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The ra’’ basis

A more transparent physical connection
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- Two causal and a statistical propagator (D.. or symmetric). A vanishing entry

. Introduce a new basis ¢, = , @, = ¢y — @,. The propagator is

1
D. = 5(D> + D<) is the anticommutator (for bosons).

1 1
D, (w) = (5 + nB(w)) ppl@). S, (w) = (5 - nF(w)> Pr(®)

. Recall that the bare spf is pgz(w) = 21e(w)d(w?* — E;g)



The ra’’ basis

A more transparent physical connection

P+ ¢
. Introduce a new basis ¢, = %, ¢, = ¢ — ¢,. The vertices become
1 1 1 11 1
S1(01) = 1(62) = S1 (6 + 504 ) = S1 (6.~ 504 S1(61) — S1(92) o 7 (61— 63) = o3 z:0n + 36204

Standard vacuum vertex with one a, extra “triple a” vertex with 1/4 factor

« Graphical notation for the flow of causality, arrows point towards r fields




The ra’”’ basis
Causality
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to
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Closed loops with a flow of causality vanish: require t; > #yand 7, > t,

In momentum space: J Dyp(P)Dp(P+ Q)Dp(P+ Q0+ K) =0
P

Diagrams where a vertex is at latest time vanish

Retarded self-energy very simple: correlation X causation




The ra’’ basis

Resummation

ﬂ%}. +\\)é((i§>\\j

» The lack of an aa propagator (at all orders!) makes the Schwinger-Dyson
eq. for the retarded propagator diagonal

DR(P)= —Fp— + )O) + >©>©> £

 Try that in the 12 basis...

» For the rr a bit more complicated. And there is KMS for self-energies too

1°*(P) = (% :”(po)> (I (P) — 14(P))




Cutting rules

From the Wightman self-energy to retarded amplitudes

|
OV
X Mar. 'r 7) Ql 77777 Qn)MCLT---T(_P; —Q1,. ., _Qn) \_// <« : \/
: : |

» Sum over all possible cuts. Each cut line is replaced by a Wightman
propagator, amplitudes on both sides of the cut fully retarded (one a, all
other r): finite-T generalisation of matrix elements squared

- Have to try it to actually see it work



The ra basis with cutting rules

We are ready to go (and see the failure of the loop expansion)

dNW dF7 k|| z —e? / A k(t—2)
= — d* Xe""\" T JH(0) S (X
AXBE Bk (20)32%k ‘ (JH0)Ju(X))

. This is a < Wightman function, IT<(K). We can use the cutting rule!

(P

(Do D 30 5O
" | o ()5 (P?) < 0 K= O




The ra basis with cutting rules

We are ready to go (and see the failure of the loop expansion)

dry _ ()
A3k  (2m)32k

» At two-loops M@w t ”‘@M f “"@W
e O ) e | K| e OO

]

< (K) = / B XX (J8(0) T, (X))

we are actually still tree-level, since the virtual corrections necessarily
vanish.



The ra basis with cutting rules

We are ready to go (and see the failure of the loop expansion)

dr,  II<(K)
3k (2m)32k

< (K) = / XX (JR(0) T, (X))

% Jf/
- Doing all diagrams and cuts one finds \ .
H; naive (IC) =11~ (K)Compton + 1015 (K)anniha ég(: K(
! dB3p dB3p’ Bk , , s —t] ,
H< (/C)Compton 262 Z Q? / (27_‘_)9 8]9]?/ k/ (27’(’)45(4) (7) -+ P — /C — /C ) 1661}7’611792 _ / ! 3 _ 1 o nF(k ))

e ne )1 + (k)

d>p d>p’ 3K K
H ann 2 45(4) ! el 8w 2 |7
i =€ ZQ / 298 pp 2 O (P4 P =K = K) 8drCrg® | 4+

« This naive evaluation is equivalent to kinetic theory (gain term only)

- Exercise: work out one of these crossings directly from the cutting rules
in Feynman gauge (see attachment). Bonus points if you try in 12 basis...



The ra basis with cutting rules

We are ready to go (and see the failure of the loop expansion)

dr,  II<(K)
3k (2m)32k

< (K) = / XX (JR(0) T, (X))

- Doing all diagrams and cuts one finds

\
IT% 1 aive (K) =117 (K) compton + ™ (K)annin, (2_(666\\&(
nf _ -

< _ 2 2 d3pd3p/d3k/ 4 ¢(4) ' KN 16d=C 2 | "N(] — L/
IS (K) compton =€ ZQi (277)98pp’k’(27T) O’ (P+P —K—-K')16drCFrg | nr(p)ns(p’)(1 — nr(k’))

+ Ll e o)ne () (1 + (k)

d>p d>p’ 3K K
H ann 2 45(4) ! el 8w 217
ih =€ ZQ / 27T98pp’k’( ) (P+P —K—-K') 8dpCrg "

- The integrals can be worked out with the methods of hep-ph/0111107

- At small t and u we have a log IR divergence: breakdown of the loop
expansion


https://arxiv.org/abs/hep-ph/0111107

The ra basis with cutting rules

We are ready to go (and see the failure of the loop expansion)

dr,  II<(K)
3k (2m)32k

< (K) = / XX (JR(0) T, (X))




Breakdown of the loop expansion
1) Soft modes

N
(w, q)

P’ ‘
. Whent < s ~ T” there is a logarithmic IR divergence. <6<€66\
Exercise: show that it has this form (I might have screwed the prefactors)

e” Y. 0dpCrg’ng(k) ! > '
SO | =1 , P / /
[15(K )Coﬂtlpton = —[ dq J da)J dp EHB(P )(1 — ne(p))
soft — 0

3
2T .

. If there isan IR scale ( < 1) it will contribute to LO to this logarithmic
phase space dq/q

. This scale is the scale g1 where the first collective effects appear



Breakdown of the loop expansion
1) Soft modes

. In vacuum (at m = 0) Z(0) x g°0

. Here we have an extra scale, T. Hence we can have 2,(Q K< T') ~ ngz/Q
(this will be shown explicitly soon)

« We have O ~ 2,(Q < T') for Q ~ gT: this is where the loop expansion
breaks down. For gauge bosons [1,(Q < T) ~ ngz, same story

- How to deal with this breakdown? What are the physical consequences?
And how is it related to the emergence of collectivity?

- To answer these question, introduce



Hard Thermal Loops

Emergence of collectivity

- Hard Thermal Loop (HTL) effective theory: a consistent, modern and
gauge-invariant handling of these effects

 Originally introduced by Braaten and Pisarski [1, 2], Frenkel and Taylor [3,
4] and Taylor and Wong [5]. Their connection to a kinetic picture for the
underlying hard modes has been illustrated in the review of Blaizot and
lancu [6]

[1,2] 10.1016/0550-3213(90)90508-B, 10.1103/PhysRevD.45.R1827
[3,4] 10.1016/0550-3213(90)90661-V, 10.1016/0550-3213(92)90480-Y

[5] 10.1016/0550-3213(90)90240-E
6] hep-ph/0101103



https://doi.org/10.1016/0550-3213(90)90508-B
https://doi.org/10.1103/PhysRevD.45.R1827
https://doi.org/10.1016/0550-3213(90)90661-V
https://doi.org/10.1016/0550-3213(92)90480-Y
https://doi.org/10.1016/0550-3213(90)90240-E
http://arxiv.org/abs/hep-ph/0101103

Hard Thermal Loops

Diagrammatics and connection to kinetics

- Diagrammatically: HTLs=g2T2-proportionaI gauge-invariant amplitudes
with n > 2 external soft lines and thermal (“hard”) loop momentum

gT 8T

« Let us derive the quark two-point HTL. From the Feynman rules we have

Q ;&33@
ST i
d*P He P+ Q )

i7" [P+ QGIL(P)+ 5,1 (P + Q)G ()]

-iE(Q) = (~ig)*Cr [



Hard Thermal Loops

Diagrammatics and connection to kinetics

+ Let us derive the quark two-point HTL. From the Feynman rules we have

N

Pt P+ @
d "
—iX(Q) = (—ig)QCF/ E 7; HISTP+ Q)G (P) + S (P+ Q)GL, (P)]".

» This is the one-loop self-energy without approximations

» Use bare propagators (copypaste from my review, mostly+ metric) and
throw away vacuum part

ng(|p°|)2m(P?) ne([p° + ¢°)2m0((P + Q)%)
"LP+ Q)2 —ie(p® + ¢°) P2 + iep”

SQ) = g*Cr [ G (P+ ),




Hard Thermal Loops

Diagrammatics and connection to kinetics

« Shift the second term into the same form as the first

dP 476 (P?)
R 2
=Q) =40 | (oot Gy 0~ i ,
« We now expand for OQ < P. At first order (unlike for gluons) we find HTL

(P + @)ns(|p’]) + P ne(jp°])]

d*P d*P

»R(Q) = g2CF/ 2#5(7’2) (ne(|p°]) + nr(jp°])) YR(Q) = gQCF/ 2#5(772) (ns(|p°]) + nr(]p°])) - / .

(2m)* (2m)4

with v = P/p . Factorisation of angular part. FinaIIy

_m /
B 41 v - Q—ze

mgo = ngFT2/4 is the asymptotic mass of the quark. 2,(Q K T) ~ ngz/Q




Hard Thermal Loops

Diagrammatics and connection to kinetics

_m /
B 41 v - Q—ze

- This is the quark 2-point HTL. Slmple structure: m times the angular

average of the propagator for the induced fermion source, which is the
effective structure that emerges. Original loop not resolved

o ¢ s
™ R e

» In Fourier space 1/v- QO — 1/v - 0. Gauge invariance then suggests

1/v - D, which is confirmed by calculations of higher-point functions

0
5(“‘5\(\7 " 5%_) %-@A-) ~ g T*/(QQ)g ~ g ~ 4—&

HTL resummation needed not just in two-point function




Hard Thermal Loops

Effective Lagrangian and resummation

 All n-point HTLs with two external quark lines and n-2 gluon lines are
enerated b _
9 )4 5c, —z—zb/ dQ, ¢

47 v - D
No HTLs with more than 2 quark lines exist

. A similar derivation finds for the n > 2 all-gluon HTL

m? ds) VoV
5L, = —L2T v pro a7l FA,
) r/ it~ (v-D)?

m5 = g*T*(N./3 + N;/6) is the Debye mass @% C O AT

Fb""@vm ﬂy\g}m-&m W-(-(\"MO”‘B"‘ —Bmﬁhﬁ;ﬁ@mmgﬁl g or

r\az’r




Hard Thermal Loops

Effective Lagrangian and resummation

 For practical higher-loop (typically beyond LO) in the HTL theory, this
business of eikonal propagators and effective Feynman rules in the ra

formalism is ideal. See my review and the original paper by Caron-Huot
(0710.5726) for more detalil

- The power-counting that emerges is non-trivial and requires some getting

used to. Dealing with loop-level HTLs requires even more getting used to,
analytically and numerically...

« NLO heavy quark momentum diffusion, Caron-Huot Moore 0801.2173
Cold Quark matter at N3LO: soft contribution Gorda et al 2103.07427



https://arxiv.org/abs/0710.5726
https://arxiv.org/abs/0801.2173
https://arxiv.org/abs/2103.07427

Hard Thermal Loops

Resummations and collective modes

» To see the emergence of collectivity, consider resummed propagators

« Gluons: now two independent structures, versus one in vacuum.
Longitudinal and transverse to spatial q, both transverse to Q. They are

[1,(0) = (1 = g5/gH™(Q), NHQ) = (Y — §'¢)1TY(Q)/2

« From the rules/Lagrangian
0

) S, L 00 9 q" 4 T qTe R mp  117(Q)
I;/(Q) =mi [ 5 (6“6 U,Q_Z-E) g (Q) = mp (1 2g B0 _q__@€> 7(Q) =

the logs come from the angular average of the induced source (kinetic)
propagator



Hard Thermal Loops

Collective gluonic modes

- Resummed Coulomb gauge propagators (physical features gauge inv.)

GR(Q) = i GH(Q) = (67 — §'¢)GH(Q) = doh —7¢)
R (Q) T 0 0 LA H B & 2 2 m%) Q(Q) C]% qO qo_l_q
2 2 q q° +q-Te do —4q — > — |\ =5 — 1) In 5
- +mp | 1 2q " Q" — q + i€ o ’ M e

 |In the time-like sector plasmons: collective excitations with modified
dispersion relation. At vanishing momentum %) = Gh¢") = 65(¢°) = Z
three propagating, massive modes!

At large g > my, longitudinal mode has exponentially small residue,
2

m2
(¢ + i€)? — =2

transverse modes have qg —g° = 12)/2 = Mgc asymptotic mass.

In-between: numerical solution



Hard Thermal Loops

Collective gluonic modes

- Resummed Coulomb gauge propagators (physical features gauge inv.)

- § o (6% — i)
: GH(Q) = (7 - ) GH(Q) = B

0 0 : m3, (46 a6 ¢’ . ¢"+q
T T KRS
7 mp <1 gq " Cq]O Z i€> BRI 20 1) | o—g s

GR(Q) =

 |n the space-like sector Landau damping: the branch cuts in the
logarithms create a non-zero imaginary part in the denominators, a non-
zero spectral function! The coupling of the soft modes to the induced
current damps them!

« At zero frequency (time-independent): Debye screening of
(chromo)electrostatic modes



Hard Thermal Loops

Collective gluonic modes

GI(Q)= (69 —§'¢)GE(Q) =

i(59 — §')

O o
9 9 q q°- + q + 1€
1 |
q —I-mD( 2qnq0—q——ie>

1.5

2.0

2.5

q/mp

3.0 3.5




Hard Thermal Loops

Collective gluonic modes

wlmD

w/mD

» Plasmons appear as delta functions in the spf. That is because their pole
position is O(gT), their width is O(g*T), to be determined within HTL thy




