Outline:

@ Phenomenological prelude
e QCD effective kinetic theory

@ Thermalization in simple examples, Bottom-up thermalization
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Why kinetic theory:

e Start with system in global thermal equilibrium: T},,}

e Give a kick with coupling to with gravity: g = n** + h*¥(t)

@ The ripple from the kick described by the retarded TH" correlator:

OTH (x,t) = /dsx/dtG%V’aB(X,t;X/,t/)hag(xl,t/)
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Why kinetic theory:

Grlw =0,k = 0) ~ /P F11+ flp(P)o(P)

o Free spectral function: pgec ~ 2m6(P?)

e Divergent: G ~ fpf(l + £)8(P%)5(P?)

Jeon PRDA47 (1993)
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Why kinetic theory:
Galw =0k =0)~ [ fl1+ flo(P)o(P)

p°’

@ Resummed spectral function: presum ~ (PIT2 02 [~ L

T

(P2)2—|—F2(p0)2

o 0 2 5
oletebutlarge:wapf(l—i-f)[ — } ~ T

Jeon PRDA47 (1993)
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More resummations needed!

Lifetime: 1/02T

Frequency of scattering: 1/0>T

Both lines long lived (o?T)™!, of the order of scattering time
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Complicated resummation can be dressed in form of an effective kinetic
theory:

o Diagrammatic resummation (in A¢* )
Jeon PRD52 (1995)

e Interpretation of the diagrammatic resummation in terms of

effective kinetic theory
Jeon, Yaffe PRD53 (1996)

e Generalization to gauge theories through power counting, pQCD

effective kinetic theory
Arnold et al. JHEP 0301 (2003) 030
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Scales in weakly coupled QCD
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QCD Effective kinetic thGOI'y Arnold et al. JHEP 0301 (2003)

QFT — Transport theory — fluid dynamics — HIC

N
Pt
y\

A

de Broglie

Far-from-equilibrium physics is non-perturbative: resummation needed

Jeon, Yaffe PRD53 (1996)

Resummation leads to effective kinetic theory of (quasi-)particles
(0 + v - 0x) f(t,x,p) = C[f]

Philosophy: Find all necessary processes needed for leading-order QCD
description

Kinetic evolution classical, quantum hidden in collision kernel C|[f]
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Scales in thermal QCD

Free theory in thermal equilibrium 7°:

\

ln . . .

) Filds f-T/o Thermal o fbr b.osons the ilStI‘llbU.thIl
(1Y’ unction np(p) = —5—
e for p > T, classical particles
f~1
———————— T ~ ¢—Bp
Particles f~e?™ "B (p) c

o for p < T, classical fields

T inp) ng(p) ~T/p
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Scales in thermal QCD

Free theory in thermal equilibrium 7°:

e Most quantities dominated by
particles at the scale 1"

o Energy density

In dp 4
4 Fields f~T/p Thermal €~ / (27)3 fp~T

(@-1)
{ e Number density

i
3
\ Particles f~e?™ n ~ / (;iﬂ_]; 3 f ~ T3

N

T Z;l(p) e Interparticle distance

Ax ~nt/3 ~T

1
e mean free path Ay ~ —o
« . .
Wave packets overlap, but collisions
can be treated separately
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Interaction scales:

Interactions rise from D,, = 0,, + igA,

In medium, there are always statistical field fluctuations:

(= + f(p) ~T7

DO | —

(A(x, DA(x, 1)) ~ /

-~

fp ata

N =

For typical modes: p~T, p+gA~T+ gT

e Interactions with medium lead to small modifications of dispersion

o] oo e e

1p*  (gD7 1p

e modes with p ~ T, get a small thermal mass p?> + m? from
interaction with the medium m? ~ ¢ f f®)
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Interaction scales:

For soft modes: p ~ g1, p+ gA ~ gT + gT
e Non-perturbative interaction with typical modes at scale T’

e Interactions among soft modes still perturbative

gl fp 33 T 2
(A(x, 1) A(x, 1)) gT ~ A T 212"~ gT

so that p +ig Asopt
\/ W—/
gl g3/2T

e but the expansion parameters if now only g

43



e Soft modes are classical fields f > 1, can use classical methods.

@ The wavelength of the typical modes is % > %, the hard modes
appear as classical particles to soft modes

o At time scales of interest 1/¢T, the hard particles don’t interact

1
Amfp Y g4T .

e In linear level, QCD is like QED and the interaction between the
soft and the hard modes is given by the linear response

JH

a

(w, k) = G4 (w0, k)AL (w0, )

+ a delta function in color
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Interactions scales

For ultrasoft modes: p ~ ¢*>T

Interaction even among ultrasoft modes is nonperturbative

g°T
AG DA D)y ~ [ L2 o
p

so that p +ig Asopt
~~ S~
9°T 92T

No expansion parameter, but classical fields
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Scales in thermal equilibrium at weak coupling

W\
) dx ~ 1/gT .

X

Degrees of freedom at weak coupling g < 1:
e Hard particle modes p ~ T': kinetic theory
e Soft (bosonic) field modes p ~ m ~ ¢T'": classical field theory

1 T 1

Sl s g iag
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Scales in thermal equilibrium at weak coupling
p~T
e LN

m
W\
: dx ~ 1/gT :

e Soft fields evolve according to classical nonabelian field equations

D™ (t,x) = JH(t, x)

e Hard modes see soft fields as classical fields: Hard loop theory

nd.

JH (1) = 6 / dt'GILF () SAY (), GILF ~ g*T?

Blaizot, Iancu, Phys.Rept. 359 (2002) 355-528
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Kiﬂ@tiC thGOI'y Of hard modes Arnold, Moore, Yaffe JHEP 0301 (2003) 030

Al

A A

M
. dx ~ 1/gT .

a_ — Goolf] — Gioolf]
/

10

@ pQCD kinetic theory for the hard modes
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Kinetic theory of hard modes:
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Contribution from different scales:

e In principle, all the aspects are present in any perturbative
calculation

e In practice, to low orders in g for some quantities, one may get
away just from looking the hard (or soft, ultrasoft) sectors
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Kiﬂ@tiC thGOI'y Of hard modes Arnold, Moore, Yaffe JHEP 0301 (2003) 030

Al

A A

M
. dx ~ 1/gT .

a_ — Goolf] — Gioolf]
/
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@ pQCD kinetic theory for the hard modes
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Naive guess:

Naive guess: sum over elementary (2<> 2) tree-level processes

111
CZ7?[f1(p) = 290 0 MG 2m)*é WP+ K- P - K')
P Vqa kp’k’

9 {fpfk(l £ fu) — FLALLE F)(1L m}

p p-q
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Naive guess:

Naive guess: sum over elementary (2<+ 2) tree-level processes

111
Ca7%f1(p) = 2% e Jon M3 2m)* 6 (P + K — P/ — K')
a p/ /

X {fpfk:(l + )£ fwr) = ffr(L£ fp)(1 £ fk:)}

Sum over all processes and kinematics

Matrix elements (in non-relativistic normalization) for the
different processes

gg_az(g_ﬂ_s_g_t_g)

99 (2p0)(2k0)(2p0) (2K")

Energy and momentum conserving d-function

Gain and loss terms
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Naive guess:

Naive guess: sum over elementary (2<+ 2) tree-level processes

11 1
) = 5o [ IMBPER)SO(P+ K~ P - K
P Vg kp’k’

x{@ﬁuiﬁmiwm—aﬁuimuinﬁ

This is fine :

e if all the lines are unaffected by the medium

Screening of the internal and external lines

@ No other processes induced my the medium
splitting

@ All processes happen fast enough that they can be separated

LPM-suppression
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Momentum diffusion coefficient ¢

t _

e Random walk in mom. space

QL =q] +¢* +...

@ Incoherent angles add in quadrature:

Q1] x vnumber of collisions o Vt

@ Momentum diffusion coefficient

QL® _ il ~ Aq]
t tel(QJ_)
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Naive computation of ¢

p p-q dl'; / / 3 do
~ [ dq, | d’°kfi(1=+ — 3
\/\/§/q\f\/ d2QJ_ q fk( fk—I_q)qu ( )
A drel
T aneNy G~ / dq1 51 (4)
k k+q L
e = é
For soft scattering q < k,p
~ 3 o do o
CIN/d kfk(l-l-fk)x/d A (5)

The soft scattering is dominated by t-channel coulomb scattering:

do a?

Y

d?q1 (¢3)?

The momentum broadening coefficient has a IR log divergence [ dqu

UV taken care by relaxing the soft assgr%ption
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Soft log-digergence

. 1
q ~ &2T3/d2QJ_2—2q3_

(QJ_)
1
1 b~
tel ~ g4—T el 2T
g~ g*T3 G~ g'T?

e IR divergence is cured by the physics of screening
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Effective matrix element

i

e Interaction of the soft mode non-perturbative
with hard modes needs to be resummed

—1

/LN [Q2 + G y(w, k)]W

QQ

e Infrared divergence then cancelled by the
screening scale

~ 10 _—
m (@ +m22 T
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All is fine if;

e if all the lines are unaffected by the medium

Screening of the internal and external lines

@ No other precesses induced my the medium
splitting

@ All processes happen fast enough that they can be separated

LPM-suppression
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Induced splitting/merging

Screening makes the total scattering rate finite but it is still very fast:

technically speaking, has a log-divergence...

1 d? T3
FelN—NOé2T3/ 5 QL22NOA2—2NOAT
tel (QJ__‘_m ) m

Large angle scattering rate a’ Ty

K @ Massless onshell particles don’t have phase

p
——p’ space to decay
q.—~m
! e But even a very soft scattering enough to

induce a splitting

Induced splitting/merging rate as big as large angle scattering rate:

The rate at which a given particle emits at given k

BH
drsplit

~ ol ~ o?T
dloghk ~ e ¢

BH = Bethe-Heitler
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Induced splitting/merging

e For a leading order description, need to include an effective
71 <+ 27 collision kernel

. , ar'o.
o[~ [ ak= 2 )1 o)1 )
~ Fo=R)f(R)[1+f ()]},

BH

e The soft scattering that induced the splitting is hidden in L ootit
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Induced splitting/merging

BH
I\split

The effective splitting element: v = p2d—p,

2 2 2
/ / 2 Q(moo/mD) 2 p

: _ ) = N.g>T, =

veu(p;p'sp—p')=Dp 12 g o

2
1 1 P PL —qL
Q(m?2_ /m? 58/ { — ]( — )
(Moo /mb) pq, LAE @3 +mE ] \mZ +p2 mZ + (pL—qu)?
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All is fine if;

e if all the lines are unaffected by the medium

Screening of the internal and external lines

@ No other precesses induced my the medium
splitting

@ All processes happen fast enough that they can be separated

LPM-suppression
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