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Electroweak Sphaleron in a magnetic field
Contents:

♦ Why is sphaleron in a magnetic field interesting:
1. Sphaleron has a magnetic dipole moment

2. electroweak ‘phase transition’ gets modified in a magnetic field 

♦ Measuring the sphaleron rate in a magnetic field

♦ Results
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Electroweak Sphaleron
♦ EW chiral anomaly leads to non-conservation of baryon and lepton 

number:

♦ Chern-Simons numbers:

♦ U(1):

 Trivial in vacuum. Identical to zero.

♦ SU(2):

 Non-trivial.
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Sphaleron arises from non-trivial topology of SU(2)

♦ Infinitely many classically equivalent but topologically different vacua.

♦ Sphaleron: finite energy solution of classical EoMs separating two 
topologically distinct vacua.

♦ In vacuum:

♦ At Sphaleron:
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Sphaleron rate

♦ How fast sphaleron transitions are happening

♦ How the rate behaves through the transition is important for 
Baryo/Lepto-genesis

♦ Studied extensively in the past without U(1):[D’Onofrio et al. ArXiv:1404.3565, others...]

[Arnold et al. Phys. Rev. D 36, 581–595 (1987) ] [Arnold et al. arXiv:hepph/9609481]

Broken phase Symmetric phase
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Why is sphaleron in a magnetic field 
interesting?

♦ 0. Magnetic fields could have been around during the electroweak phase 
transition.
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1. Electroweak phase transition gets modified
♦ The details of the electroweak phase transition is changed by an 

external (hyper)magnetic field.

 Crossover temperature is shifted to lower temperatures and the 
“strength” is modified.

 Higgs expectation value lowered thus sphaleron rate is increased.

♦ At zero temperature large magnetic fields yield interesting phenomena:

 Periodic lattice of vortices: Ambjørn-Olesen phase.

♦ Have not been seen in finite T
[Ambjørn & Olesen, Phys. Lett. B214, 565–569 (1988)]
[Chernodub et al. , 2206.14008]

[Kajantie et al. , hep-lat/9809004]
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EW transition shifts to lower temperature
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perturbative

♦ With increased magnetic field the EW transition shifts to lower 
temperatures and the transition gets “wider”.

Higgs expectation value Higgs susceptibility
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EW transition shifts to lower temperature
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♦ With increased magnetic field the EW transition shifts to lower 
temperatures and the transition gets “wider”.

♦ Tc = peak of the Higgs susceptibility
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2. Sphaleron has a magnetic dipole moment
♦ In a magnetic field the energy of the sphaleron can be 

lowered.

 For small magnetic fields a dipole interaction is 
expected:

♦ Sphaleron gets elongated along the magnetic field.
[L.-J. Ho & Rajantie, 2005.03125]:

Change to sphaleron energy at large fields:
Non dynamical simulations at zero temperature:
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3. U(1) CS number with external magnetic field
♦ With non-zero magnetic field the U(1) CS number also diffuses.

♦ Not restricted to integers in vacuum like the SU(2) counter part.

 Can have any value.

♦ Can lead to baryon and lepton number change on its own.
[Figueroa et. al., 1707.09967]...
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In the broken phase SU(2) and U(1) NCS are not independent
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♦ In the broken SU(2) and U(1) CS numbers are highly correlated, only 
the physical difference of the two gets suppressed, with non-zero 
magnetic field present.

♦ SU(2) Ncs on its own is not a good ‘order parameter’ 
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Dynamical lattice simulations of effective theory
♦ Effective 3d theory: in finite T get hierarcy of scales 

 Temporal and fermionic fields integrated out and we are left with 
3d bosonic theory.

♦ Realtime: dynamics of SU(2) soft modes are described by Langevin 
equation. (In practice use heatbath update.)

 not true for U(1), correct way to describe the its time evolution is 
not clear. However, in the broken phase should not affect sphaleron 
rate. 

[Kajantie et. al., hep-ph/9508379]

[Bödeker, arXiv:hep-ph/9801430.]
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Measuring the sphaleron rate

♦ Lattice definition of Ncs contains UV noise not related to sphaleron 
transitions.

♦ Sphaleron is big in lattice units 

♦ After every time step smooth the fields using gradient flow
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Measuring the sphaleron rate
♦ Track the Ncs from the cooled fields.

♦ With a magnetic field we also need to cool the U(1) fields and 
compute its Ncs.

[hep-ph/9805264, … ]
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Multicanonical method
♦ Sample with probability:

 Weight function W chosen to favor sphalerons

♦ Run simulation sampling with the weighted distribution to get canonical 
distribution

♦ Multicanonical method becomes very inefficient with large volumes
 Ncs is a global quantity: increasing lattice size does not help with statistics.

[ D’Onofrio et. al., 1207.0685, refs therein… ]

dynamicalstatistical
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External hypermagnetic field on the lattice

♦ Maintaining translational invariance on a lattice with a periodic 
boundary conditions requires to quantize the external magnetic field 
into flux quanta:

♦ Magnetic flux density:
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Volume & Lattice spacing dependence

♦ Volume dependence very 
mild after 
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[Laine et al., 2209.13804]
[Moore et al. 1011.1167]
[Moore&Rummukainen, hep-ph/9906259.]

♦ Continuum limit is computationally 
very expensive
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    Broken phase Symmetric phase

(no magnetic field)

[Arnold et al. Phys. Rev. D 36, 581–595 (1987) ] [Arnold et al. arXiv:hepph/9609481]
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Sphaleron rate in a magnetic field
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● Black solid lines: b=0 fits
● Grey dotted: b=0 fit shifted according to the 

shift of the pseudo critical temperature. 

● For small external fields the sphaleron dipole 
moment has bigger effect compared to the 
changing Higgs expectation value.
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Rate vs magnetic field at constant vev
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Solid line: semi analytical computation
assuming dipole&spherical approximations
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Rate vs magnetic field at constant T

0.0 0.2 0.4 0.6 0.8 1.0 1.2
b

−20

−19

−18

−17

−16

−15

−14

ln
Γ
/T

4

T = 155 GeV

Γ

ΓW

0.0 0.2 0.4 0.6 0.8 1.0 1.2
b

−30

−28

−26

−24

−22

−20

−18

−16

−14

ln
Γ
/T

4

T = 144 GeV

Γ

ΓW

♦ In the symmetric phase the full rate is slightly faster than its 
components alone

♦ In symmetric phase SU(2) rate does not change significantly.
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Conclusions
♦ We performed first dynamical lattice simulations investigating effects of external 

magnetic field on the sphaleron rate.

♦ Verified that U(1) does not change the result when magnetic field is zero.

♦ Sphaleron has a magnetic dipole moment and its energy can be lowered in a 
magnetic field.

 For small fields the dipole moment gives the biggest effect. Ultimately the 
shifting of the pseudocritical temperature dominates.

♦ Electroweak transition shifts to lower temperatures with increased external magnetic 
field

♦ Comparison to semianalytical result: simple dipole approximation works only for very 
small fields and quickly becomes invalid.
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Backup
♦ Sphaleron size

♦ U(1) modes with wavelength of 
sphaleron size has time scale also 
and are weakly coupled

♦ SU(2) is over damped, time scale  
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The U(1) rate
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[Daniel G. Figueroa et al. arxiv:1707.09967, arxiv:1904.11892]♦ (MHD), classical simulations
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Backup
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