
Outline:

Phenomenological prelude

QCD e↵ective kinetic theory

Thermalization in simple examples, Bottom-up thermalization
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Why kinetic theory:

Start with system in global thermal equilibrium: T eq
µ⌫

Give a kick with coupling to with gravity: gµ⌫ = ⌘µ⌫ + hµ⌫(t)

The ripple from the kick described by the retarded Tµ⌫ correlator:

�Tµ⌫(x, t) =

Z
d3x0dtGµ⌫,↵�

R
(x, t;x0, t0)h↵�(x

0, t0)
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Why kinetic theory:

GR(! = 0, k = 0) ⇠

Z

P

f [1 + f ]⇢(P )⇢(P )

Free spectral function: ⇢free ⇠ 2⇡�(P 2)

Divergent: GR ⇠
R
p
f(1 + f)�(P 2)�(P 2)

P

ω

Tμν Tμν

Jeon PRD47 (1993)
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Why kinetic theory:

GR(! = 0, k = 0) ⇠

Z

P

f [1 + f ]⇢(P )⇢(P )

Resummed spectral function: ⇢resum ⇠
p
0
�

(P 2)2+�2(p0)2
, � ⇠

1

↵2T

Finite but large: G ⇠
R
P

f(1 + f)
h

p
0
�

(P 2)2+�2(p0)2

i
2

⇠
T

5

�

P

ω

Tμν Tμν

Jeon PRD47 (1993)
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More resummations needed!

ω

1/α2ΤLifetime: 

Frequency of scattering: 1/α2Τ

Both lines long lived (↵2T )�1, of the order of scattering time
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Complicated resummation can be dressed in form of an e↵ective kinetic
theory:

Diagrammatic resummation (in ��4 )
Jeon PRD52 (1995)

Interpretation of the diagrammatic resummation in terms of
e↵ective kinetic theory

Jeon, Ya↵e PRD53 (1996)

Generalization to gauge theories through power counting, pQCD
e↵ective kinetic theory

Arnold et al. JHEP 0301 (2003) 030
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Scales in weakly coupled QCD
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QCD E↵ective kinetic theory Arnold et al. JHEP 0301 (2003)

QFT ! Transport theory ! fluid dynamics ! HIC

lmean free path

l
de Broglie

Far-from-equilibrium physics is non-perturbative: resummation needed
Jeon, Ya↵e PRD53 (1996)

Resummation leads to e↵ective kinetic theory of (quasi-)particles

(@t + v · @x)f(t,x,p) = C[f ]

Philosophy: Find all necessary processes needed for leading-order QCD
description

Kinetic evolution classical, quantum hidden in collision kernel C[f ]
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Scales in thermal QCD

Free theory in thermal equilibrium T :

ln(p)

ln(f)
Thermal

f ~ 1

(eβp-1)-1

T

Fields f~T/p

Particles f~e-p/T

For bosons the distribution
function nB(p) =

1

e�p�1

for p � T , classical particles

nB(p) ⇡ e��p

for p ⌧ T , classical fields

nB(p) ⇠ T/p
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Scales in thermal QCD

Free theory in thermal equilibrium T :

ln(p)

ln(f)
Thermal

f ~ 1

(eβp-1)-1

T

Fields f~T/p

Particles f~e-p/T

Most quantities dominated by
particles at the scale T :

Energy density

✏ ⇠

Z
d3p

(2⇡)3
fp ⇠ T 4

Number density

n ⇠

Z
d3p

(2⇡)3
f ⇠ T 3

Interparticle distance

�x ⇠ n1/3
⇠ T

mean free path �mfp ⇠
1

↵2T
Wave packets overlap, but collisions

can be treated separately
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Interaction scales:
Interactions rise from Dµ = @µ + igAµ

In medium, there are always statistical field fluctuations:

hA(x, t)A(x, t)i| {z }R
p
a†a

⇠

Z

p

1

p
(
1

2
+ f(p)) ⇠ T 2

For typical modes: p ⇠ T , p + gA ⇠ T + gT

Interactions with medium lead to small modifications of dispersion

+ +

1/p2 (gT)21/p2 1/p2

modes with p ⇠ T , get a small thermal mass p2 + m2 from
interaction with the medium m2

⇠ g2
R
p

f(p)

p
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Interaction scales:

For soft modes: p ⇠ gT , p + gA ⇠ gT + gT

Non-perturbative interaction with typical modes at scale T

Interactions among soft modes still perturbative

hA(x, t)A(x, t)igT ⇠

Z
gT

p

fp
p

⇠ g3T 3
T

g2T 2
⇠ gT 2 (2)

so that p|{z}
gT

+ig Asoft| {z }
g3/2T

but the expansion parameters if now only g
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Soft modes are classical fields f � 1, can use classical methods.

The wavelength of the typical modes is 1

p
�

1

T
, the hard modes

appear as classical particles to soft modes

At time scales of interest 1/gT , the hard particles don’t interact
�mfp ⇠

1
g4T

.

In linear level, QCD is like QED and the interaction between the
soft and the hard modes is given by the linear response

Jµ

a
(!, k) = Gµ⌫

J,ab
(!, k)Ab

⌫
(!, k)

+ a delta function in color
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Interactions scales

For ultrasoft modes: p ⇠ g2T

Interaction even among ultrasoft modes is nonperturbative

hA(x, t)A(x, t)ig2T ⇠

Z
g
2
T

p

fp
p

⇠ g6T 3
T

g4T 2
⇠ g2T 2

so that p|{z}
g2T

+ig Asoft| {z }
g2T

No expansion parameter, but classical fields
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Scales in thermal equilibrium at weak coupling

p ~ T

dx ~ 1/gT

Degrees of freedom at weak coupling g ⌧ 1:

Hard particle modes p ⇠ T : kinetic theory

Soft (bosonic) field modes p ⇠ m ⇠ gT : classical field theory

nB(p) =
1

e!/T � 1
⇠

T

!
⇠

1

g
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Scales in thermal equilibrium at weak coupling

p ~ T

dx ~ 1/gT

Soft fields evolve according to classical nonabelian field equations

DµFµ⌫(t,x) = Jµ(t,x)

Hard modes see soft fields as classical fields: Hard loop theory

Jµ,a

ind.
(t) = �ab

Z
dt0GHL

µ⌫ (t, t0) �A⌫

b
(t0), GHL

µ⌫ ⇠ g2T 2

Blaizot, Iancu, Phys.Rept. 359 (2002) 355-528
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Kinetic theory of hard modes Arnold, Moore, Ya↵e JHEP 0301 (2003) 030

dx ~ 1/gT

pQCD kinetic theory for the hard modes
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Kinetic theory of hard modes:

48



Contribution from di↵erent scales:

In principle, all the aspects are present in any perturbative
calculation

In practice, to low orders in g for some quantities, one may get
away just from looking the hard (or soft, ultrasoft) sectors
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Kinetic theory of hard modes Arnold, Moore, Ya↵e JHEP 0301 (2003) 030

dx ~ 1/gT

pQCD kinetic theory for the hard modes
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Naive guess:

Naive guess: sum over elementary (2$ 2) tree-level processes

C2$2

a [f ](p) =
1

2

1

2p

1

⌫a

Z

kp0k0
|Mab

cd
|
2(2⇡)4�(4)(P + K � P 0

� K 0)

⇥

⇢
fpfk(1 ± f 0

p)(1 ± fk0) � f 0
pf

0
k
(1 ± fp)(1 ± fk)

�

p p-q

k+qk

q
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Naive guess:

Naive guess: sum over elementary (2$ 2) tree-level processes

C2$2

a [f ](p) =
1

2

1

2p

1

⌫a

Z

kp0k0
|Mab

cd
|
2(2⇡)4�(4)(P + K � P 0

� K 0)

⇥

⇢
fpfk(1 ± f 0

p)(1 ± fk0) � f 0
pf

0
k
(1 ± fp)(1 ± fk)

�

Sum over all processes and kinematics

Matrix elements (in non-relativistic normalization) for the
di↵erent processes

Mgg

gg =
↵2

�
3 �

su

t2
�

st

u2 �
tu

s2

�

(2p0)(2k0)(2p00)(2k00)

Energy and momentum conserving �-function

Gain and loss terms
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Naive guess:

Naive guess: sum over elementary (2$ 2) tree-level processes

C2$2

a [f ](p) =
1

2

1

2p

1

⌫a

Z

kp0k0
|Mab

cd
|
2(2⇡)4�(4)(P + K � P 0

� K 0)

⇥

⇢
fpfk(1 ± f 0

p)(1 ± fk0) � f 0
pf

0
k
(1 ± fp)(1 ± fk)

�

This is fine :

if all the lines are una↵ected by the medium
Screening of the internal and external lines

No other processes induced my the medium
splitting

All processes happen fast enough that they can be separated
LPM-suppression
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Momentum di↵usion coe�cient q̂

p

q
T,1

q
T,2

q
T,3

t
el

Random walk in mom. space

Q? = q1

? + q2

? + . . .

Incoherent angles add in quadrature:

|Q?| /

p

number of collisions /
p

t

Momentum di↵usion coe�cient

|Q?|
2

t
⌘ q̂? ⇠

�q2?
tel(q?)
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Naive computation of q̂

p p-q

k+qk

q

d�el

d2q?
⇠

Z
dqz

Z
d3kfk(1 ± fk+q)

d�

d3q
(3)

q̂ ⇠

Z
d2q?

d�el

d2q?
q2? (4)

�el ⌘ 1
tel

For soft scattering q ⌧ k, p

q̂ ⇠

Z
d3kfk(1 + fk)

| {z }
⇠T 3

⇥

Z
d2q?

d�

d2q?
q2? (5)

The soft scattering is dominated by t-channel coulomb scattering:

d�

d2q?
⇠

↵2

(q2?)
2

The momentum broadening coe�cient has a IR log divergence
R

dq?
q?

!
UV taken care by relaxing the soft assumption
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Soft log-digergence

q̂ ⇠ ↵2T 3

Z
d2q?

1

(q2?)
2
q2?

q? ⇠ T

tel ⇠
1

g4T

q̂ ⇠ g4T 3

q? ⇠ gT

tel ⇠
1

g2T

q̂ ⇠ g4T 3

IR divergence is cured by the physics of screening
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E↵ective matrix element

Interaction of the soft mode non-perturbative
with hard modes needs to be resummed

gµ⌫
Q2

)
⇥
Q2 + GJ(!, k)

⇤�1

µ⌫

Infrared divergence then cancelled by the
screening scale

Z

m

d2q?
(q2? + m2)2

q2? ⇠ log

✓
T

m

◆
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All is fine if:

if all the lines are una↵ected by the medium
Screening of the internal and external lines

No other precesses induced my the medium
splitting

All processes happen fast enough that they can be separated
LPM-suppression
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Induced splitting/merging

Screening makes the total scattering rate finite but it is still very fast:
technically speaking, has a log-divergence...

�el ⇠
1

tel
⇠ ↵2T 3

Z
d2q?

(q2? + m2)2
⇠ ↵2

T 3

m2
⇠ ↵T

Large angle scattering rate ↵
2
T⇤

q
T
~m

p k
p’

Massless onshell particles don’t have phase
space to decay

But even a very soft scattering enough to
induce a splitting

Induced splitting/merging rate as big as large angle scattering rate:
The rate at which a given particle emits at given k

d�BH

split

d log k
⇠ ↵�el ⇠ ↵2T

BH = Bethe-Heitler
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Induced splitting/merging

For a leading order description, need to include an e↵ective
”1 $ 2” collision kernel

C“1 $ 2”[f ] ⇠

Z
dk

d�BH

split

dk

n
f(p)[1+f(p�k)][1+f(k)]

� f(p�k)f(k)[1+f(p)]
o

,

The soft scattering that induced the splitting is hidden in �BH

split
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Induced splitting/merging

The e↵ective splitting element: � = p2
d�

BH

split

dp0

�BH(p; p0, p � p0) = p2 Q(m2
1/m2

D
)

4(2⇡)4
Ncg

2T⇤
p2

p0

Q(m2
1/m2

D
) ⌘ 8

Z

p?,q?


1

q2
?

�
1

q2
? + m2

D

�✓
p?

m2
1 + p2

?
�

p? � q?
m2

1 + (p? � q?)2

◆2

,

2

+ +
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All is fine if:

if all the lines are una↵ected by the medium
Screening of the internal and external lines

No other precesses induced my the medium
splitting

All processes happen fast enough that they can be separated
LPM-suppression
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