{-\sigma r / T}\right)
$$

so

$$
F_{q \bar{q}}(r \rightarrow \infty)-F \propto \begin{cases}\sigma r & \text { confinement } \\ \text { const. } & \text { deconfinement }\end{cases}
$$

Center symmetry

- symmetry corresponding to confinement/deconfinement?

Center symmetry

- symmetry corresponding to confinement/deconfinement?
- transformation under which S is invariant but P is not
\Rightarrow center transformation
- elements of center of group

$$
V_{\zeta} \quad \text { so that }\left[V_{\zeta}, U\right]=0 \quad \forall U \in \mathrm{SU}(3)
$$

in our case it is

$$
\mathbb{Z}(3)=\left\{\mathbb{1}, e^{i 2 \pi / 3} \mathbb{1}, e^{-i 2 \pi / 3} \mathbb{1}\right\}=\zeta \cdot \mathbb{1}
$$

Center symmetry

- center transformation

$$
U_{t}\left(\mathbf{n}, \bar{n}_{4}\right) \rightarrow V_{\zeta} \cdot U_{t}\left(\mathbf{n}, \bar{n}_{4}\right) \quad V_{\zeta} \in \mathbb{Z}(3) \quad \forall \mathbf{n}
$$

- gauge action is invariant

$$
\left[V_{\zeta}, U_{\mu}(n)\right]=0 \quad \Rightarrow \quad S_{G} \rightarrow S_{G} \quad t \cdot v_{\zeta}^{\dagger} \underset{n \mu}{\rrbracket_{n}^{\mu}} t \cdot v_{\zeta}
$$

- Polyakov loop not invariant

$$
P(\mathbf{n}) \rightarrow \zeta \cdot P(\mathbf{n})
$$

confinement	$\langle P\rangle=0$	$\mathrm{Z}(3)$ symmetry intact
deconfinement	$\langle P\rangle \neq 0$	$\mathrm{Z}(3)$ symmetry spontaneously broken

Spontaneous center symmetry breaking

- Polyakov loop in Polyakov gauge

$$
P(\mathbf{n})=\underset{n t}{\longrightarrow} \cdots{\underset{t}{t}}_{n+N_{t} \hat{t}} \rightarrow \underset{n t}{\mathbb{1}} \cdots \xrightarrow[t]{\mathbb{1}} \prod_{t} U \underbrace{}_{n+N_{t} \hat{t}}
$$

is a boundary condition

- if $P(\mathbf{n})$ is constant, it can be diagonalized

$$
P=\operatorname{tr} \operatorname{diag}\left(e^{i \varphi_{1}}, e^{i \varphi_{2}}, e^{-i\left(\varphi_{1}+\varphi_{2}\right)}\right)
$$

- perturbative treatment at high temperature:
$\log \mathcal{Z}\left(\varphi_{1}, \varphi_{2}\right)$ in the background of a constant Polyakov loop ρ Roberge, Weiss NPB '86
- three degenerate minima at

$$
\begin{array}{ccc}
\varphi_{1}=\varphi_{2}=0 & \varphi_{1}=\varphi_{2}=2 \pi / 3 & \varphi_{1}=\varphi_{2}=-2 \pi / 3 \\
P=3 & P=3 e^{2 \pi i / 3} & P=3 e^{-2 \pi i / 3}
\end{array}
$$

Spontaneous center symmetry breaking

- from perturbation theory we except three minima

$$
P=3 \quad P=3 e^{2 \pi i / 3} \quad P=3 e^{-2 \pi i / 3}
$$

- scatter plot at low T and high T Q Danzer et al. JHEP '08

- remember Ising model recipe: $\lim _{V \rightarrow \infty}\langle | M| \rangle$ at $h=0$

Spontaneous center symmetry breaking

- from perturbation theory we except three minima

$$
P=3 \quad P=3 e^{2 \pi i / 3} \quad P=3 e^{-2 \pi i / 3}
$$

- scatter plot at low T and high T Q Danzer et al. JHEP '08

- remember Ising model recipe: $\lim _{V \rightarrow \infty}\langle | M| \rangle$ at $h=0$
- alternative 1: measure $\langle | P\rangle$

Spontaneous center symmetry breaking

- from perturbation theory we except three minima

$$
P=3 \quad P=3 e^{2 \pi i / 3} \quad P=3 e^{-2 \pi i / 3}
$$

- scatter plot at low T and high T Q Danzer et al. JHEP '08

- remember Ising model recipe: $\lim _{V \rightarrow \infty}\langle | M| \rangle$ at $h=0$
- alternative 1: measure $\langle | P\rangle$
- alternative 2: measure $\left\langle P_{\text {rot }}\right\rangle$ with rotated Polyakov loop

$$
-\pi / 3<\arg P_{\mathrm{rot}}<\pi / 3
$$

Dictionary 1.

	Ising model	Yang-Mills theory
symmetry group	$\mathrm{Z}(2)$	$\mathrm{Z}(3)$
spontaneous breaking	$\langle M\rangle=\frac{\partial \log \mathcal{Z}}{\partial h}$	$\langle P\rangle$
explicit breaking	h	$?$
symmetry restoration	at high T	at low T

Deconfinement transition

Results: Polyakov loop

- $\langle | P\left\rangle\right.$ as function of T in the fixed N_{t}-approach \& Lo et al. PRD '13

- note: UV renormalization: F_{q} additive $\rightsquigarrow\langle P\rangle$ multiplicative

Results: susceptibility

- susceptibility of order parameter

$$
\chi_{P}=\left\langle P_{\text {rot }}^{2}\right\rangle-\left\langle P_{\text {rot }}\right\rangle^{2}
$$

- how does peak height scale with volume?

○ Iwasaki et al. PRD '92

- $\chi_{P}\left(L, T_{c}(L)\right) \propto L^{3}=V$ first-order phase transition

Results: susceptibility

- susceptibility of order parameter

$$
\chi_{P}=\left\langle P_{\text {rot }}^{2}\right\rangle-\left\langle P_{\text {rot }}\right\rangle^{2}
$$

- how does peak height scale with volume?

○ Iwasaki et al. PRD '92

- $\chi_{P}\left(L, T_{c}(L)\right) \propto L^{3}=V$ first-order phase transition

Center clusters

Center clusters

- local distribution of $P(\mathbf{n})$ O Stokes, Kamleh, Leinweber Ann. Phys. '14 https://www. youtube.com/watch?v=T4sRON6uOz0

- clusters percolate at T_{c} and they are fractals \& Endrődi, Gattringer, Schadler PRD '14

Center clusters

- insight into confinement and deconfinement mechanism

Q Gattringer, Schmidt JHEP '10

Equation of state

Equation of state, reminder

- free energy (density)

$$
F=-T \log \mathcal{Z} \quad f=\frac{F}{V}
$$

- entropy density

$$
s=-\frac{1}{V} \frac{\partial F}{\partial T}
$$

- pressure

$$
p=-\frac{\partial F}{\partial V} \xrightarrow{V \rightarrow \infty}-f
$$

- energy density

$$
\epsilon=-\frac{1}{V} \frac{\partial \log \mathcal{Z}}{\partial(1 / T)}=f+T_{s}
$$

- interaction measure / trace anomaly

$$
I=\operatorname{tr} T_{\mu \nu}=\epsilon-3 p
$$

EoS - methods

- very high T : perturbation theory, Hard Thermal Loop resummation
Braaten, Pisarski PRL '90 Andersen, Strickland, Su JHEP '10
- low T : glueball resonance gas model
- intermediate T : lattice gauge theory
- how to determine $\log \mathcal{Z}$ via expectation values?
- derivative method
- integral method
- moving frame method

Derivative method

Derivative method

- trace anomaly as a derivative

$$
\frac{\mathrm{d} \log \mathcal{Z}}{\mathrm{~d} \log a}=a \frac{\mathrm{~d} \log \mathcal{Z}}{\mathrm{~d} a}=\frac{1}{T} \frac{\partial \log \mathcal{Z}}{\partial(1 / T)}+3 L^{3} \frac{\partial \log \mathcal{Z}}{\partial\left(L^{3}\right)}=-\frac{V}{T}(\epsilon-3 p)
$$

- how does $\log \mathcal{Z}$ depend on a ?

$$
\mathcal{Z}=\int \mathcal{D} U \exp [-\beta \cdot \overbrace{\frac{1}{3} \sum_{n, \mu<\nu} \operatorname{Re}(3-{\underset{\underbrace{}}{n \mu}}_{{\underset{\sim}{\mu}}_{\mu}^{\mu}})}^{S_{G}}
$$

Derivative method

- trace anomaly as a derivative

$$
\frac{\mathrm{d} \log \mathcal{Z}}{\mathrm{~d} \log a}=a \frac{\mathrm{~d} \log \mathcal{Z}}{\mathrm{~d} a}=\frac{1}{T} \frac{\partial \log \mathcal{Z}}{\partial(1 / T)}+3 L^{3} \frac{\partial \log \mathcal{Z}}{\partial\left(L^{3}\right)}=-\frac{V}{T}(\epsilon-3 p)
$$

- how does $\log \mathcal{Z}$ depend on a ?

$$
\mathcal{Z}=\int \mathcal{D} U \exp [-\beta \cdot \frac{1}{3} \overbrace{n, \mu<\nu} \operatorname{Re}(3-\nu_{\nu_{n \mu}^{{\underset{\sim}{\mu}}_{\mu}^{\mu}} \nu}^{\underbrace{\mu}})]
$$

- implicitly via β

$$
\frac{\mathrm{d} \log \mathcal{Z}}{\mathrm{~d} \log a}=\frac{\partial \log \mathcal{Z}}{\partial \beta} \cdot \frac{\partial \beta}{\partial \log a}=\left\langle-S_{G}\right\rangle \cdot \frac{a(\beta)}{a^{\prime}(\beta)}
$$

for which we need to know $a(\beta)$ from scale setting

- so

$$
I=\epsilon-3 p=\frac{T}{V}\left\langle S_{G}\right\rangle \frac{a(\beta)}{a^{\prime}(\beta)}
$$

Derivative method

- how to get just p or just ϵ ?

$$
1 / T=N_{t} a \begin{aligned}
& \square \\
& \\
& L=N_{s} a
\end{aligned}
$$

Derivative method

- how to get just p or just ϵ ?

- anisotropic lattice $\xi=a / a_{t}$

$$
\epsilon=-\left.\frac{T}{V} \frac{\mathrm{~d} \log \mathcal{Z}}{\mathrm{~d} \log a_{t}}\right|_{a} \quad 3 p=\left.\frac{T}{V} \frac{\mathrm{~d} \log \mathcal{Z}}{\mathrm{~d} \log a}\right|_{a_{t}}
$$

these can be evaluated at $\xi=1$
\& Karsch NPB '82 ρ Engels et al. NPB '82

Anisotropy coefficients

- anisotropic lattice action

and we need one more scale setting relation $\xi\left(\beta, \xi_{0}\right)$
- energy density

$$
\epsilon=-\xi^{2} \frac{T}{V}\left[\left\langle S_{G}^{s}\right\rangle \frac{\partial\left(\beta \xi_{0}\right)}{\partial \xi}+\left\langle S_{G}^{t}\right\rangle \frac{\partial\left(\beta / \xi_{0}\right)}{\partial \xi}\right]
$$

- anisotropy coefficients difficult to measure precisely

Results: derivative method

- results for energy density \mathcal{O} Engels et al. NPB '82

- remember additive divergences in $\log \mathcal{Z} \propto a^{-4}$
- renormalized energy density

$$
\epsilon^{\mathrm{r}}=\epsilon-\epsilon(T \approx 0)
$$

involving cancellation of $\mathcal{O}\left(a^{-4}\right)$ divergences

$$
\left\langle S_{G}^{t, s}\right\rangle_{N_{s}^{3} N_{t}}-\left\langle S_{G}^{t, s}\right\rangle_{N_{s}^{4}}
$$

Integral method

Integral method

- integrate back the derivatives \otimes Boyd et al. NPB '96

$$
\log \mathcal{Z}\left(\beta_{1}\right)-\log \mathcal{Z}\left(\beta_{0}\right)=\int_{\beta_{0}}^{\beta_{1}} \mathrm{~d} \beta \frac{\partial \log \mathcal{Z}}{\partial \beta}
$$

- works in the fixed N_{t}-approach
- differences of dimensionless pressures

$$
p\left(T_{1}\right) a_{1}^{4}-p\left(T_{0}\right) a_{0}^{4}=-\frac{1}{N_{s}^{3} N_{t}} \int_{\beta_{0}}^{\beta_{1}} \mathrm{~d} \beta\left\langle S_{G}\right\rangle
$$

or

$$
\frac{p\left(T_{1}\right)}{T_{1}^{4}}-\frac{p\left(T_{0}\right)}{T_{0}^{4}}=-\frac{N_{t}^{3}}{N_{s}^{3}} \int_{\beta_{0}}^{\beta_{1}} \mathrm{~d} \beta\left\langle S_{G}\right\rangle
$$

- is this UV finite?

Renormalization

- $p\left(T_{1}, a\right)-p\left(T_{0}, a\right) \cup V$ finite but $p\left(T_{1}, a_{1}\right)-p\left(T_{0}, a_{0}\right)$ divergent
- need to do $T \approx 0$ subtraction

$$
\frac{p^{\mathrm{r}}\left(T_{1}\right)}{T_{1}^{4}}-\frac{p^{\mathrm{r}}\left(T_{0}\right)}{T_{0}^{4}}=-\frac{N_{t}^{3}}{N_{s}^{3}} \int_{\beta_{0}}^{\beta_{1}} \mathrm{~d} \beta\left[\left\langle S_{G}\right\rangle_{N_{s}^{3} N_{t}}-\left\langle S_{G}\right\rangle_{N_{s}^{4}}\right]
$$

with starting point β_{0} where $p^{\mathrm{r}}\left(T_{0}\right) / T_{0}^{4} \approx 0$

- renormalized interaction measure

$$
\frac{r^{\mathrm{r}}}{T^{4}}=\frac{N_{t}^{3}}{N_{s}^{3}} \frac{a(\beta)}{a^{\prime}(\beta)}\left[\left\langle S_{G}\right\rangle_{N_{s}^{3} N_{t}}-\left\langle S_{G}\right\rangle_{N_{s}^{4}}\right]
$$

Results: integral method

- need interpolation $(+a(\beta))$ for I, then numerical integral for p \& Boyd et al. NPB '96

Results: integral method

- need interpolation $(+a(\beta))$ for I, then numerical integral for p \& Boyd et al. NPB '96
- update on finer lattices Borsányi, Endrődi et al. JHEP '12

Moving frame method

Thermal medium at relativistic speeds

- so far we have been in the rest frame

$$
\left\langle\hat{\Theta}_{\mu \nu}\right\rangle=\left(\begin{array}{cccc}
\epsilon & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right)
$$

- now consider frame moving with $\mathbf{v}=(v, 0,0)$

Thermal medium at relativistic speeds

- so far we have been in the rest frame

$$
\left\langle\hat{\Theta}_{\mu \nu}\right\rangle=\left(\begin{array}{cccc}
\epsilon & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right)
$$

- now consider frame moving with $\mathbf{v}=(v, 0,0)$

Thermal medium at relativistic speeds

- so far we have been in the rest frame

$$
\left\langle\hat{\Theta}_{\mu \nu}\right\rangle=\left(\begin{array}{llll}
\epsilon & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right)
$$

- now consider frame moving with $\mathbf{v}=(v, 0,0)$

$$
\left\langle\hat{\Theta}_{\mu \nu}^{\prime}\right\rangle=\Lambda_{\mu}^{\rho} \Lambda_{\nu}^{\sigma}\left\langle\hat{\Theta}_{\rho \sigma}\right\rangle=\left(\begin{array}{cccc}
\frac{\epsilon+v^{2} p}{1-v^{2}} & v \frac{\epsilon+p}{1-v^{2}} & 0 & 0 \\
v \frac{\epsilon p}{1-v^{2}} & \frac{p+v^{2} \epsilon}{1-v^{2}} & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right)
$$

- recall $\epsilon=f+T s=-p+T s$
therefore

$$
\left\langle\hat{\Theta}_{01}\right\rangle_{v}=\frac{v}{1-v^{2}}(\epsilon+p)=\frac{v}{1-v^{2}} T_{s}
$$

Shifted boundary conditions

- partition function becomes
© Giusti, Meyer PRL '11 Q Giusti, Meyer JHEP '13

$$
\mathcal{Z}=\operatorname{tr} \exp \left[-\left(\hat{\Theta}_{00}-v \hat{\Theta}_{01}\right) / T_{0}\right]
$$

in Euclidean space $v=i \xi$

$$
\mathcal{Z}=\operatorname{tr} \exp \left[-\left(\hat{\Theta}_{00}-i \xi \hat{\Theta}_{01}\right) / T_{0}\right]
$$

- states with x_{1}-momentum Θ_{01} weighted by $e^{i \xi \Theta_{01} / T_{0}}$ \Rightarrow shifted boundary conditions

$$
U\left(n_{1}, 0\right)=U\left(n_{1}+\xi / T_{0}, 1 / T_{0}\right)
$$

- but watch out: $1 / T=1 / T_{0} \cdot \sqrt{1+\xi^{2}}$

Results: moving frame method

- entropy in moving frame

$$
T_{s}=\frac{1+\xi^{2}}{\xi}\left\langle\hat{\Theta}_{01}\right\rangle_{\xi} \cdot Z_{T}(a)
$$

- simulations with $\xi=\{1, \sqrt{2}, \sqrt{3}\} \cdot a$ Giusti, Pepe JHEP '16
- multiplicative renormalization Z_{T} for operator $\Theta_{\mu \nu}$
- recover full EoS from s

Equation of state: summary

- derivative method
- works with a single ensemble \checkmark
- needs anisotropy coefficients \times
- moving frame method
- works with a single ensemble \checkmark
- needs renormalization constants \times
- integral method: most powerful up to date
- only simple expectation values required \checkmark
- needs many ensembles \times
- Jarzynski's method Q Caselle et al. PRD '18
and other approaches

