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Figure 3: Graphical representation of the propagators in the r/a basis. The large arrows mark
the direction of causation, whereas the small arrows on top indicate the flow of momentum. For
the symmetric propagator Drr the direction of the momentum does not matter for bosons.
When drawing diagrams for gluons, we will use wiggly lines instead of straight lines. For
fermions, the fermionic flow must be aligned with momentum flow (not with causation).

which we call the r/a basis. In this basis, the propagator matrix reads
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where we have for convenience defined the symmetric rr-propagator

D
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2
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<). (40)

The propagator between two a fields is identically zero to all orders, in and out of
equilibrium, due to the ✓-functions in the definitions of the di↵erent correlation
functions.

In this basis, the vertices have an odd number of a indices. This is so because
in the 1/2 basis the vertex with index 1 and the vertex with index 2 come with
opposite signs. For the interaction part SI of the action this gives
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If there are no occurrences of �a in the two contributions, they cancel exactly.
This is also the case if there is an even number of a fields. For example, consider
a quartic term 1
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As can be seen from the above example, we have chosen the normalization of
the �r and �a to be such that for vertices with exactly one a-field, the symmetry
factor (3!) is reproduced correctly. For vertices with more than one a-field, there
is an extra factor of 1/2 for each additional external a line.

The r/a basis lends itself to a diagrammatic representation that is partic-
ularly intuitive [13]. Recall from response theory that the retarded propaga-
tor D

R(t1, t0) measures the response of a field h�(t1,x)i caused by a current
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Figure 4: Graphical representation of the vertices appearing in the example discussed in the
r/a basis.

J(t0,x0), so that

�h�(t1,x)i = �i

Z
d
4x0

D
R(t1,x; t0,x

0)J(t0,x
0), (43)

where �h�(t1,x)i is the di↵erence between the expectation value in the presence
and in the absence of the source J . Therefore, we will use the notation of
[13], where retarded propagators are drawn as arrows that depict the flow of
causation from t0 to t1; see Fig. 3. Similarly, we draw the advanced propagator
as an arrow from t1 to t0. In vertices we draw arrows pointing out for a fields
and arrows pointing in for r fields; see Fig. 4.

The symmetric functions measure instead the correlation between two fields.
This correlation may be either due to quantum fluctuations or to statistical
fluctuations in the past, but either way these fluctuations trace back to the
density matrix at the time the system was initialized as ⇢̂(t0), i.e. both lines in
the propagator are sourced by ⇢̂(t0) and therefore we draw them as “cut” lines,
where the cut is to be thought of as tracing back to ⇢̂(t0).

Before continuing our illustration of the advantages of this basis, we note
that we shall present a detailed, pedagogical calculation of the quark self energy
in Sec. 4.1.1.

3.1.3. The r/a basis and causality
One major advantage of the r/a basis is its straightforward relation to causal-

ity, which dictates that there can be no closed loops formed from advanced or
retarded propagators only. This is most simply observed in the time domain:
should we have a closed loop of causation as shown in Figure 5, we must have
both a (product of) retarded and advanced propagators connecting the vertices
at t0 and t1. However, because of the step functions in the definitions of the
advanced and retarded propagators, these have support only for t0 � t1 > 0
(for advanced) or t0 � t1 < 0 (for retarded) and one of them is necessarily zero.
Thus, any diagram with a closed loop of flow of causality is necessarily zero, as
depicted in Fig. 5. As the figure makes clear, these loops are clearly identified in
the r/a formalism as a succession of simple arrows in the same direction. They
are then easily discarded when drawing all possible r/a assignments.
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The ``ra’’ basis
Causality

• Closed loops with a flow of causality vanish: require  and  

• In momentum space:  

• Diagrams where a vertex is at latest time vanish 

• Retarded self-energy very simple: correlation X causation

t1 > t0 t0 > t1

∫P
DR(P)DR(P + Q)DR(P + Q + K) = 0

t1

t0

Figure 5: An example of a diagram that is identically zero because it contains a closed loop
of causation.

3.2. Self-energies and amputated diagrams in the r/a formalism

It is oftentimes useful to consider diagrams which have had the propagators
of the external legs amputated, including in particular the case of the amputated
two-point function, the self energy. We denote the amputated diagrams by ⇧. In
the r/a formalism, the amputated diagrams carry indices as well. By convention
we choose the indices so that the amputated diagram carries those indices that
appear on the near side of the bare propagator D(0) which is removed.

The amputated diagrams are related to expectation values of the currents
conjugate to the amputated fields. In particular,

⇧aa(t1, t0) = �i
1

2
h{J(t1), J(t0)}i (44)

⇧ra(t1, t0) ⌘ ⇧A(t1, t0) = i✓(t0 � t1)h[J(t1), J(t0)]i (45)

⇧ar(t1, t0) ⌘ ⇧R(t1, t0) = �i✓(t1 � t0)h[J(t1), J(t0)]i (46)

⇧rr(t1, t0) = 0 (47)

and similarly

⇧>(t1, t0) = �⇧21 = �ihJ(t1)J(t0)i (48)

⇧<(t1, t0) = �⇧12 = �ihJ(t0)J(t1)i (49)

That the propagator between two a-fields vanishes identically translates di-
rectly to the vanishing of the rr self energy ⇧rr(P) = 0. This leads to a partic-
ularly simple form for the Dyson-Schwinger equation relating the retarded and
advanced self energies to the corresponding propagators (see fig. 6)

D
R/A(P) =

1

[DR/A

(0) (P)]�1 + i⇧R/A(P)
. (50)

The expression for the remaining D
rr is non-trivial, as the cut that changes

the causality flow may either appear in the self energy or in the propagator
connecting two self energies, as depicted in Fig. 7. Thus,

D
rr(P) =�D

ra(P) i⇧aa(P)Dar(P)

+
h
D

ra(P)(Dra

(0)(P))�1
i
D

rr

(0)(P)
h
(Dar

(0)(P))�1
D

ar(P)
i
. (51)
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The ``ra’’ basis
Resummation

• The lack of an aa propagator (at all orders!) makes the Schwinger-Dyson 
eq. for the retarded propagator diagonal 
 

• Try that in the 12 basis… 

• For the rr a bit more complicated. And there is KMS for self-energies too

DR
(P) = + + + . . .

Figure 6: Resummation for the retarded propagator. All self energies and bare propagators
between the self energies are retarded. This is so because, on one hand, if one or more of the
bare propagators were to be an rr propagator Drr, at least one of the self energies would need
to be ⇧rr, which vanishes identically. On the other hand, if one or more of the self energies
were ⇧aa, at least one of the propagators would need to be a vanishing Daa.

It can be easily shown that a similar relation holds also for the forward and
backward Wightman self energies,

D
>,<(P) =�D

ra(P) i⇧>,<(P)Dar(P)

+
h
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ra(P)(Dra

(0)(P))�1
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>,<
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h
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(0)(P))�1
D
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i
. (52)

Finally, we recall that the KMS conditions that we introduced for the connected
two-point functions (the propagators) in Eqs. (28)-(30) apply in equilibrium to
the amputated function as well. One then has, for instance

⇧aa(P) =

✓
1

2
± n(p0)

◆�
⇧R(P)�⇧A(P)

�
, (53)

and similarly for ⇧> and ⇧<.
For higher n-point correlation functions, the assignments with only one r

index and rest a’s (i.e. h�r
�
a
�
a
. . .i) correspond to fully retarded functions (see

e.g. [5, 12, 13])
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1X
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raa...(y0; y1, y2, . . . , yn)

⇥ J(y1)J(y2) . . . J(yn). (54)

corresponding to a linear response of an operator �(y0) to multiple currents J(yi)
in analogy with Eq. (43). It can be shown that all retarded/advanced n-point
functions can be obtained by analytical continuation from Euclidean correlation
functions. This continuation is, however, non-trivial because of the presence of
multiple frequencies, leading to multiple ways for how the continuation from
Euclidean to real frequencies can be performed, depending on the signs of the
frequencies of the individual lines [14].

3.3. In-medium generalization of the Cutkosky rules

Similarly to the vacuum Cutkosky rules, there is an in-medium expression
for the imaginary part of the time-ordered self energy in terms of a sum over
squared amplitudes [15, 16]. However, as argued earlier, the time-ordered prop-
agator is of limited use in medium and does not have a straightforward physical
interpretation. Hence, it is not surprising that the cutting rule written in terms
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Cutting rules
From the Wightman self-energy to retarded amplitudes

• Sum over all possible cuts. Each cut line is replaced by a Wightman 
propagator, amplitudes on both sides of the cut fully retarded (one a, all 
other r): finite-T generalisation of matrix elements squared 

• Have to try it to actually see it work

Figure 7: Resummation for the rr propagator. The cut self energy stands for ⇧aa. In order
to arrive to an rr propagator, the flow of causation needs to be flipped exactly once by
either Drr or ⇧aa. The first and second diagrams corresponds to the first and second terms
in Eq. (51), respectively. That is, the correlation in the fields can be induced either by a
statistical fluctuation in the currents (⇧aa) or in the fields themselves (Drr) at an earlier
time.

of the time ordered self energy becomes rather baroque and often cumbersome to
use. There are several reformulations of the rule in di↵erent Schwinger–Keldysh
bases (see [12, 17, 18]), but the version by Caron-Huot [19] in the r/a basis
simplifies it significantly and provides a straightforward physical interpretation.
According to it, we have

⇧>(P) =
X

n

1

n!

 
Y

n

Z
d
4Qn

(2⇡)4

!
(2⇡)4�4(Q1 + . . .+Qn � P)

⇥Mar...r(P;Q1, . . . ,Qn)Mar...r(�P;�Q1, . . . ,�Qn)

⇥D
>(Q1) . . . D

>(Qn), (55)

where the sum runs over all possible cuts, and the cut lines are replaced by
the D

>(Qi) propagators, with momenta assigned from left to right. We have
not shown explicitly any internal indices on the cut lines (color, spin, etc.),
which are assumed to be summed over. All cut propagators are furthermore
to be considered to be attached to neighboring vertices as r fields and the
external lines as a fields. Hence, one transparently sees the physical picture:
a sum over all fully retarded squared amplitudes which are the appropriate
finite-temperature generalization of “matrix elements”, multiplying the forward
Wightman propagators.7 To fix conventions, we define iM as the fully retarded
amputated Feynman diagrams with outgoing momentum P at the a vertex and
incoming momenta Qi at the r vertices. An example cut is depicted in Fig. 8,
and a pedagogic application of the rules to thermal photon production will be
presented in Sec. 4.

7 The argument just seen in Sec. 3.2 refers to the correlators — see in particular Eq. (54)
and the discussion preceding it — for which it is true that those with a single r field are fully
retarded/advanced. For amputated amplitudes, it then follows that those with a single a leg
are fully retarded/advanced, hence the fully retarded label for Mar...r.
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~P

~Qi

Figure 8: Graphical representation of a possible cut in the evaluation of the cutting rule in
Eq. (55). The blobs represent the fully retarded amplitudes and the cut lines are replaced by
the Wightman propagators D>(Qi).

3.4. From the 1/2 basis to vacuum field theory

One might wonder, how is it that in zero-temperature field theory one man-
ages with only a single set of fields, whereas in the statistical theory a field
doubling is necessary. While the reason for this has been already explained
in Sec. 2, it is amusing the see how this happens diagrammatically. If we are
satisfied with computing only time-ordered correlation functions, as one usually
is in vacuum field theory, then the only correlation functions we need are those
between any number of �1 fields. Then we may separate the diagram to parts
where there are only vertices with fields �1 and to parts that contain only fields
�2, that arise from the loops within the diagram. This is depicted in figure 9.
Now, these two parts of the diagrams are connected with a number of h�2�1i
propagators. In the frequency domain, as there are no external �2 lines in the di-
agram, the sum of the frequencies appearing in the Wightman functions D>(!i)
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a limit of the full quantum theory in the limit where the fields are strong, or
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(see also e.g. [21–26]), we rewrite the “horizontal” part of the Schwinger–Keldysh
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We are ready to go (and see the failure of the loop expansion)

• This is a < Wightman function, . We can use the cutting rule!Π<(K)
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The ra basis with cutting rules
We are ready to go (and see the failure of the loop expansion)

• At two-loops 
 
 
 
 
we are actually still tree-level, since the virtual corrections necessarily 
vanish.

Figure 11: The first-order graphs for ⇧<. Figure taken from [34].

A thermal QCD medium can be considered weakly coupled to photons, so
that the latter are not in equilibrium and their production is a rare event. Under
these assumptions, a classic derivation [33] finds that the photon emission rate
per unit volume is, at first order in ↵em = e

2
/(4⇡),
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where K = (k, 0, 0, k) is the photon’s lightlike momentum—we assume k ⇠ T—
and the electromagnetic current reads J

µ ⌘
Pnf

i
eQi i

�
µ
 i for nf quarks—

assumed to be massless in what follows—with electric charges Qi.
Eq. (60) requires the computation of a Wightman function, ⇧<(K). As such,

the optimal technique for its evaluation lies in the cutting rules of Sec. 3.3, where
the “<” version of Eq. (55) is easily obtained by changing all occurrences of >

to <. At zeroth order in g, we would then have the simple one-loop diagram
shown in Fig. 10.

As shown there, the cut of that diagram corresponds to the square of the
tree-level photon emission, which is well known to vanish kinematically for real
photons, which cannot be emitted from on-shell quarks. Indeed, the straight-
forward application of Eq. (55) to that diagram results in
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d
4P

(2⇡)4
Tr

⇥
(eQ�µ)S<(P +K)(eQ�µ)S
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where the retarded and advanced amplitudes in Eq. (55) are Marr(K;P +
K,�P) = eQ�

µ. As Eq. (30) shows, the S
< propagators are proportional

to the fermion spectral density ⇢F (P), S<(P) = �nF(p0)⇢F (P), which in the
bare limit used in ordinary perturbation theory in the interaction representation
reads ⇢F (P) = �/P✏(p0)2⇡�(P2).8 It is then straightforward to verify that the
d
4P integration vanishes over the product of the two �-functions putting the

two quarks on shell, as anticipated.

8 Our convention for the Dirac algebra is slightly nonstandard, in that we choose {�µ, �⌫
} =

�2gµ⌫ . Normally (see the extensive discussion in App. E of [35]) the mostly-plus metric is
associated with a factor of i to the � matrices, so that the anticommutator maintains a plus
sign, as in the case of the mostly-minus metric.
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We are ready to go (and see the failure of the loop expansion)

• Doing all diagrams and cuts one finds 
 
 
 
 

• This naive evaluation is equivalent to kinetic theory (gain term only) 

• Exercise: work out one of these crossings directly from the cutting rules 
in Feynman gauge (see attachment). Bonus points if you try in 12 basis…
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Figure 12: The non-vanishing cut of the first diagram in Fig. 11. The crossing, i.e. the
Compton process, is not shown explicitly. The cuts of the third diagram in Fig. 11 represent
the interference between the two diagrams on the right.

The first contribution to photon production then needs an extra gluon to
be kinematically allowed, and thus happens at O(g2), where one encounters the
diagrams of Fig. 11. The cutting rules can now be applied to these; the class of
cuts where the gluon is not cut reproduces the �-function structure seen before
and vanishes again. In other words, they represent the interference between
the Born process of Fig. 10 and its virtual correction. On the other hand, the
cuts passing through the gluon are kinematically allowed and correspond to the
processes shown in Fig. 12, i.e. the Compton and pair annihilation processes of
QCD and QED.

A tedious but straightforward application of the cutting and Feynman rules
leads to [36–38]

⇧<

g2 naive(K) ⌘⇧<(K)Compton +⇧<(K)annih, (62)
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where, s, t, and u stand for the usual Mandelstam variables. Upon taking the
cuts, the momenta have been shifted into those of Fig. 12. This makes partic-
ularly transparent the connection to kinetic theory: noting how the terms in
square brackets are nothing but the matrix elements squared for these processes,
we see that we have recovered the gain term of a Boltzmann equation for photon
production in the case where the photon’s distribution fk is negligible, which is
precisely the approximation underlying the derivation of Eq. (60). Under this
approximation, the loss term vanishes entirely.

We refer to [38] for technical details of the evaluation of Eqs. (63) and (64).
What we wish to emphasize here is instead that the phase space integrations for
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ularly transparent the connection to kinetic theory: noting how the terms in
square brackets are nothing but the matrix elements squared for these processes,
we see that we have recovered the gain term of a Boltzmann equation for photon
production in the case where the photon’s distribution fk is negligible, which is
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• Doing all diagrams and cuts one finds 
 
 
 
 

• The integrals can be worked out with the methods of hep-ph/0111107 

• At small t and u we have a log IR divergence: breakdown of the loop 
expansion

Figure 11: The first-order graphs for ⇧<. Figure taken from [34].

A thermal QCD medium can be considered weakly coupled to photons, so
that the latter are not in equilibrium and their production is a rare event. Under
these assumptions, a classic derivation [33] finds that the photon emission rate
per unit volume is, at first order in ↵em = e
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where K = (k, 0, 0, k) is the photon’s lightlike momentum—we assume k ⇠ T—
and the electromagnetic current reads J
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 i for nf quarks—

assumed to be massless in what follows—with electric charges Qi.
Eq. (60) requires the computation of a Wightman function, ⇧<(K). As such,

the optimal technique for its evaluation lies in the cutting rules of Sec. 3.3, where
the “<” version of Eq. (55) is easily obtained by changing all occurrences of >

to <. At zeroth order in g, we would then have the simple one-loop diagram
shown in Fig. 10.

As shown there, the cut of that diagram corresponds to the square of the
tree-level photon emission, which is well known to vanish kinematically for real
photons, which cannot be emitted from on-shell quarks. Indeed, the straight-
forward application of Eq. (55) to that diagram results in
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where the retarded and advanced amplitudes in Eq. (55) are Marr(K;P +
K,�P) = eQ�

µ. As Eq. (30) shows, the S
< propagators are proportional

to the fermion spectral density ⇢F (P), S<(P) = �nF(p0)⇢F (P), which in the
bare limit used in ordinary perturbation theory in the interaction representation
reads ⇢F (P) = �/P✏(p0)2⇡�(P2).8 It is then straightforward to verify that the
d
4P integration vanishes over the product of the two �-functions putting the

two quarks on shell, as anticipated.

8 Our convention for the Dirac algebra is slightly nonstandard, in that we choose {�µ, �⌫
} =

�2gµ⌫ . Normally (see the extensive discussion in App. E of [35]) the mostly-plus metric is
associated with a factor of i to the � matrices, so that the anticommutator maintains a plus
sign, as in the case of the mostly-minus metric.
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The first contribution to photon production then needs an extra gluon to
be kinematically allowed, and thus happens at O(g2), where one encounters the
diagrams of Fig. 11. The cutting rules can now be applied to these; the class of
cuts where the gluon is not cut reproduces the �-function structure seen before
and vanishes again. In other words, they represent the interference between
the Born process of Fig. 10 and its virtual correction. On the other hand, the
cuts passing through the gluon are kinematically allowed and correspond to the
processes shown in Fig. 12, i.e. the Compton and pair annihilation processes of
QCD and QED.
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where, s, t, and u stand for the usual Mandelstam variables. Upon taking the
cuts, the momenta have been shifted into those of Fig. 12. This makes partic-
ularly transparent the connection to kinetic theory: noting how the terms in
square brackets are nothing but the matrix elements squared for these processes,
we see that we have recovered the gain term of a Boltzmann equation for photon
production in the case where the photon’s distribution fk is negligible, which is
precisely the approximation underlying the derivation of Eq. (60). Under this
approximation, the loss term vanishes entirely.

We refer to [38] for technical details of the evaluation of Eqs. (63) and (64).
What we wish to emphasize here is instead that the phase space integrations for
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where, s, t, and u stand for the usual Mandelstam variables. Upon taking the
cuts, the momenta have been shifted into those of Fig. 12. This makes partic-
ularly transparent the connection to kinetic theory: noting how the terms in
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processes shown in Fig. 12, i.e. the Compton and pair annihilation processes of
QCD and QED.

A tedious but straightforward application of the cutting and Feynman rules
leads to [36–38]
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where, s, t, and u stand for the usual Mandelstam variables. Upon taking the
cuts, the momenta have been shifted into those of Fig. 12. This makes partic-
ularly transparent the connection to kinetic theory: noting how the terms in
square brackets are nothing but the matrix elements squared for these processes,
we see that we have recovered the gain term of a Boltzmann equation for photon
production in the case where the photon’s distribution fk is negligible, which is
precisely the approximation underlying the derivation of Eq. (60). Under this
approximation, the loss term vanishes entirely.

We refer to [38] for technical details of the evaluation of Eqs. (63) and (64).
What we wish to emphasize here is instead that the phase space integrations for
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Figure 12: The non-vanishing cut of the first diagram in Fig. 11. The crossing, i.e. the
Compton process, is not shown explicitly. The cuts of the third diagram in Fig. 11 represent
the interference between the two diagrams on the right.
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The ra basis with cutting rules
We are ready to go (and see the failure of the loop expansion)

Figure 11: The first-order graphs for ⇧<. Figure taken from [34].

A thermal QCD medium can be considered weakly coupled to photons, so
that the latter are not in equilibrium and their production is a rare event. Under
these assumptions, a classic derivation [33] finds that the photon emission rate
per unit volume is, at first order in ↵em = e

2
/(4⇡),
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(2⇡)32k
, ⇧<(K) =

Z
d
4X e
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where K = (k, 0, 0, k) is the photon’s lightlike momentum—we assume k ⇠ T—
and the electromagnetic current reads J

µ ⌘
Pnf

i
eQi i

�
µ
 i for nf quarks—

assumed to be massless in what follows—with electric charges Qi.
Eq. (60) requires the computation of a Wightman function, ⇧<(K). As such,

the optimal technique for its evaluation lies in the cutting rules of Sec. 3.3, where
the “<” version of Eq. (55) is easily obtained by changing all occurrences of >

to <. At zeroth order in g, we would then have the simple one-loop diagram
shown in Fig. 10.

As shown there, the cut of that diagram corresponds to the square of the
tree-level photon emission, which is well known to vanish kinematically for real
photons, which cannot be emitted from on-shell quarks. Indeed, the straight-
forward application of Eq. (55) to that diagram results in
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, (61)

where the retarded and advanced amplitudes in Eq. (55) are Marr(K;P +
K,�P) = eQ�

µ. As Eq. (30) shows, the S
< propagators are proportional

to the fermion spectral density ⇢F (P), S<(P) = �nF(p0)⇢F (P), which in the
bare limit used in ordinary perturbation theory in the interaction representation
reads ⇢F (P) = �/P✏(p0)2⇡�(P2).8 It is then straightforward to verify that the
d
4P integration vanishes over the product of the two �-functions putting the

two quarks on shell, as anticipated.

8 Our convention for the Dirac algebra is slightly nonstandard, in that we choose {�µ, �⌫
} =

�2gµ⌫ . Normally (see the extensive discussion in App. E of [35]) the mostly-plus metric is
associated with a factor of i to the � matrices, so that the anticommutator maintains a plus
sign, as in the case of the mostly-minus metric.
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We conclude this overview of the leading-order calculation by noting that the momen-

tum integration regions that contribute here are best identified by their scaling in terms

of P . In Fig. 7 we map these momentum regions in the (p+, p?) plane. The scaling of p�

can be obtained from momentum conservation.

p?

p+
gT

gT

T

µLO
?

T

�| s
oft

�| h
ard

�|coll

CollinearSoft

Hard

Figure 7. Momentum integration regions in the (p+, p?) plane contributing to the leading-order
calculation. The µLO

? label indicates a LO cancellation of UV/IR log divergences between the soft
and hard regions respectively. {fig_lomap}

2.2 Next-to-leading order corrections
{sub_overview_NLO}

At next to leading order, the full result is a sum of the leading order rate and its O(g)

correction

d��

d3k

����
LO+NLO

=
d��

d3k

����
LO

+
d���

d3k
. (2.13)

As in the leading order calculation, the NLO rate arises from distinct kinematic regions

and the NLO correction can be parametrized as

d���

d3k
=

d���

d3k

����
soft

+
d���

d3k

����
coll

+
d���

d3k

����
semi�coll

. (2.14)

The soft and collinear regions are the same kinematic regions as in the leading-order calcu-

lation, while the semi-collinear region is an additional kinematic region whose contribution

starts at NLO.
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Breakdown of the loop expansion
1) Soft modes

• When  there is a logarithmic IR divergence. 
Exercise: show that it has this form (I might have screwed the prefactors) 

 

• If there is an IR scale ( ) it will contribute to LO to this logarithmic 
phase space  

• This scale is the scale  where the first collective effects appear

t ≪ s ∼ T2

Π<(K)soft
compton =

e2 ∑i QidFCFg2nF(k)
2π3 ∫soft

dq∫
q

−q
dω∫

∞

0
dp′ 

p′ 

q2 nB(p′ )(1 − nF(p′ ))

≪ T
dq/q

gT

(ω, q)



Breakdown of the loop expansion
1) Soft modes

• In vacuum (at )  

• Here we have an extra scale, T. Hence we can have  
(this will be shown explicitly soon) 

• We have  for : this is where the loop expansion 
breaks down. For gauge bosons , same story 

• How to deal with this breakdown? What are the physical consequences? 
And how is it related to the emergence of collectivity? 

• To answer these question, introduce Hard Thermal Loops

m = 0 Σ(Q) ∝ g2Q
ΣR(Q ≪ T) ∼ g2T2/Q

Q ∼ ΣR(Q ≪ T) Q ∼ gT
ΠR(Q ≪ T) ∼ g2T2



Hard Thermal Loops
Emergence of collectivity

• Hard Thermal Loop (HTL) effective theory: a consistent, modern and 
gauge-invariant handling of these effects 

• Originally introduced by Braaten and Pisarski [1, 2], Frenkel and Taylor [3, 
4] and Taylor and Wong [5]. Their connection to a kinetic picture for the 
underlying hard modes has been illustrated in the review of Blaizot and 
Iancu [6] 
[1,2] 10.1016/0550-3213(90)90508-B, 10.1103/PhysRevD.45.R1827 
[3,4] 10.1016/0550-3213(90)90661-V, 10.1016/0550-3213(92)90480-Y 
[5] 10.1016/0550-3213(90)90240-E 
[6] hep-ph/0101103

https://doi.org/10.1016/0550-3213(90)90508-B
https://doi.org/10.1103/PhysRevD.45.R1827
https://doi.org/10.1016/0550-3213(90)90661-V
https://doi.org/10.1016/0550-3213(92)90480-Y
https://doi.org/10.1016/0550-3213(90)90240-E
http://arxiv.org/abs/hep-ph/0101103


Hard Thermal Loops
Diagrammatics and connection to kinetics

• Diagrammatically: HTLs= -proportional gauge-invariant amplitudes 
with  external soft lines and thermal (“hard”) loop momentum 
 
 
 

• Let us derive the quark two-point HTL. From the Feynman rules we have

g2T2

n ≥ 2

T
gT

gT gT
gT

 �P

����!P +Q
�!Q�!Q ����!P +Q

 �P

Figure 15: The two r/a assignments for the retarded fermion self energy. We recall that the
momenta of fermions need to be aligned with the direction of fermion flow (not indicated by
the arrows, which instead indicate causation).

HTL in the r/a formalism. This computation will also serve as an example of
a real-time calculation in said formalism.

The extension of the discussion of Sec. 3.1.2 to QCD is straightforward.
For what concerns the quark-gluon vertex, only rra and aaa assignments are
possible, with the latter again suppressed by a factor of 1/4. Furthermore,
the aaa vertex cannot contribute to the retarded self energy, since neither an aa

propagator nor an rrr vertex are available. There are then only two assignments
of the r/a indices contributing to the retarded self energy ⌃R(P), shown in
Fig. 15. This further highlights the advantages of this basis: the retarded self
energy, from which all other self energies can be derived using Eq. (53) and
the other relations discussed in Sec. 3.2, is obtained from two assignments only,
with a transparent connection to causality and statistics.

A straightforward application of the Feynman rules of Sec. 3.1.2 yields

� i⌃R(Q) = (�ig)2CF

Z
d
4P

(2⇡)4
�
µ
⇥
S
R(P+Q)Grr

µ⌫
(P)+Srr(P+Q)GA
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(P)

⇤
�
⌫
,

(66)
where the integration has been kept in exactly 4 dimensions because we only
want to extract the HTL, which is finite. As we have mentioned before, the
Hard Thermal Loop amplitudes are gauge invariant. A complete field-theoretical
proof of this property was given in [45]. We exploit this invariance and continue
the computation in Feynman gauge, which slightly simplifies the intermediate
expressions. Using the propagators listed in Appendix A, we find

⌃R(Q) = g
2
CF

Z
d
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(2⇡)4
�
µ(/P + /Q)�µ


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P2 + i✏p0

�
, (67)

where we have only kept the thermal (statistical) part of the symmetric propa-
gators, i.e. 1/2± n(|p0|)! ±n(|p0|). Since all integrals are finite, we can easily
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Hard Thermal Loops
Diagrammatics and connection to kinetics

• Let us derive the quark two-point HTL. From the Feynman rules we have 
 
 

• This is the one-loop self-energy without approximations 

• Use bare propagators (copypaste from my review, mostly+ metric) and 
throw away vacuum part
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HTL in the r/a formalism. This computation will also serve as an example of
a real-time calculation in said formalism.

The extension of the discussion of Sec. 3.1.2 to QCD is straightforward.
For what concerns the quark-gluon vertex, only rra and aaa assignments are
possible, with the latter again suppressed by a factor of 1/4. Furthermore,
the aaa vertex cannot contribute to the retarded self energy, since neither an aa

propagator nor an rrr vertex are available. There are then only two assignments
of the r/a indices contributing to the retarded self energy ⌃R(P), shown in
Fig. 15. This further highlights the advantages of this basis: the retarded self
energy, from which all other self energies can be derived using Eq. (53) and
the other relations discussed in Sec. 3.2, is obtained from two assignments only,
with a transparent connection to causality and statistics.
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where the integration has been kept in exactly 4 dimensions because we only
want to extract the HTL, which is finite. As we have mentioned before, the
Hard Thermal Loop amplitudes are gauge invariant. A complete field-theoretical
proof of this property was given in [45]. We exploit this invariance and continue
the computation in Feynman gauge, which slightly simplifies the intermediate
expressions. Using the propagators listed in Appendix A, we find
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gators, i.e. 1/2± n(|p0|)! ±n(|p0|). Since all integrals are finite, we can easily
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The extension of the discussion of Sec. 3.1.2 to QCD is straightforward.
For what concerns the quark-gluon vertex, only rra and aaa assignments are
possible, with the latter again suppressed by a factor of 1/4. Furthermore,
the aaa vertex cannot contribute to the retarded self energy, since neither an aa

propagator nor an rrr vertex are available. There are then only two assignments
of the r/a indices contributing to the retarded self energy ⌃R(P), shown in
Fig. 15. This further highlights the advantages of this basis: the retarded self
energy, from which all other self energies can be derived using Eq. (53) and
the other relations discussed in Sec. 3.2, is obtained from two assignments only,
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where the integration has been kept in exactly 4 dimensions because we only
want to extract the HTL, which is finite. As we have mentioned before, the
Hard Thermal Loop amplitudes are gauge invariant. A complete field-theoretical
proof of this property was given in [45]. We exploit this invariance and continue
the computation in Feynman gauge, which slightly simplifies the intermediate
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For what concerns the quark-gluon vertex, only rra and aaa assignments are
possible, with the latter again suppressed by a factor of 1/4. Furthermore,
the aaa vertex cannot contribute to the retarded self energy, since neither an aa

propagator nor an rrr vertex are available. There are then only two assignments
of the r/a indices contributing to the retarded self energy ⌃R(P), shown in
Fig. 15. This further highlights the advantages of this basis: the retarded self
energy, from which all other self energies can be derived using Eq. (53) and
the other relations discussed in Sec. 3.2, is obtained from two assignments only,
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where the integration has been kept in exactly 4 dimensions because we only
want to extract the HTL, which is finite. As we have mentioned before, the
Hard Thermal Loop amplitudes are gauge invariant. A complete field-theoretical
proof of this property was given in [45]. We exploit this invariance and continue
the computation in Feynman gauge, which slightly simplifies the intermediate
expressions. Using the propagators listed in Appendix A, we find

⌃R(Q) = g
2
CF

Z
d
4P

(2⇡)4
�
µ(/P + /Q)�µ


nB(|p0|)2⇡�(P2)

(P +Q)2 � i✏(p0 + q0)

�nF(|p0 + q
0|)2⇡�((P +Q)2)

P2 + i✏p0

�
, (67)

where we have only kept the thermal (statistical) part of the symmetric propa-
gators, i.e. 1/2± n(|p0|)! ±n(|p0|). Since all integrals are finite, we can easily
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Hard Thermal Loops
Diagrammatics and connection to kinetics

• Shift the second term into the same form as the first 
 

• We now expand for . At first order (unlike for gluons) we find HTL 
 
 
with . Factorisation of angular part. Finally 
 
 

 is the asymptotic mass of the quark. 

Q ≪ P

v ≡ P/p0

m2
∞ = g2CFT2/4 ΣR(Q ≪ T) ∼ g2T2/Q

shift P ! �P �Q on the second line, obtaining
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⇤
.

(68)
Up to now we have not taken any hierarchical approximations: the full thermal
part of the Feynman-gauge quark self energy can be obtained from Eq. (68) by
first performing the frequency integration over the � function and then perform-
ing the angular integrations. To this end, it is convenient to project the Dirac
structure on the two vectors /Q and /u, with u

µ = (1, 0, 0, 0) the plasma frame.
The resulting p integration can then only be carried out numerically. We refer
to [46] for the expression of the integrand.

On the other hand, since we are interested in extracting the HTL contribu-
tion, we can now take the assumptions underlying that theory, which requires
the extraction of the leading term for a soft external quark interacting with a
hard loop. We thus have to expand for Q ⇠ gT ⌧ P ⇠ T and take the leading
term, leading to

⌃R(Q) = g
2
CF

Z
d
4P

(2⇡)4
2⇡�(P2)

�
nB(|p0|) + nF(|p0|)

� /P
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. (69)

Upon defining v ⌘ P/p
0 = (1,p/p0) we see that the angular part factors out,

yielding

⌃R(Q) = g
2
CF

Z
d
4P

(2⇡)4
2⇡�(P2)

�
nB(|p0|) + nF(|p0|)

� /v

v · Q� i✏
. (70)

Performing here the p
0 and p integrations, we obtain

⌃R(Q) =
m

2
1

2

Z
d⌦v

4⇡

/v

v · Q� i✏
, (71)

where m
2
1

⌘ g
2
CFT

2
/4 is the asymptotic mass of the quarks, as we shall il-

lustrate later on.9 Here we wish to further elaborate on the structure that has
emerged from our calculation: an angular integration over the eikonal propa-
gator /v/v · Q resulting from integrating out the o↵-shell hard leg of the Hard
Thermal Loop. It is here that the connection to the kinetic picture appears:
/v/v ·Q is nothing but the (retarded) propagator of the induced fermionic source,
in the language of [5]: the quark-gluon loop in the HTL approximation has re-
duced to this structure, which shares the same color-triplet nature of the original
quark. This consideration, combined with gauge invariance, suggests that /v/v·Q
is just the first term in the (Fourier-transformed) expansion of /v/v ·D, with D

the covariant derivative, which is indeed borne out by explicit computations of
higher-point functions. More generally, it has been shown [41, 44] that HTL

9We write the fermionic asymptotic mass with a lowercase m1 and the gluonic one with
an uppercase M1.
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emerged from our calculation: an angular integration over the eikonal propa-
gator /v/v · Q resulting from integrating out the o↵-shell hard leg of the Hard
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Up to now we have not taken any hierarchical approximations: the full thermal
part of the Feynman-gauge quark self energy can be obtained from Eq. (68) by
first performing the frequency integration over the � function and then perform-
ing the angular integrations. To this end, it is convenient to project the Dirac
structure on the two vectors /Q and /u, with u

µ = (1, 0, 0, 0) the plasma frame.
The resulting p integration can then only be carried out numerically. We refer
to [46] for the expression of the integrand.
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Hard Thermal Loops
Diagrammatics and connection to kinetics

• This is the quark 2-point HTL. Simple structure:  times the angular 
average of the propagator for the induced fermion source, which is the 
effective structure that emerges. Original loop not resolved 
 

• In Fourier space . Gauge invariance then suggests 
, which is confirmed by calculations of higher-point functions 

 
 
HTL resummation needed not just in two-point function

m2
∞

1/v ⋅ Q → 1/v ⋅ ∂
1/v ⋅ D
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Hard Thermal Loops
Effective Lagrangian and resummation

• All n-point HTLs with two external quark lines and n-2 gluon lines are 
generated by  
 
No HTLs with more than 2 quark lines exist 

• A similar derivation finds for the  all-gluon HTL  
 
 

 is the Debye mass

n ≥ 2

m2
D = g2T2(Nc/3 + Nf /6)

amplitudes with two external quark lines can be generated by adding an ex-
tra, e↵ective term to the QCD Lagrangian. This term reads, in Minkowskian
signature

�Lf = i
m

2
1

2
 

Z
d⌦v

4⇡

/v

v ·D  , (72)

which generates all fermionic HTLs with two external, soft quark lines and an
arbitrary number of soft external gluons. All these retarded amplitudes are
gauge-invariant and proportional to g

2
T

2. It can be shown that there are no
HTLs, i.e. no amplitudes proportional to g

2
T

2, with more than two external
fermion lines, so Eq. (72) generates all fermionic HTLs. Furthermore, once the
v ·D denominator is taken into account, the two-quark function scales like gT

and the qqg amplitude scales like g. Hence the former scales exactly like the
denominator of a fermion propagator for soft Q and the latter like the bare qqg

vertex of QCD. In both cases, this signals a breakdown of the loop expansion
of the bare theory and a need for HTL resummation, whose consequences for
propagators and vertices we shall explain later.

For HTLs with external gluons only, a similar procedure applies, with the
added complication that the retarded two-point gluon HTL requires the next
order in the expansion for Q ⌧ P of the full one-loop amplitude. This fact,
together with extra intricacies relating to gauge fixing, has brought us to our
previous illustration using the fermionic HTL. The retarded gluonic HTL turns
out to read
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wheremD is the leading-orderDebye mass, which readsm2
D

= (Nc+TFnf )g2T 2
/3,

with TF = 1/2. Eq. (73) shows a similar structure to Eq. (71). The main dif-
ferences arise in the di↵erent numerator structure for the eikonal propagator of
the gluonic source, and in the presence of the extra term for temporal gluons.
The corresponding Lagrangian term generating all n � 2-point gluonic functions
reads [41]

�Lg =
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2
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(v ·D)2
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Also in the gluonic case, the retarded two-point function, Eq. (73), is of
order g2T 2, and so are all retarded n>2 point functions generated by Eq. (74).
However, in the ra formalism, di↵erent orderings have di↵erent power countings.
Let us consider the aa two-point function. The KMS condition in Eq. (53) leads
to, in the boson case
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which can be obtained from the leading-order term in the Q ⌧ P expansion,
di↵erently to the retarded self energy. We present such a derivation (for the
gauge contribution only) in Appendix A, showing explicitly its gauge invariance
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Hard Thermal Loops
Effective Lagrangian and resummation

• For practical higher-loop (typically beyond LO) in the HTL theory, this 
business of eikonal propagators and effective Feynman rules in the ra 
formalism is ideal. See my review and the original paper by Caron-Huot 
(0710.5726) for more detail 

• The power-counting that emerges is non-trivial and requires some getting 
used to. Dealing with loop-level HTLs requires even more getting used to, 
analytically and numerically…  

• NLO heavy quark momentum diffusion, Caron-Huot Moore 0801.2173 
Cold Quark matter at N3LO: soft contribution Gorda et al 2103.07427 

https://arxiv.org/abs/0710.5726
https://arxiv.org/abs/0801.2173
https://arxiv.org/abs/2103.07427


Hard Thermal Loops
Resummations and collective modes

• To see the emergence of collectivity, consider resummed propagators 

• Gluons: now two independent structures, versus one in vacuum. 
Longitudinal and transverse to spatial q, both transverse to Q. They are 

,  

• From the rules/Lagrangian 
 
 
the logs come from the angular average of the induced source (kinetic) 
propagator

ΠL(Q) = (1 − q2
0 /q2)Π00(Q) ΠT(Q) = (δij − ̂qi ̂qj)Πij(Q)/2
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Hard Thermal Loops
Collective gluonic modes

• Resummed Coulomb gauge propagators (physical features gauge inv.) 
 
 

• In the time-like sector plasmons: collective excitations with modified 
dispersion relation. At vanishing momentum  
three propagating, massive modes! Plasma oscillations 
At large , longitudinal mode has exponentially small residue, 
transverse modes have  asymptotic mass. 
In-between: numerical solution

q ≫ mD
q2

0 − q2 = m2
D/2 = M2

∞
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Hard Thermal Loops

• Resummed Coulomb gauge propagators (physical features gauge inv.) 
 
 

• In the space-like sector Landau damping: the branch cuts in the 
logarithms create a non-zero imaginary part in the denominators, a non-
zero spectral function! The coupling of the soft modes to the induced 
current damps them! 

• At zero frequency (time-independent): Debye screening of 
(chromo)electrostatic modes
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Hard Thermal Loops
Collective gluonic modes
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Figure 18: The transverse structure of the HTL propagators. The graphical notation is as in
Fig. 17. The white area in the contour plot represents values above the maximum of the color
scale.

the time-like region above the red light-cone bisector.
Let us now look at the space-like region: here, the logarithms in Eqs. (78) and

(79) clearly acquire an imaginary part, which in turn induces a non-vanishing
spectral function at Q2

> 0. This is called Landau damping from its QED
analogue, and corresponds to the scattering of virtual gluons o↵ the hard con-
stituents of the plasma with P ⇠ T . The contours of the spectral functions in
the Landau cut (from the branch cut of the logarithm) are shown under the red
bisector in Figs. 17 and 18.

Another feature of the HTL propagator in the space-like region is Debye
screening : if we consider the propagators in the static limit q

0 ! 0, appropri-
ate for studying time-independent chromoelectric and magnetic fields at large
distances r ⇠ 1/gT , we find

G
R

L
(0, q) =

i

q2 +m
2
D

, G
R

T
(0, q) =

�i

q2
. (80)

Hence, static chromoelectric fields are screened: at distances larger than the
Debye radius rD = 1/mD they vanish exponentially. Static chromomagnetic
fields are not screened in the HTL e↵ective theory. At even larger distances,
the non-perturbative physics arising at the scale g

2
T , which will be discussed

in more detail in Sec. 6.3.1, will eventually screen these fields. In the static
domain, the Euclidean techniques described later in this review are applicable.
To describe the dynamics of the chromomagnetic modes at that scale one can
use the e↵ective Hamiltonian derived by Bödeker [55, 56].

In Fig. 19 we plot the gluon HTL spectral functions at a fixed value of
momentum, that is, following the vertical lines in Figs. 17 and 18 . These plots
clearly show the structure of the spectral function in the Landau cut, while the
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Figure 17: The longitudinal structure of the HTL propagator. The light-cone bisector is drawn
in dashed white. In the time-like region above we plot the dispersion relation (location of the
pole), and in the space-like Landau cut below we plot the contours of the spectral density
there in units of m2

D. In Fig. 19 we plot the longitudinal and transverse spectral functions
along the vertical line at q = 0.5mD.

G
ij

R
(Q) ⌘ (�ij � q̂

i
q̂
j)GR

T
(Q). They read

G
00
R
(Q) =

i

q
2 +m

2
D

✓
1� q

0

2q
ln

q
0 + q + i✏

q0 � q + i✏

◆ , (78)

G
ij

R
(Q) =

�i(�ij � q̂
i
q̂
j)

Q2 +
m

2
D

2

✓
q
2
0

q2
�

✓
q
2
0

q2
� 1

◆
q
0

2q
ln

q
0+q

q0�q

◆

��������
q0=q0+i✏

.

(79)

We can now summarize the main features of these propagators. In the time-
like region both the longitudinal and transverse ones feature plasmon poles:
collective plasma oscillations at the scale gT . At vanishing three-momentum,
the distinction between longitudinal and transverse modes vanishes and the
plasmon dispersion relation reduces to the well-known plasma frequency !L(q =
0) = !T (q = 0) = ±mD/

p
3. At asymptotically large momenta q � mD, on

the other hand, the longitudinal pole approaches the light cone, but its residue
vanishes exponentially [52]. The two transverse modes instead survive, with
unitary residue and asymptotic mass M1, i.e. !T (q � mD) =

p
q2 +M2

1
,

M1 = mD/
p
2 [53, 54]. It is also important to note that, in this region, the

HTL result agrees with the full one-loop result: hard gluons with q
0 ⇠ q ⇠ T

and q
0 � q ⌧ T do acquire a mass given by M1. At generic momenta q ⇠ mD,

the poles have to be found numerically: they are shown in Figs. 17 and 18 in
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Figure 19: The longitudinal and transverse HTL spectral functions on the left and right
respectively. In both plots the three-momentum is fixed at q = 0.5mD. We show the space-
like Landau cut in solid black and the Dirac �-function at the time-like plasmon pole in dashed
red.

plasmon pole is a Dirac �-function. Indeed, in the propagators (78) and (79),
plasmons have zero width. This is just a leading-order e↵ect: the more precise
statement is that the position of the plasmon pole, determined by the real part
of the self energy, is of order gT , while the width of the plasmon, also called
gluon damping rate, is of order g

2
T . This means that the first arises from a

one-loop diagram in the HTL limit, i.e. with hard momenta running through it,
while the latter requires soft momenta through the loop and thus a consistent
HTL resummation, including both resummed propagators and vertices. Indeed,
the determination of the gluon damping rate at vanishing momentum within the
HTL theory and the proof of its gauge invariance represented one of the first
successes of the HTL approach [57, 58], as well as one of the first computational
tours de force within the theory. With a similar approach, theO(g2T ) correction
to the plasma frequency was computed in [59].

For what concerns the discussion of the collective modes of fermions, there
exist many parallels with what we have just illustrated for gluons. While we
refer to reviews such as [5] or textbooks such as [3] for more details, we give
a brief summary of the di↵erences and similarities. Rather than longitudinal
and transverse modes, the retarded self energy ⌃R given in Eq. (71) can be
decomposed in modes with positive or negative chirality-to-helicity ratios. In
detail, one finds that
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where q

0 is understood to be q
0 + i✏. At positive (negative) frequencies the

massless bare theory only has a positive (negative) chirality-to-helicity mode,
with !

+(q) = q (!�(q) = �q) . In the HTL theory, both modes develop
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Figure 19: The longitudinal and transverse HTL spectral functions on the left and right
respectively. In both plots the three-momentum is fixed at q = 0.5mD. We show the space-
like Landau cut in solid black and the Dirac �-function at the time-like plasmon pole in dashed
red.

plasmon pole is a Dirac �-function. Indeed, in the propagators (78) and (79),
plasmons have zero width. This is just a leading-order e↵ect: the more precise
statement is that the position of the plasmon pole, determined by the real part
of the self energy, is of order gT , while the width of the plasmon, also called
gluon damping rate, is of order g

2
T . This means that the first arises from a

one-loop diagram in the HTL limit, i.e. with hard momenta running through it,
while the latter requires soft momenta through the loop and thus a consistent
HTL resummation, including both resummed propagators and vertices. Indeed,
the determination of the gluon damping rate at vanishing momentum within the
HTL theory and the proof of its gauge invariance represented one of the first
successes of the HTL approach [57, 58], as well as one of the first computational
tours de force within the theory. With a similar approach, theO(g2T ) correction
to the plasma frequency was computed in [59].

For what concerns the discussion of the collective modes of fermions, there
exist many parallels with what we have just illustrated for gluons. While we
refer to reviews such as [5] or textbooks such as [3] for more details, we give
a brief summary of the di↵erences and similarities. Rather than longitudinal
and transverse modes, the retarded self energy ⌃R given in Eq. (71) can be
decomposed in modes with positive or negative chirality-to-helicity ratios. In
detail, one finds that

SR(Q) = h
+
q S

+
R
(Q) + h

�

q S
�

R
(Q) , (81)

where h
±

q ⌘ (�0 ⌥ �
i
q̂
i)/2 and

S
±

R
(Q) =

i

q0 ⌥ (q + ⌃±

R
(q0/q))

=
i

q
0 ⌥


q +

m
2
1

2q

✓
1� q

0 ⌥ q

2q
ln

✓
q
0 + q

q0 � q

◆◆� ,

(82)
where q

0 is understood to be q
0 + i✏. At positive (negative) frequencies the

massless bare theory only has a positive (negative) chirality-to-helicity mode,
with !

+(q) = q (!�(q) = �q) . In the HTL theory, both modes develop
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• Plasmons appear as delta functions in the spf. That is because their pole 
position is , their width is , to be determined within HTL thy1(gT) 1(g2T)
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