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Cosmological 1%t-order phase transitions

Figure: Cutting et al. arXiv:1906.00480.

Bubbles nucleate, expand and collide

This creates long-lived fluid flows

70

And creates gravitational waves: thjTT) ~T;
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Scales

H *_ 1 Hubble size ‘

i

Hl>R >L,>T"!
\ﬁ/_/ \_\/_J

fluid microphysical
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Theoretical

GW signal depends strongly on 4
phase transition quantities,

QGW = F( T*7 R*,Oé*, VW)7
T, : transition temperature,
R, : bubble radius,

«, : transition strength,

Vi . bubble wall speed.

Each involves real-time physics.

uncertainties

dQew

10° 10* 0001 0.010 0.100
f (Hz)

Large uncertainties linked to
microphysical predictions.

1
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A direct attack is difficult

At high temperatures, time-dependent n-point functions,

(~0+ V")G(x, x') = 8(x - x) + / M(x, )Gy, x),

y

do not admit a simple perturbative expansion.

7777, /////
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Infrared strong coupling

Infrared bosons are highly occupied; the effective expansion
parameter c,g grows

2 1 ~ 2T
Qeff ~ & ﬁwg E

Softer modes are classically occupied and more strongly coupled:

hard : E~T= ag~g>~0.03,
soft : E~gT= agm~g~0.18,
ultrasoft : E~ g2T = Qe ~ gO ~ 1.
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The lattice is limited

Imt

to

Y .

® Real-time sign problem thwarts importance sampling,
(©OOO0)an = 5 | Do OBO0)e
C

e Chiral fermions, like e, er, can't be simulated on a lattice.
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Approach

Inspired by e.g. lattice results for the electroweak sphaleron rate,

T T T T T

T T
pure gauge

50000
s 05T |

ToglaH(TYT]

I I I I
130 140 150 160 170
T/GeV

See Jaakko Annala’s talk next

We'll discuss effective field theory approaches.
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Real-time effective theories
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Euclidean EFT

Consider a simple model with a scale hierarchy m < M,

1 2 m? 2, A 4

+1(a )2+—2 2, 4
2
& 2.2

+ 4¢X-
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Wilsonian EFT

o Split degrees of freedom {¢, x} based on energy.

duv
® Integrate out the UV modes: '

[ ps [Dxesienl = [Dore ( [ pow [ px e—s[@xl) 1
_ / Doy e~ Seilér]
T 91R

® Expansion in p?/A? and m?/A? becomes an
expansion in p?/M? and m?/M?

X
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Resummations with EFT
By first integrating out the UV modes
Seff[PIR] = SglodR] — |0g/D¢UVDX e~ SORTOLX+S6[0R]
~ SpldR] + /X %(mgff — m?)¢ig,

the daisy resummations arise naturally.

So do all other necessary resummations, order by order.
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Scale hierarchies in real time

p°

4

0 Ip|

More possible scale hierarchies:
* [p% Ip| <A
* lp| <A [p°] ~A
* |p°| <A [p|~A
* [1P° = Ipll < A, 1% [p| ~ A
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Real-time Wilsonian effective actions

Consider our Euclidean effective action from earlier,

Seft[PIR] = Sgl¢r] — |0g/D¢UvDX e~ SRt ouvxtS4ldre]

How can we generalise this to real-time?
e consider soft external modes: |p°|, |p| ~ gT
® Integrate over hard internal loops ky, |k| ~ 7T

® Taylor expand final result in soft quantities.
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Quantum thermal evolution

Imt A

to t

Y

\J/

Sl

(O(t)0(0))qm = %Tr {e*’:’/T (e”:’t(’)(O)e*"Ht) (’)(0)}
- /C DeO(£)0(0)e’S1¥)
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Classicalisation

® Bose enhancement of IR modes
1
ms(E) = 77

T
— 1.
E >

Q

® Dynamics of QFT at nucleation
scale (Anuca << T) expected to be
quasi-classical.

"Anucl

Figure: Nucleation scale
much lower than thermal
scale.
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Classical thermal evolution

Hamilton's equations determine real-time correlation functions,

o(t,x) = {¢(t, x), H},
7(t,x) = {n(t,x), H},

with thermal initial conditions,

(0, x1)$(0, x2))c1 = le / DdDr(0, x1) (0, xp)e HIem/ T
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Classical thermal evolution

Hamilton's equations determine real-time correlation functions,

o(t,x) = {¢(t, x), H},
7(t,x) = {n(t,x), H},

with thermal initial conditions,

(0, x1)$(0, x2))c1 = le / DdDr(0, x1) (0, xp)e HIem/ T

Looks pretty far from the quantum case
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Quantum versus classical

® (Classical UV catastrophe - the cut-off scale dominates!

ol
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Quantum versus classical

® (Classical UV catastrophe - the cut-off scale dominates!

#e

® Dimensional reduction counterterms cancel UV catastrophe —
finite result (c.f. Kari Rummukainen'’s talk). Aarts & Smit '97
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Quantum versus classical

® (Classical UV catastrophe - the cut-off scale dominates!

® Dimensional reduction counterterms cancel UV catastrophe —
finite result (c.f. Kari Rummukainen'’s talk). Aarts & Smit '97

® Moreover, the finite classical and quantum remainders agree!

((t1, P1)9(t2,P2))am ~ ({d(t1,P1), P(t2,P2)})cl

.

no sign problem

Bodeker '97
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Effective stochastic theory on the lattice

Nucleation rate (volume averaged), 0:-0.015, m?:-0.081

Results from Anna Kormu's talk
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Hefr = /d3X [27T2 + 5(3@)2 + Oeff ) + E(mgff + 6mZg)” +

2
8eff
41

— ~Ae B

¢4
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Soft gauge fields

The above strategy is more complicated for gauge fields:

® Thermal initial conditions are as before, based on the 3d EFT.

® Evolution equations (here for Abelian-Higgs model) become

DMDN¢ = —msff(b - 2A(¢*¢)¢7
OuF™ = M A, + 2ie(¢* D¥ ¢ — ¢D ¢*),

where

e?T? [dQ, Po
uv — _ (=7 WV
MY (P) 3 /47r [nn—f—vv—v'P}.

® Nonlocality can be resolved by adding new fields.
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Recent developments in hard-thermal loops

The hard-thermal loop effective theory for gauge fields (here shown
for QED)

OuF" = (Mo + MLo)Ans
has been recently extended to NLO,
4T2 a0 0\2 2 0
MuLo(P) = £ / Lo vhvY (P)° _ 2
82 47 (v-P2 v.P

0
+ [v¥n” + nHv"] LP - n“n”}.
V.
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Langevin equations
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Influence functional

Split the field based on spatial momentum

&(t,p) = O(A — |p))®(t,p) +0(Ip| — N)®(t,p),

dRr dyy

and integrate over the UV modes,
/D¢D¢/piei(5[¢]5[¢’])

_ / DORDG|g i,/ (STORI-SIORI S0 0fs]).

The influence functional S gives the effect of the UV modes, in
the in-in formalism.
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Complex influence functionals

In general the evolution of the IR modes is nonunitary

ei(s[d)lR]_5[¢|/R]+RESIF[¢IR7¢|/R]) % e_ImSIF[cDIqu)fR]‘
This complicates the naive semiclassical limit,

(5 .
5o PRI+ ReSF[®r, ir] + IIMSiE[®R, Blg]) = 0 777
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Stochastic semiclassical limit

A possible solution is to introduce new stochastic variables, e.g.

e~ IMSE[PR PRI o —3PR T2 ¢|R

1.1
— DXe_EX'IQ XX PR
vdetZ /

The effective action for P is then real.
The semiclassical equations of motion become Langevin,

5[¢|R] 4+ — ReS||:[¢|R, (DIR]

xX()x()) = Za(x, ).

o
0P PR
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Effective stochastic \¢*

Explicitly, for the A¢* theory,

—|:|¢|R(X) + m2¢|R(x) + A¢|R(X)3+ / d4yReF(2)(x — y)¢|R(y)

=x(x)+...

where the stochastic variable satisfies

(XCIX()) = ImTB(x — y),

and where T'®) is the UV contribution to the IR self-energy. Here
we have made an expansion in powers of ¢r.
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Time evolution of ultrasoft gauge bosons

Starting from HTLs for gauge fields, one can integrate out the soft
scale, to arrive at an effective theory for the ultrasoft scale.

< U \u soft: E~gT

_ ultrasoft: E ~ g?T /7

To leading-log order the result is first-order Langevin,

553
T5Az

(Do) = +&

where S3 is the Euclidean action of the 3d EFT, v ~ log(1/g)/ T
is the colour damping, and &; is a Gaussian noise satisfying

(€7 (£,x)EP (u,y)) = 290;67°0(x — y)3(t — u).
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Time evolution of gauge-Higgs system

For gauge-Higgs theory, the coupled Langevin equations read

053

(D:Aj)? = *’Y(M?

+ &7

053
D¢ = —77’7575T + &4
where the Higgs noise terms satisfies
(ot )EL(uy)) = 2L6(x — y)3(t — u),

with p ~ 1/g% > 1, so that the Higgs evolves faster.

26/28



15 1
=19 t=39
L4 L
e @
B . ©
. 13 1
20 20
» 49 . 49
z v z

20 12 20 1.2

Ao o

o o o 0

o 2
A0 0 . Ao % 11
2 % 2 <0
Y % B Yo
y © » x y © % x
o Sn 1 o Sn 1
15 15
t=09 =209
1 L
@
0 .
R 13 13
K
» 4o So
» 12
w©
o 0
© % .
® %
» Yo
v W %
o 5

OG, Giiyer & Rummukainen '22

27 /28



Conclusions

Lattice simulations are invaluable for phase transitions.

Direct real-time lattice simulations not possible.

Classical stochastic theories describe IR dynamics at high-T:

- Initial fluctuations + classical evolution
- Langevin stochastic evolution

Successfully applied to bubble nucleation, and sphaleron rate.

Bubble wall speed? Electroweak baryogenesis? Initial studies,
but not yet fully exploited.
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Lattice simulations are invaluable for phase transitions.

Direct real-time lattice simulations not possible.

Classical stochastic theories describe IR dynamics at high-T:

- Initial fluctuations + classical evolution
- Langevin stochastic evolution

Successfully applied to bubble nucleation, and sphaleron rate.

Bubble wall speed? Electroweak baryogenesis? Initial studies,
but not yet fully exploited.

Thanks for listening!
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Electroweak nucleation rate results

-log(nucleation rate)

lattice versus EFT expansion

160
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Yo — y (“temperature”)
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