Lattice QCD in extreme conditions

Gergely Endrődi

University of Bielefeld

The 2022 XQCD PhD school July 22 - July 25, 2022

- lecture 1: introduction to QCD and thermodynamics
- lecture 2: hot Yang-Mills theory and hot QCD on the lattice
- lecture 3: QCD in extreme conditions on the lattice

Outline lecture 2

- some elements of finite temperature field theory
- lattice discretization of the QCD action
- confinement and deconfinement
- Polyakov loop and center clusters
- equation of state

Finite temperature field theory

Equation of state

free energy (density)

$$F = -T \log \mathcal{Z}$$
 $f = \frac{F}{V}$

entropy density

$$s = -\frac{1}{V} \frac{\partial F}{\partial T}$$

pressure

$$p = -\frac{\partial F}{\partial V} \xrightarrow{V \to \infty} -f$$

energy density

$$\epsilon = -\frac{1}{V} \frac{\partial \log \mathcal{Z}}{\partial (1/T)} = f + Ts$$

interaction measure

$$I = {
m tr} \ T_{\mu
u} = \epsilon - 3p$$

 \blacktriangleright all we need is $\log \mathcal{Z}$

Scalar quantum field theory

partition function for real scalars

$$\mathcal{Z} = \int_{\phi(x,0)=\phi(x,1/\mathcal{T})} \mathcal{D}\phi \, e^{-\mathcal{S}[\phi]}$$

over commuting numbers $\phi(x, \tau)$

partition function for complex scalars

$$\mathcal{Z} = \int_{\substack{\phi(x,0) = \phi(x,1/T) \\ \phi^*(x,0) = \phi^*(x,1/T)}} \mathcal{D}\phi^* \mathcal{D}\phi \ e^{-S[\phi^*,\phi]}$$

for quadratic actions (free case)

$$\int \mathcal{D}\phi \, e^{-rac{1}{2}\phi M\phi} = C \cdot [\det(M)]^{-1/2}$$
 $\int \mathcal{D}\phi^* \mathcal{D}\phi \, e^{-\phi^* M\phi} = C' \cdot [\det(M)]^{-1}$

Fermionic quantum field theory

partition function for fermions

$$\mathcal{Z} = \int_{\psi(x,0)=-\psi(x,1/T)} \mathcal{D}\bar{\psi} \, \mathcal{D}\psi \, e^{-\mathcal{S}[\bar{\psi},\psi]}$$

over Grassmann numbers $\psi(x, \tau)$

for bilinear actions (not just free case!)

$$\int \mathcal{D}ar{\psi}\,\mathcal{D}\psi\,e^{-ar{\psi}\mathcal{M}\psi}=\mathcal{C}''\cdot\mathsf{det}(\mathcal{M})$$

Euclidean Dirac operator

$$M = \partial \!\!\!/ + m = \gamma_{\mu} \partial_{\mu} + m \qquad \{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu}$$

Gauge field theory

- ▶ gauge field A_{μ} (U(1)) or A_{μ}^{a} with $a = 1 \dots N_{c}^{2} 1$ (SU(N_{c}))
- partition function

$$\mathcal{Z} = \int_{\mathcal{A}^a_\mu(imes,0) = \mathcal{A}^a_\mu(imes,1/\mathcal{T})} \mathcal{D} \mathcal{A}^a_\mu \, e^{-S[\mathcal{A}^a_\mu]}$$

- note 1: this is gauge invariant, but to derive it we needed to fix a gauge
- note 2: to evaluate Z via perturbation theory, we need to fix a gauge again

free case

$$f_{\mathrm{U}(1)} = f_{\mathrm{real\ scalar}} \cdot (4-2)$$
 $f_{\mathrm{SU}(N_c)} = f_{\mathrm{real\ scalar}} \cdot (4-2) \cdot (N_c^2-1)$

ghosts cancel half the gauge field contribution

Remark: ultraviolet divergences

vacuum contribution to free energy is UV divergent

$$f_{\rm vac} = \frac{1}{2} \int_0^{\Lambda} \frac{4\pi p^2 dp}{(2\pi)^3} \sqrt{p^2 + m^2} = \underline{\mathcal{O}(\Lambda^4) + \mathcal{O}(m^2\Lambda^2) + \mathcal{O}(m^4\log\Lambda^2) + \mathcal{O}(m^4)}$$

• renormalize free energy at T = 0 to zero

$$f^r = f - f(T = 0)$$

(normal ordering in operator language)

for the equation of state

$$p^r = p - p(T = 0)$$
 $\epsilon^r = \epsilon - \epsilon(T = 0)$

Remark: ultraviolet divergences

vacuum contribution to free energy is UV divergent

$$f_{\rm vac} = \frac{1}{2} \int_0^{\Lambda} \frac{4\pi p^2 dp}{(2\pi)^3} \sqrt{p^2 + m^2} = \underline{\mathcal{O}(\Lambda^4) + \mathcal{O}(m^2\Lambda^2) + \mathcal{O}(m^4\log\Lambda^2) + \mathcal{O}(m^4)}$$

• renormalize free energy at T = 0 to zero

$$f^r = f - f(T = 0)$$

(normal ordering in operator language)

for the equation of state

$$p^r = p - p(T = 0)$$
 $\epsilon^r = \epsilon - \epsilon(T = 0)$

no renormalization necessary for entropy $s = -\partial f / \partial T$

Perturbation theory

pure glue free pressure

$$p_{\mathrm{SU}(3)}^r = -f_{\mathrm{SU}(3)}^r = -16 \cdot \int \frac{\mathrm{d}^3 \mathbf{p}}{(2\pi)^3} T \log(1 - e^{-|\mathbf{p}|/T}) = \frac{8\pi^2}{45} \cdot T^4$$

• perturbation theory in g (vertices A^3 and A^4)

Blaizot, Iancu, Rebhan PRD '03

bands: renormalization scale depence $g^2(\pi T \le \bar{\mu} \le 4\pi T)$ let need for lattice gauge theory

QCD on the lattice

In the continuum

Euclidean path integral

$$\mathcal{Z} = \int \mathcal{D}A_{\mu} \, \mathcal{D}\bar{\psi} \, \mathcal{D}\psi \, \exp\left[-\int_{0}^{1/T} dx_{4} \int_{L^{3}} d^{3}x \, \mathcal{L}(x)\right]$$

$$\mathcal{L} = \sum_{f} \bar{\psi}_{f} (\not{D} + m_{f}) \psi_{f} + \frac{1}{2g^{2}} \operatorname{Tr} G_{\mu\nu} G_{\mu\nu}$$

field	s
-------	---

• parameters: m_f quark masses and g strong coupling

Discretization

• discretize space $L = a \cdot N_s$ and imaginary time $1/T = a \cdot N_t$ $x = a \cdot n$

path integral

$$\mathcal{Z} = \lim_{\substack{a \to 0 \\ N_t \to \infty \\ N_s \to \infty}} \int \prod_{n,\mu} \mathrm{d}A_{\mu}(n) \, \mathrm{d}\bar{\psi}(n) \, \mathrm{d}\psi(n) \, \exp\left[-S_{F+G}^{\mathrm{lat}}\right]$$

nonzero T: bosons periodic, fermions antiper. in imag. time
 finite volume: periodic boundary conditions in space

Lattice action

variable substitution to parallel transporter

$$U_{\mu} = \exp(iaA_{\mu}) \in \mathrm{SU}(3)$$

symbolically

$$U_{\mu}(n) = \longrightarrow U_{\mu}^{\dagger}(n-\hat{\mu}) = \longleftarrow_{\mu n}$$

gauge transformation (Ω unitary)

$$egin{aligned} &\mathcal{A}_{\mu}(n)
ightarrow \Omega(n)\mathcal{A}_{\mu}(n)\Omega^{\dagger}(n) + i(\partial_{\mu}\Omega(n))\Omega^{\dagger}(n) \ &U_{\mu}(n)
ightarrow \Omega(n)U_{\mu}(n)\Omega^{\dagger}(n+\hat{\mu}) \end{aligned}$$

Lattice action

variable substitution to parallel transporter

$$U_{\mu} = \exp(iaA_{\mu}) \in \mathrm{SU}(3)$$

symbolically

$$U_{\mu}(n) = \longrightarrow U_{\mu}^{\dagger}(n-\hat{\mu}) = \longleftarrow_{\mu n}$$

smallest closed (=gauge invariant) curves

$$\operatorname{Tr} P_{\mu\nu}(n) = \nu \underbrace{ \left(\int_{n \to \mu}^{\mu} \right)}_{n \to \mu} \nu \qquad \operatorname{Tr} P_{\mu\nu}^{1 \times 2}(n) = \nu \underbrace{ \left(\int_{n \to \mu}^{\mu} \right)}_{n \to \mu} \nu$$

Lattice action

variable substitution to parallel transporter

$$U_{\mu} = \exp(iaA_{\mu}) \in \mathrm{SU}(3)$$

symbolically

$$U_{\mu}(n) = \longrightarrow U_{\mu}^{\dagger}(n-\hat{\mu}) = \longleftarrow_{\mu n}$$

smallest closed (=gauge invariant) curves

$$\operatorname{Tr} P_{\mu\nu}(n) = \nu \underbrace{\bigoplus_{n \ \mu}}_{n \ \mu} \nu \qquad \operatorname{Tr} P_{\mu\nu}^{1 \times 2}(n) = \nu \underbrace{\bigoplus_{n \ \mu}}_{n \ \mu} \nu$$

or winding loops (Polyakov loop)

$$\operatorname{Tr} L_{\mu}(n) = \xrightarrow[n \ \mu]{} \xrightarrow{\mu} \cdots \xrightarrow{\mu} \xrightarrow{\mu} \underset{n \ \mu}{} \xrightarrow{\mu}$$

Gluon action

expansion towards continuum limit

$$\operatorname{\mathsf{Re}}\operatorname{\mathsf{Tr}}(\mathbb{1}-P_{\mu\nu}(n))=\frac{a^4}{2}\operatorname{\mathsf{Tr}} G_{\mu\nu}(n)G_{\mu\nu}(n)+\mathcal{O}(a^6)$$

full action

$$S_G^{ ext{lat}} = rac{eta}{3} \sum_n \sum_{\mu <
u} \operatorname{\mathsf{Re}} \operatorname{\mathsf{Tr}}(\mathbbm{1} - P_{\mu
u}(n))$$

strong coupling parameter

$$\beta = \frac{6}{g^2}$$

path integral over links

$$\mathcal{Z} = \int \mathcal{D}U \exp\left[-\beta \cdot \frac{1}{3} \sum_{n,\mu < \nu} \operatorname{Re}\left(3 - \nu \bigcup_{n=\mu}^{\mu} \nu\right)\right]$$

Continuum limit

continuum RG equation perturbatively

$$ar{\mu}rac{\partial {f g}_{{\cal R}}(ar{\mu})}{\partialar{\mu}}=-b_1{f g}_{{\cal R}}^3(ar{\mu})+\dots$$

Iattice RG equation perturbatively

$$a^{-1}rac{\partial g(a^{-1})}{\partial (a^{-1})}=-b_1g^3(a^{-1})+\ldots$$

▶ asymptotic freedom: cont. limit at $g \rightarrow 0$, $\beta = 6/g^2 \rightarrow \infty$

continuum limit nonperturbatively

• spatial size:
$$L = N_s a(\beta)$$

• temporal size:
$$1/T = N_t a(\beta)$$

• spatial size: $L = N_s a(\beta)$

- temporal size: $1/T = N_t a(\beta)$
- fixed- β approach: change T by changing N_t
 - only discrete temperatures possible ×
 - \blacktriangleright all temperatures have same lattice spacing \checkmark
 - scale setting and renormalization only once \checkmark

high
$$T \xrightarrow{\quad t \to t \to t \to t} \text{low } T$$

• spatial size: $L = N_s a(\beta)$

• temporal size:
$$1/T = N_t a(\beta)$$

• fixed- β approach: change T by changing N_t

- only discrete temperatures possible ×
- \blacktriangleright all temperatures have same lattice spacing \checkmark
- \blacktriangleright scale setting and renormalization only once \checkmark

high
$$T \xrightarrow{I} N_t$$
 low T

- fixed- N_t approach: change T by changing β
 - continuous temperatures possible
 - different temperatures have different lattice spacing ×
 - \blacktriangleright scale setting and renormalization for each β imes

Confinement and deconfinement

Confinement

- ► free energy of thermal medium: F = -T log Z free energy in presence of static quark: F_q = -T log Z_q
- confinement: $F_q F = \infty$ deconfinement: $F_q - F < \infty$
- operator language

$$e^{-(F_q-F)/T} = rac{\mathcal{Z}_q}{\mathcal{Z}} = rac{\operatorname{tr} e^{-\hat{H}/T}\hat{P}_q}{\operatorname{tr} e^{-\hat{H}/T}}$$

with P_q projector to states including static quark \mathscr{P} Ukawa '93 with path integral

$$\mathcal{P}(\mathbf{x}) = \operatorname{tr} \mathcal{P} \exp\left(i \int_0^{1/T} \mathrm{d} x_4 A_4(x)\right)$$

Polyakov loop

on the lattice

$$P(\mathbf{n}) = \operatorname{tr} \prod_{n_4=0}^{N_t-1} U_t(n) = \xrightarrow[n \ t \ t \ t \ t \ t \ n+N_t\hat{t}]{t_1 + N_t\hat{t}}$$

average Polyakov loop P = ¹/_V ∑_n P(n)
 order parameter for confinement

$$\langle P \rangle = e^{-(F_q - F)/T} \begin{cases} = 0 & \text{confinement} \\ \neq 0 & \text{deconfinement} \end{cases}$$

$$\mathrm{e}^{-(F_{qar{q}}(r)-F)/T} = \langle P(0)P^{\dagger}(r)
angle \xrightarrow{r
ightarrow\infty} \langle P
angle \langle P^{\dagger}
angle + \mathcal{O}(\mathrm{e}^{-\sigma r/T})$$

SO

$${f F}_{qar q}(r
ightarrow\infty)-{f F}\propto egin{cases} \sigma r & {
m confinement} \ {
m const.} & {
m deconfinement} \end{cases}$$

Center symmetry

symmetry corresponding to confinement/deconfinement?

Center symmetry

symmetry corresponding to confinement/deconfinement?

transformation under which S is invariant but P is not

 $\Rightarrow {\rm center} \ {\rm transformation}$

elements of center of group

$$V_\zeta$$
 so that $[V_\zeta, U] = 0 \quad orall \ \in \mathrm{SU}(3)$

in our case it is

Center symmetry

center transformation

$$U_t(\mathbf{n},ar{n}_4) o V_\zeta \cdot U_t(\mathbf{n},ar{n}_4) \qquad V_\zeta \in \mathbb{Z}(3) \qquad orall \mathbf{n}$$

gauge action is invariant

$$[V_{\zeta}, U_{\mu}(n)] = 0 \quad \Rightarrow \quad S_{G} \to S_{G} \qquad t \cdot v_{\zeta}^{\dagger} \underbrace{\int_{n - \mu}^{\mu} t \cdot v_{\zeta}}_{n - \mu}$$

$$P(\mathbf{n}) \rightarrow \zeta \cdot P(\mathbf{n}) \xrightarrow{r} t \xrightarrow{V_{\zeta}} \cdots \xrightarrow{t} t \xrightarrow{t} t_{n+N_t\hat{t}}$$

confinement	$\langle P \rangle = 0$	Z(3) symmetry intact	
deconfinement	$\langle P angle eq 0$	Z(3) symmetry spontaneously broken	

Polyakov loop in Polyakov gauge

 $P(\mathbf{n}) = \xrightarrow[n \ t]{} \cdots \xrightarrow[t \ t]{} \xrightarrow{t}{} \xrightarrow{t}{} \xrightarrow{t}{} \xrightarrow{n \ N_t \hat{t}} \rightarrow \xrightarrow[n \ t]{} \cdots \xrightarrow[t \ t]{} \xrightarrow{1}{} \xrightarrow{II} \underbrace{II}_{t} \underbrace{U}_{n \ N_t \hat{t}}$

is a boundary condition

• if $P(\mathbf{n})$ is constant, it can be diagonalized

$$P = \operatorname{tr}\operatorname{diag}(e^{i\varphi_1}, e^{i\varphi_2}, e^{-i(\varphi_1 + \varphi_2)})$$

 ▶ perturbative treatment at high temperature: log Z(φ1, φ2) in the background of a constant Polyakov loop
 ⊘ Roberge, Weiss NPB '86

three degenerate minima at

$$\varphi_1 = \varphi_2 = 0$$
 $\varphi_1 = \varphi_2 = 2\pi/3$ $\varphi_1 = \varphi_2 = -2\pi/3$
 $P = 3$ $P = 3 e^{2\pi i/3}$ $P = 3 e^{-2\pi i/3}$

from perturbation theory we except three minima

$$P = 3$$
 $P = 3 e^{2\pi i/3}$ $P = 3 e^{-2\pi i/3}$

▶ scatter plot at low T and high $T \sim Danzer et al.$ JHEP '08

• remember Ising model recipe: $\lim_{V\to\infty} \langle |M| \rangle$ at h = 0

from perturbation theory we except three minima

$$P = 3$$
 $P = 3 e^{2\pi i/3}$ $P = 3 e^{-2\pi i/3}$

▶ scatter plot at low T and high $T \sim Danzer et al.$ JHEP '08

▶ remember Ising model recipe: $\lim_{V\to\infty} \langle |M| \rangle$ at h = 0▶ alternative 1: measure $\langle |P| \rangle$

from perturbation theory we except three minima

$$P = 3$$
 $P = 3 e^{2\pi i/3}$ $P = 3 e^{-2\pi i/3}$

▶ scatter plot at low T and high T ~ P Danzer et al. JHEP '08

• remember Ising model recipe: $\lim_{V \to \infty} \langle |M| \rangle$ at h = 0

- ► alternative 1: measure ⟨|P|⟩
- ▶ alternative 2: measure $\langle P_{\rm rot} \rangle$ with rotated Polyakov loop

$$-\pi/3 < {
m arg} \, P_{
m rot} < \pi/3$$

	Ising model	Yang-Mills theory
symmetry group	Z(2)	Z(3)
spontaneous breaking	$\langle M \rangle = \frac{\partial \log \mathcal{Z}}{\partial h}$	$\langle P angle$
explicit breaking	h	?
symmetry restoration	at high <i>T</i>	at low T

Deconfinement transition

Results: Polyakov loop

► $\langle |P| \rangle$ as function of T in the fixed N_t -approach ∂ Lo et al. PRD '13

▶ note: UV renormalization: F_q additive $\rightsquigarrow \langle P \rangle$ multiplicative

Results: susceptibility

susceptibility of order parameter

$$\chi_P = \langle P_{\rm rot}^2 \rangle - \langle P_{\rm rot} \rangle^2$$

how does peak height scale with volume?

Iwasaki et al. PRD '92

• $\chi_P(L, T_c(L)) \propto L^3 = V$ first-order phase transition

Results: susceptibility

susceptibility of order parameter

$$\chi_P = \langle P_{\rm rot}^2 \rangle - \langle P_{\rm rot} \rangle^2$$

how does peak height scale with volume?

Iwasaki et al. PRD '92

• $\chi_P(L, T_c(L)) \propto L^3 = V$ first-order phase transition

Center clusters

Center clusters

Iocal distribution of P(n) Stokes, Kamleh, Leinweber Ann. Phys. '14 https://www.youtube.com/watch?v=T4sRON6u0z0

• clusters percolate at T_c and they are fractals

Endrődi, Gattringer, Schadler PRD '14

56 / 70

Center clusters

$$\left\langle P(0)P^{\dagger}(r)
ight
angle \propto \exp(-\sigma r/T)$$

Equation of state

Equation of state, reminder

free energy (density)

$$F = -T \log \mathcal{Z}$$
 $f = \frac{F}{V}$

$$s = -\frac{1}{V} \frac{\partial F}{\partial T}$$

$$p = -\frac{\partial F}{\partial V} \xrightarrow{V \to \infty} -f$$

energy density

entropy density

$$\epsilon = -rac{1}{V}rac{\partial \log \mathcal{Z}}{\partial (1/T)} = f + Ts$$

interaction measure / trace anomaly

$$I={
m tr}\, T_{\mu
u}=\epsilon-3p$$

EoS - methods

very high T: perturbation theory, Hard Thermal Loop resummation

& Braaten, Pisarski PRL '90 🛛 Andersen, Strickland, Su JHEP '10

- ► low *T*: glueball resonance gas model
- intermediate T: lattice gauge theory
- how to determine log Z via expectation values?
 - derivative method
 - integral method
 - moving frame method

trace anomaly as a derivative
$$\frac{d \log Z}{d \log a} = a \frac{d \log Z}{d a} = \frac{1}{T} \frac{\partial \log Z}{\partial (1/T)} + 3L^3 \frac{\partial \log Z}{\partial (L^3)} = -\frac{V}{T} (\epsilon - 3p)$$
how does log Z depend on a?
$$Z = \int \mathcal{D}U \exp \left[-\beta \cdot \frac{1}{3} \sum_{n,\mu < \nu} \operatorname{Re} \left(3 - \nu \int_{n-\mu}^{\mu} \nu \right) \right]$$

• trace anomaly as a derivative
$$\frac{d \log Z}{d \log a} = a \frac{d \log Z}{da} = \frac{1}{T} \frac{\partial \log Z}{\partial (1/T)} + 3L^3 \frac{\partial \log Z}{\partial (L^3)} = -\frac{V}{T} (\epsilon - 3p)$$
• how does log Z depend on a?
$$Z = \int \mathcal{D}U \exp \left[-\beta \cdot \frac{1}{3} \sum_{n,\mu < \nu} \operatorname{Re} \left(3 - \nu \prod_{n=\mu}^{\mu} \nu \right) \right]$$
• implicitly via β

$$\frac{d \log Z}{d \log a} = \frac{\partial \log Z}{\partial \beta} \cdot \frac{\partial \beta}{\partial \log a} = \langle -S_G \rangle \cdot \frac{a(\beta)}{a'(\beta)}$$
for which we need to know $a(\beta)$ from scale setting
• so
$$T = a^{2(\beta)}$$

$$I = \epsilon - 3p = \frac{T}{V} \langle S_G \rangle \frac{a(\beta)}{a'(\beta)}$$

• anisotropic lattice $\xi = a/a_t$

$$\epsilon = -\frac{T}{V} \left. \frac{d \log \mathcal{Z}}{d \log a_t} \right|_a \qquad 3p = \frac{T}{V} \left. \frac{d \log \mathcal{Z}}{d \log a} \right|_{a_t}$$

these can be evaluated at $\xi = 1$ \mathscr{P} Karsch NPB '82 \mathscr{P} Engels et al. NPB '82

Anisotropy coefficients

anisotropic lattice action

$$S_{G} = \xi_{0} \cdot \underbrace{\frac{1}{3} \sum_{n,\mu \neq t} \operatorname{Re}\left(3 - t \bigoplus_{n-\mu}^{\mu} t\right)}_{n,\mu \neq t} + \frac{1}{\xi_{0}} \cdot \frac{1}{3} \sum_{\substack{n,\mu < \nu \\ \mu,\nu \neq t}} \operatorname{Re}\left(3 - t \bigoplus_{n-\mu}^{\mu} t\right)}_{n,\mu \neq t}$$

and we need one more scale setting relation $\xi(\beta, \xi_0)$ • energy density

$$\epsilon = -\xi^2 \frac{T}{V} \left[\langle S_G^s \rangle \frac{\partial(\beta\xi_0)}{\partial\xi} + \langle S_G^t \rangle \frac{\partial(\beta/\xi_0)}{\partial\xi} \right]$$

anisotropy coefficients difficult to measure precisely

Results: derivative method

results for energy density & Engels et al. NPB '82

- remember additive divergences in log $\mathcal{Z} \propto a^{-4}$
- renormalized energy density

$$\epsilon^{\mathrm{r}} = \epsilon - \epsilon (T pprox 0)$$

involving cancellation of $\mathcal{O}(a^{-4})$ divergences

$$\left\langle S_{G}^{t,s} \right\rangle_{N_{s}^{3}N_{t}} - \left\langle S_{G}^{t,s} \right\rangle_{N_{s}^{4}}$$

Integral method

Integral method

▶ integrate back the derivatives <a>P Boyd et al. NPB '96

$$\log \mathcal{Z}(eta_1) - \log \mathcal{Z}(eta_0) = \int_{eta_0}^{eta_1} \mathsf{d}eta \, rac{\partial \log \mathcal{Z}}{\partialeta}$$

• works in the fixed
$$N_t$$
-approach

differences of dimensionless pressures

$$p(T_1)a_1^4 - p(T_0)a_0^4 = -\frac{1}{N_s^3N_t}\int_{\beta_0}^{\beta_1} \mathrm{d}\beta \left\langle S_G \right\rangle$$

or

$$\frac{p(T_1)}{T_1^4} - \frac{p(T_0)}{T_0^4} = -\frac{N_t^3}{N_s^3} \int_{\beta_0}^{\beta_1} \mathrm{d}\beta \left\langle S_G \right\rangle$$

is this UV finite?

Renormalization

▶ $p(T_1, a) - p(T_0, a)$ UV finite but $p(T_1, a_1) - p(T_0, a_0)$ divergent

• need to do $T \approx 0$ subtraction

$$\frac{p^{\mathrm{r}}(T_1)}{T_1^4} - \frac{p^{\mathrm{r}}(T_0)}{T_0^4} = -\frac{N_t^3}{N_s^3} \int_{\beta_0}^{\beta_1} \mathrm{d}\beta \left[\langle S_G \rangle_{N_s^3 N_t} - \langle S_G \rangle_{N_s^4} \right]$$

with starting point β_0 where $p^{
m r}(T_0)/T_0^4 pprox 0$

renormalized interaction measure

$$\frac{J^{\mathrm{r}}}{T^4} = \frac{N_t^3}{N_s^3} \frac{a(\beta)}{a'(\beta)} \left[\langle S_G \rangle_{N_s^3 N_t} - \langle S_G \rangle_{N_s^4} \right]$$

Results: integral method

need interpolation (+ a(β)) for *I*, then numerical integral for p
 Poyd et al. NPB '96

Results: integral method

- need interpolation $(+ a(\beta))$ for *I*, then numerical integral for *p* \mathscr{P} Boyd et al. NPB '96
- update on finer lattices & Borsányi, Endrődi et al. JHEP '12

Moving frame method

Thermal medium at relativistic speeds

so far we have been in the rest frame

$$\left< \hat{\Theta}_{\mu
u} \right> = egin{pmatrix} \epsilon & 0 & 0 & 0 \ 0 & p & 0 & 0 \ 0 & 0 & p & 0 \ 0 & 0 & 0 & p \end{pmatrix}$$

• now consider frame moving with $\mathbf{v} = (v, 0, 0)$

Thermal medium at relativistic speeds

so far we have been in the rest frame

$$\left< \hat{\Theta}_{\mu\nu} \right> = \begin{pmatrix} \epsilon & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix}$$

• now consider frame moving with $\mathbf{v} = (v, 0, 0)$

FOR HIS GEDANKEDANK.

2 xkcd.com/1233

Thermal medium at relativistic speeds

so far we have been in the rest frame

$$\left< \hat{\Theta}_{\mu\nu} \right> = \begin{pmatrix} \epsilon & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix}$$

• now consider frame moving with $\mathbf{v} = (v, 0, 0)$

$$\left\langle \hat{\Theta}_{\mu\nu}^{\prime} \right\rangle = \Lambda_{\mu}^{\rho} \Lambda_{\nu}^{\sigma} \left\langle \hat{\Theta}_{\rho\sigma} \right\rangle = \begin{pmatrix} \frac{\epsilon + v^2 \rho}{1 - v^2} & v \frac{\epsilon + \rho}{1 - v^2} & 0 & 0\\ v \frac{\epsilon + \rho}{1 - v^2} & \frac{\rho + v^2 \epsilon}{1 - v^2} & 0 & 0\\ 0 & 0 & \rho & 0\\ 0 & 0 & 0 & \rho \end{pmatrix}$$

recall \epsilon = f + Ts = -p + Ts therefore

$$\left\langle \hat{\Theta}_{01} \right\rangle_{v} = rac{v}{1-v^{2}}(\epsilon+p) = rac{v}{1-v^{2}}Ts$$

Shifted boundary conditions

partition function becomes

$$\mathcal{Z} = \mathsf{tr}\, \exp\left[-(\hat{\Theta}_{00} - v\hat{\Theta}_{01})/T_0
ight]$$

in Euclidean space $v = i\xi$

$$\mathcal{Z} = \mathsf{tr}\, \exp\left[-(\hat{\Theta}_{00} - i\xi\hat{\Theta}_{01})/T_0
ight]$$

states with x₁-momentum Θ₀₁ weighted by e^{iξΘ₀₁/T₀} ⇒ shifted boundary conditions

• but watch out: $1/T = 1/T_0 \cdot \sqrt{1+\xi^2}$

Results: moving frame method

entropy in moving frame

$$\mathit{Ts} = rac{1+\xi^2}{\xi} \left\langle \hat{\Theta}_{01}
ight
angle_{\xi} \cdot \mathit{Z_T}(a)$$

▶ simulations with $\xi = \{1, \sqrt{2}, \sqrt{3}\} \cdot a ~ \mathscr{P}$ Giusti, Pepe JHEP '16

• multiplicative renormalization Z_T for operator $\Theta_{\mu\nu}$

recover full EoS from s

Equation of state: summary

- \blacktriangleright works with a single ensemble \checkmark
- needs anisotropy coefficients ×
- moving frame method
 - \blacktriangleright works with a single ensemble \checkmark
 - needs renormalization constants ×
- integral method: most powerful up to date
 - only simple expectation values required
 - needs many ensembles ×
- Jarzynski's method Caselle et al. PRD '18 and other approaches