

Swiss National
Science Foundation
funded by the SNSF (grant no. TMPFP2_210064)
${ }^{1}$ University of Bern
Albert Einstein Center for Fundamental Physics \& Institute for Theoretical Physics Bern, Switzerland

Tobias Rindlisbacher ${ }^{1}$

Nordic Lattice Meeting 2023, June 6-8, 2023

Introduction

What is entanglement?
\rightarrow Quantum physical implementation of conservation laws

Introduction

What is entanglement?

\rightarrow Quantum physical implementation of conservation laws

- Decay of spin-0 particle: $\quad s=0$

Introduction

What is entanglement?

\rightarrow Quantum physical implementation of conservation laws

- Decay of spin-0 particle: $\quad s=0 \longrightarrow s_{1}+s_{2}=0$

Introduction

What is entanglement?

\rightarrow Quantum physical implementation of conservation laws
■ Decay of spin-0 particle: $\quad s=0 \longrightarrow s_{1}+s_{2}=0$

- Pair creation from vacuum: $\quad s=0 \quad \longrightarrow \quad s_{1}+s_{2}=0$

Introduction

What is entanglement?

\rightarrow Quantum physical implementation of conservation laws
■ Decay of spin-0 particle: $\quad s=0 \longrightarrow s_{1}+s_{2}=0$

- Pair creation from vacuum: $\quad s=0 \longrightarrow s_{1}+s_{2}=0$

Introduction

What is entanglement?

\rightarrow Quantum physical implementation of conservation laws
■ Decay of spin-0 particle: $\quad s=0 \quad \longrightarrow \quad s_{1}+s_{2}=0$

- Pair creation from vacuum: $\quad s=0 \longrightarrow s_{1}+s_{2}=0$
- In a quantum field theory:

Introduction

What is entanglement?

\rightarrow Quantum physical implementation of conservation laws
■ Decay of spin-0 particle: $\quad s=0 \quad \longrightarrow \quad s_{1}+s_{2}=0$

- Pair creation from vacuum: $\quad s=0 \longrightarrow s_{1}+s_{2}=0$
- In a quantum field theory:

\rightarrow correlations

Introduction

What is entanglement entropy?

■ Preliminaries:
Hilbert space: \mathcal{H}, state vector: $|\psi\rangle \in \mathcal{H}$
Density matrix:

$$
\begin{aligned}
& \rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \quad, \quad\left|\psi_{i}\right\rangle \in \mathcal{H} \quad \forall i, \quad \sum_{i} p_{i}=1 \\
& \operatorname{tr}(\rho)=1
\end{aligned}
$$

pure state: $\rho=|\psi\rangle\langle\psi|$
$\rightarrow \quad \rho^{2}=\rho$ (projector) $\rightarrow \operatorname{tr}\left(\rho^{2}\right)=1$
mixed state: $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$
$\rightarrow \quad \rho^{2} \neq \rho$ (not projector) $\rightarrow \operatorname{tr}\left(\rho^{2}\right)<1$

Introduction

What is entanglement entropy?

■ Bipartite quantum system: $\quad \mathcal{H}_{A B}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
pick pure state: $\quad|\psi\rangle_{A B} \in \mathcal{H}_{A B}$
pick orthonormal bases: $|n\rangle_{A} \in \mathcal{H}_{A},|m\rangle_{B} \in \mathcal{H}_{B}$
$\rightarrow \quad|\psi\rangle_{A B}=\sum_{m n} a_{m n}|m\rangle_{A} \otimes|n\rangle_{B} \quad, \quad \sum_{m n}\left|a_{m n}\right|^{2}=1$
$\rightarrow \quad \rho_{A B}=|\psi\rangle_{A B}\langle\psi|=\sum_{m n k \mid} a_{m n} a_{k \mid}^{*}|m\rangle_{A}\langle k| \otimes|n\rangle_{B}\langle l|$ (notation: $|\psi\rangle_{C}\langle\psi|=|\psi\rangle_{C} \otimes_{C}\langle\psi|$)

Introduction

What is entanglement entropy?

■ Bipartite quantum system: $\quad \mathcal{H}_{A B}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
pick pure state: $\quad|\psi\rangle_{A B} \in \mathcal{H}_{A B}$
pick orthonormal bases: $|n\rangle_{A} \in \mathcal{H}_{A},|m\rangle_{B} \in \mathcal{H}_{B}$
$\rightarrow \quad|\psi\rangle_{A B}=\sum_{m n} a_{m n}|m\rangle_{A} \otimes|n\rangle_{B} \quad, \quad \sum_{m n}\left|a_{m n}\right|^{2}=1$
$\rightarrow \quad \rho_{A B}=|\psi\rangle_{A B}\langle\psi|=\sum_{m n k l} a_{m n} a_{k l}^{*}|m\rangle_{A}\langle k| \otimes|n\rangle_{B}\langle I|$

- Reduced density matrix:

$$
\rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right)=\sum_{m k l} a_{m l} a_{k l}^{*}|m\rangle_{A}\langle k|
$$

Introduction

What is entanglement entropy?

■ Bipartite quantum system: $\quad \mathcal{H}_{A B}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
pick pure state: $\quad|\psi\rangle_{A B} \in \mathcal{H}_{A B}$
pick orthonormal bases: $|n\rangle_{A} \in \mathcal{H}_{A},|m\rangle_{B} \in \mathcal{H}_{B}$
$\rightarrow \quad|\psi\rangle_{A B}=\sum_{m n} a_{m n}|m\rangle_{A} \otimes|n\rangle_{B} \quad, \quad \sum_{m n}\left|a_{m n}\right|^{2}=1$
$\rightarrow \quad \rho_{A B}=|\psi\rangle_{A B}\langle\psi|=\sum_{m n k l} a_{m n} a_{k l}^{*}|m\rangle_{A}\langle k| \otimes|n\rangle_{B}\langle I|$

- Reduced density matrix:

$$
\rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right)=\sum_{m k l} a_{m l} a_{k l}^{*}|m\rangle_{A}\langle k|
$$

\rightarrow in general mixed state $\Longrightarrow \operatorname{tr}\left(\rho_{A}^{2}\right)<1 \Longrightarrow$ entanglement

Introduction

What is entanglement entropy?

■ Bipartite quantum system: $\quad \mathcal{H}_{A B}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
pick pure state: $\quad|\psi\rangle_{A B} \in \mathcal{H}_{A B}$
pick orthonormal bases: $|n\rangle_{A} \in \mathcal{H}_{A},|m\rangle_{B} \in \mathcal{H}_{B}$
$\rightarrow \quad|\psi\rangle_{A B}=\sum_{m n} a_{m n}|m\rangle_{A} \otimes|n\rangle_{B} \quad, \quad \sum_{m n}\left|a_{m n}\right|^{2}=1$
$\rightarrow \quad \rho_{A B}=|\psi\rangle_{A B}\langle\psi|=\sum_{m n k l} a_{m n} a_{k l}^{*}|m\rangle_{A}\langle k| \otimes|n\rangle_{B}\langle I|$

- Reduced density matrix:

$$
\rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right)=\sum_{m k l} a_{m l} a_{k l}^{*}|m\rangle_{A}\langle k|
$$

\rightarrow in general mixed state $\Longrightarrow \operatorname{tr}\left(\rho_{A}^{2}\right)<1 \Longrightarrow$ entanglement
$\rightarrow|\psi\rangle_{A B}=|\psi\rangle_{A} \otimes|\psi\rangle_{B} \quad \Longrightarrow \quad \operatorname{tr}\left(\rho_{A}^{2}\right)=1 \quad \Longrightarrow$ no entanglement

Introduction

What is entanglement entropy?

■ Reduced density matrix:

$$
\begin{aligned}
\rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right)=\sum_{m k l} a_{m l} a_{k \mid}^{*}|m\rangle_{A}\langle k| \\
\operatorname{tr}\left(\rho_{A}^{2}\right)<1 \Rightarrow \text { entanglement } \Longleftrightarrow \operatorname{tr}\left(\rho_{A}^{2}\right)=1 \Rightarrow \text { no entanglement }
\end{aligned}
$$

Introduction

What is entanglement entropy?

■ Reduced density matrix:

$$
\begin{aligned}
& \rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right)=\sum_{m k l} a_{m l} a_{k \mid}^{*}|m\rangle_{A}\langle k| \\
& \operatorname{tr}\left(\rho_{A}^{2}\right)<1 \Rightarrow \text { entanglement } \Longleftrightarrow \operatorname{tr}\left(\rho_{A}^{2}\right)=1 \Rightarrow \text { no entanglement }
\end{aligned}
$$

■ Entanglement measures:
\rightarrow Purity: $\operatorname{tr}\left(\rho_{A}^{2}\right)$
$\rightarrow \quad$ Rényi entropies: $H_{s}(A)=-\frac{1}{s-1} \log \operatorname{tr}\left(\rho_{A}^{s}\right) \quad, \quad s=2,3, \ldots$
$\rightarrow \quad$ Entanglement entropy: $\quad S_{E E}(A)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s}=\lim _{s \rightarrow 1} \frac{\partial\left((s-1) H_{s}(A)\right)}{\partial s}=\lim _{s \rightarrow 1} H_{s}(A)$

Introduction

What is entanglement entropy?

■ Reduced density matrix:

$$
\begin{aligned}
& \rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right)=\sum_{m k l} a_{m l} a_{k \mid}^{*}|m\rangle_{A}\langle k| \\
& \operatorname{tr}\left(\rho_{A}^{2}\right)<1 \Rightarrow \text { entanglement } \Longleftrightarrow \operatorname{tr}\left(\rho_{A}^{2}\right)=1 \Rightarrow \text { no entanglement }
\end{aligned}
$$

■ Entanglement measures:
\rightarrow Purity: $\operatorname{tr}\left(\rho_{A}^{2}\right)$
$\rightarrow \quad$ Rényi entropies: $H_{s}(A)=-\frac{1}{s-1} \log \operatorname{tr}\left(\rho_{A}^{s}\right) \quad, \quad s=2,3, \ldots$
\rightarrow Entanglement entropy: $\quad S_{E E}(A)=-\operatorname{tr}\left(\rho_{A} \log \left(\rho_{A}\right)\right) \quad$ (Von Neumann entropy)

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\qquad

- $\operatorname{SU}(N)$ gauge theory on $N_{s}^{d-1} \times N_{t}$ lattice

Partition function: $Z\left(N_{t}, N_{s}\right)=\int \mathcal{D}[U] \mathrm{e}^{-S_{G}[U]}$

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\qquad
■ $\operatorname{SU}(N)$ gauge theory on $N_{s}^{d-1} \times N_{t}$ lattice
Partition function: $\quad Z\left(N_{t}, N_{S}\right)=\int \mathcal{D}[U] \mathrm{e}^{-S_{G}[U]}$
\rightarrow Density matrix element:

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\qquad

- $\operatorname{SU}(N)$ gauge theory on $N_{s}^{d-1} \times N_{t}$ lattice

Partition function: $\quad Z\left(N_{t}, N_{s}\right)=\int \mathcal{D}[U] \mathrm{e}^{-S_{G}[U]}$
\rightarrow Divide lattice into two parts (A, B)

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\qquad
■ $\operatorname{SU}(N)$ gauge theory on $N_{s}^{d-1} \times N_{t}$ lattice
Partition function: $\quad Z\left(N_{t}, N_{s}\right)=\int \mathcal{D}[U] \mathrm{e}^{-S_{G}[U]}$
\rightarrow Divide lattice into two parts (A, B)
$\rightarrow \quad$ Reduced density matrix ρ_{A} for part A

N_{s}

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\qquad
■ $\operatorname{SU}(N)$ gauge theory on $N_{s}^{d-1} \times N_{t}$ lattice
Partition function: $\quad Z\left(N_{t}, N_{s}\right)=\int \mathcal{D}[U] \mathrm{e}^{-S_{G}[U]}$
$\rightarrow \quad$ Divide lattice into two parts (A, B)
$\rightarrow \quad$ Reduced density matrix ρ_{A} for part A

\rightarrow Entanglement entropy:
$S_{E E}=-\operatorname{tr}_{A}\left(\rho_{A} \log \rho_{A}\right) \quad$ (how ?)

$\longrightarrow x$

$$
t=2
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

N_{s}

- $\operatorname{SU}(N)$ gauge theory on $N_{s}^{d-1} \times N_{t}$ lattice

Partition function: $\quad Z\left(N_{t}, N_{S}\right)=\int \mathcal{D}[U] \mathrm{e}^{-S_{G}[U]}$
$\rightarrow \quad$ Divide lattice into two parts (A, B)
$\rightarrow \quad$ Reduced density matrix ρ_{A} for part A

$$
\left\langle\psi_{A, 1}\right| \rho_{A}\left|\psi_{A, 2}\right\rangle=\left[\begin{array}{|c|c|c|c|c}
---\bar{r}_{B} \\
& & & & \bar{\psi}_{A, 2} \\
\hline & & & & \\
\hline & & & & \\
\hline & & \\
\hline & r_{B} & & \psi_{A, 1} \\
\hline
\end{array}\right.
$$

\rightarrow Replica method for s-th Rényi entropy:
$H_{s}\left(I, N_{t}, N_{s}\right)=\frac{1}{1-s} \log \operatorname{tr}\left(\rho_{A}^{s}\right)=\frac{1}{1-s} \log \frac{Z_{c}\left(I, s, N_{t}, N_{s}\right)}{Z^{s}\left(N_{t}, N_{s}\right)}$
with "cut partition function" $Z_{C}\left(I, s, N_{t}, N_{s}\right)$

$$
\begin{aligned}
& \rightarrow \quad Z_{c}\left(I=0, s, N_{t}, N_{s}\right)=Z^{s}\left(N_{t}, N_{s}\right) \quad \forall s \in \mathbb{N} \\
& \rightarrow \quad Z_{c}\left(I=N_{s}, s, N_{t}, N_{s}\right)=Z\left(s N_{t}, N_{s}\right) \quad \forall s \in \mathbb{N}
\end{aligned}
$$

N_{s}

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\rightarrow Entanglement entropy (EE):

$$
S_{E E}\left(I, N_{t}, N_{s}\right)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s}
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\rightarrow Entanglement entropy (EE):

$$
\begin{aligned}
& S_{E E}\left(I, N_{t}, N_{s}\right)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s} \\
&=-\left(\lim _{s \rightarrow 1} \frac{\partial \log Z_{c}\left(I, s, N_{t}, N_{s}\right)}{\partial s}-\log Z\left(N_{t}, N_{s}\right)\right) \\
& \approx-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)-\left(-2 \log Z\left(N_{t}, N_{s}\right)\right) \\
&=-\log \operatorname{tr}\left(\rho_{A}^{2}\right)=H_{2}\left(I, N_{t}, N_{s}\right)
\end{aligned}
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\rightarrow Entanglement entropy (EE):

$$
\begin{aligned}
& S_{E E}\left(I, N_{t}, N_{s}\right)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s} \\
&=-\left(\lim _{s \rightarrow 1} \frac{\partial \log Z_{c}\left(I, s, N_{t}, N_{s}\right)}{\partial s}-\log Z\left(N_{t}, N_{s}\right)\right) \\
& \approx-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)-\left(-2 \log Z\left(N_{t}, N_{s}\right)\right) \\
&=-\log \operatorname{tr}\left(\rho_{A}^{2}\right)=H_{2}\left(I, N_{t}, N_{s}\right)
\end{aligned}
$$

\rightarrow measure free energy difference

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\rightarrow Entanglement entropy (EE):

$$
\begin{aligned}
& S_{E E}\left(I, N_{t}, N_{s}\right)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s} \\
&=-\left(\lim _{s \rightarrow 1} \frac{\partial \log Z_{c}\left(I, s, N_{t}, N_{s}\right)}{\partial s}-\log Z\left(N_{t}, N_{s}\right)\right) \\
& \approx-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)-\left(-2 \log Z\left(N_{t}, N_{s}\right)\right) \\
&=-\log \operatorname{tr}\left(\rho_{A}^{2}\right)=H_{2}\left(I, N_{t}, N_{s}\right)
\end{aligned}
$$

\rightarrow measure free energy difference

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\rightarrow Entanglement entropy (EE):

$$
\begin{aligned}
& S_{E E}\left(I, N_{t}, N_{s}\right)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s} \\
&=-\left(\lim _{s \rightarrow 1} \frac{\partial \log Z_{c}\left(I, s, N_{t}, N_{s}\right)}{\partial s}-\log Z\left(N_{t}, N_{s}\right)\right) \\
& \approx-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)-\left(-2 \log Z\left(N_{t}, N_{s}\right)\right) \\
&=-\log \operatorname{tr}\left(\rho_{A}^{2}\right)=H_{2}\left(I, N_{t}, N_{s}\right)
\end{aligned}
$$

\rightarrow measure free energy difference
Issue: UV-divergent piece $\frac{S_{E E}}{|\partial A|}=\frac{C_{0}}{\epsilon^{2}}-\frac{C}{\mid q}+($ finite $)$

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\rightarrow Entanglement entropy (EE):

$$
\begin{aligned}
& S_{E E}\left(I, N_{t}, N_{s}\right)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s} \\
&=-\left(\lim _{s \rightarrow 1} \frac{\partial \log Z_{c}\left(I, s, N_{t}, N_{s}\right)}{\partial s}-\log Z\left(N_{t}, N_{s}\right)\right) \\
& \approx-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)-\left(-2 \log Z\left(N_{t}, N_{s}\right)\right) \\
&=-\log \operatorname{tr}\left(\rho_{A}^{2}\right)=H_{2}\left(I, N_{t}, N_{s}\right)
\end{aligned}
$$

\rightarrow measure free energy difference

$$
\text { Issue: UV-divergent piece } \frac{S_{E E}}{|\partial A|}=\frac{C_{0}}{\epsilon^{2}}-\frac{C}{\mid q}+(\text { finite })
$$

\rightarrow Instead of EE, measure discrete derivative w.r.t. $I>0$:

$$
\begin{aligned}
& \left.\frac{\partial S_{E E}\left(I^{\prime}, N_{t}, N_{s}\right)}{\partial I^{\prime}}\right|_{I^{\prime}=I+1 / 2} \approx \\
& \quad-\log Z_{c}\left(I+1,2, N_{t}, N_{s}\right)-\left(-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)\right)
\end{aligned}
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\rightarrow Entanglement entropy (EE):

$$
\begin{aligned}
& S_{E E}\left(I, N_{t}, N_{s}\right)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s} \\
&=-\left(\lim _{s \rightarrow 1} \frac{\partial \log Z_{c}\left(I, s, N_{t}, N_{s}\right)}{\partial s}-\log Z\left(N_{t}, N_{s}\right)\right) \\
& \approx-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)-\left(-2 \log Z\left(N_{t}, N_{s}\right)\right) \\
&=-\log \operatorname{tr}\left(\rho_{A}^{2}\right)=H_{2}\left(I, N_{t}, N_{s}\right)
\end{aligned}
$$

\rightarrow measure free energy difference

$$
\text { Issue: UV-divergent piece } \frac{S_{E E}}{|\partial A|}=\frac{C_{0}}{\epsilon^{2}}-\frac{C}{\mid q}+(\text { finite })
$$

\rightarrow Instead of EE , measure discrete derivative w.r.t. $I>0$:

$$
\begin{aligned}
& \left.\frac{\partial S_{E E}\left(I^{\prime}, N_{t}, N_{s}\right)}{\partial I^{\prime}}\right|_{I^{\prime}=I+1 / 2} \approx \\
& -\log Z_{c}\left(I+1,2, N_{t}, N_{s}\right)-\left(-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)\right)
\end{aligned}
$$

N_{s}

Entanglement entropy on the lattice

Entanglement entropy on the lattice [P. Calabrese, J. Cardy (2004)]

\rightarrow Entanglement entropy (EE):

$$
\begin{aligned}
& S_{E E}\left(I, N_{t}, N_{s}\right)=-\lim _{s \rightarrow 1} \frac{\partial \log \operatorname{tr}\left(\rho_{A}^{s}\right)}{\partial s} \\
&=-\left(\lim _{s \rightarrow 1} \frac{\partial \log Z_{c}\left(I, s, N_{t}, N_{s}\right)}{\partial s}-\log Z\left(N_{t}, N_{s}\right)\right) \\
& \approx-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)-\left(-2 \log Z\left(N_{t}, N_{s}\right)\right) \\
&=-\log \operatorname{tr}\left(\rho_{A}^{2}\right)=H_{2}\left(I, N_{t}, N_{s}\right)
\end{aligned}
$$

\rightarrow measure free energy difference

$$
\text { Issue: UV-divergent piece } \frac{S_{E E}}{|\partial A|}=\frac{C_{0}}{\epsilon^{2}}-\frac{C}{\mid q}+(\text { finite })
$$

\rightarrow Instead of EE, measure discrete derivative w.r.t. $I>0$:

$$
\begin{aligned}
& \left.\frac{\partial S_{E E}\left(I^{\prime}, N_{t}, N_{s}\right)}{\partial I^{\prime}}\right|_{I^{\prime}=I+1 / 2} \approx \\
& \quad-\log Z_{c}\left(I+1,2, N_{t}, N_{s}\right)-\left(-\log Z_{c}\left(I, 2, N_{t}, N_{s}\right)\right)
\end{aligned}
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
$\rightarrow \quad I \rightarrow I+1$ is non-local change \rightarrow overlap problem

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
$\rightarrow \quad I \rightarrow I+1$ is non-local change \rightarrow overlap problem
■ Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
\rightarrow interpolating partition function:

$$
Z_{l}^{*}(\alpha)=\int \mathcal{D}[U] \exp \left(-(1-\alpha) S_{l}[U]-\alpha S_{l+1}[U]\right) \text {, with } \alpha \in[0,1]
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
$\rightarrow \quad I \rightarrow I+1$ is non-local change \rightarrow overlap problem
■ Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
\rightarrow interpolating partition function:

$$
Z_{l}^{*}(\alpha)=\int \mathcal{D}[U] \exp \left(-(1-\alpha) S_{l}[U]-\alpha S_{l+1}[U]\right) \text {, with } \alpha \in[0,1]
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
$\rightarrow \quad I \rightarrow I+1$ is non-local change \rightarrow overlap problem
- Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
\rightarrow interpolating partition function:

$$
Z_{l}^{*}(\alpha)=\int \mathcal{D}[U] \exp \left(-(1-\alpha) S_{l}[U]-\alpha S_{l+1}[U]\right) \text {, with } \alpha \in[0,1]
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
$\rightarrow \quad I \rightarrow I+1$ is non-local change \rightarrow overlap problem
■ Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
\rightarrow interpolating partition function:

$$
Z_{l}^{*}(\alpha)=\int \mathcal{D}[U] \exp \left(-(1-\alpha) S_{l}[U]-\alpha S_{l+1}[U]\right) \text {, with } \alpha \in[0,1]
$$

\rightarrow measure $\left\langle S_{l+1}-S_{l}\right\rangle_{\alpha}=-\frac{\partial \log Z_{l}^{*}(\alpha)}{\partial \alpha}$ for $\alpha \in[0,1]$

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
$\rightarrow \quad I \rightarrow I+1$ is non-local change \rightarrow overlap problem
■ Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
\rightarrow interpolating partition function:

$$
Z_{I}^{*}(\alpha)=\int \mathcal{D}[U] \exp \left(-(1-\alpha) S_{l}[U]-\alpha S_{l+1}[U]\right) \text {, with } \alpha \in[0,1]
$$

\rightarrow measure $\left\langle S_{l+1}-S_{l}\right\rangle_{\alpha}=-\frac{\partial \log Z_{l}^{*}(\alpha)}{\partial \alpha}$ for $\alpha \in[0,1]$
\rightarrow interpolate and integrate:

$$
\left.\frac{\partial S_{E E}\left(I^{\prime}, N_{t}, N_{s}\right)}{\partial I^{\prime}}\right|_{l^{\prime}=I+1 / 2} \approx-\int_{0}^{1} \mathrm{~d} \alpha \frac{\partial \log Z_{l}^{*}(\alpha)}{\partial \alpha}=\int_{0}^{1} \mathrm{~d} \alpha\left\langle S_{l+1}-S_{l}\right\rangle_{\alpha}
$$

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
$\rightarrow \quad I \rightarrow I+1$ is non-local change \rightarrow overlap problem
- Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
\rightarrow interpolating partition function:

$$
Z_{I}^{*}(\alpha)=\int \mathcal{D}[U] \exp \left(-(1-\alpha) S_{l}[U]-\alpha S_{I+1}[U]\right) \text {, with } \alpha \in[0,1]
$$

\rightarrow measure $\left\langle S_{I+1}-S_{l}\right\rangle_{\alpha}=-\frac{\partial \log Z_{l}^{*}(\alpha)}{\partial \alpha}$ for $\alpha \in[0,1]$
\rightarrow interpolate and integrate:

$$
\left.\frac{\partial S_{E E}\left(I^{\prime}, N_{t}, N_{s}\right)}{\partial I^{\prime}}\right|_{I^{\prime}=I+1 / 2} \approx-\int_{0}^{1} \mathrm{~d} \alpha \frac{\partial \log Z_{I}^{*}(\alpha)}{\partial \alpha}=\int_{0}^{1} \mathrm{~d} \alpha\left\langle S_{I+1}-S_{I}\right\rangle_{\alpha}
$$

Issue: huge free energy barrier \rightarrow bad signal to noise ratio

data from [Y. Nakagawa et al. (2009)]

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:
$\rightarrow \quad I \rightarrow I+1$ is non-local change \rightarrow overlap problem
■ Approach from literature: [P. V. Buividovich, M. I. Polikarpov (2008)],[Y. Nakagawa et al. (2009)]
\rightarrow interpolating partition function:

$$
Z_{I}^{*}(\alpha)=\int \mathcal{D}[U] \exp \left(-(1-\alpha) S_{l}[U]-\alpha S_{I+1}[U]\right) \text {, with } \alpha \in[0,1]
$$

\rightarrow measure $\left\langle S_{I+1}-S_{l}\right\rangle_{\alpha}=-\frac{\partial \log Z_{l}^{*}(\alpha)}{\partial \alpha}$ for $\alpha \in[0,1]$
\rightarrow interpolate and integrate:

$$
\left.\frac{\partial S_{E E}\left(I^{\prime}, N_{t}, N_{s}\right)}{\partial I^{\prime}}\right|_{I^{\prime}=I+1 / 2} \approx-\int_{0}^{1} \mathrm{~d} \alpha \frac{\partial \log Z_{I}^{*}(\alpha)}{\partial \alpha}=\int_{0}^{1} \mathrm{~d} \alpha\left\langle S_{I+1}-S_{I}\right\rangle_{\alpha}
$$

Issue: huge free energy barrier \rightarrow bad signal to noise ratio

data from [Y. Nakagawa et al. (2009)]

Entanglement entropy on the lattice

Entanglement entropy on the lattice

- Measuring free energy differences:

\rightarrow measure $\left\langle S_{I+1}-S_{l}\right\rangle_{\alpha}=-\frac{\partial \log Z_{l}^{*}(\alpha)}{\partial \alpha}$ for $\alpha \in[0,1]$
\rightarrow interpolate and integrate:

$$
\left.\frac{\partial S_{E E}\left(I^{\prime}, N_{t}, N_{s}\right)}{\partial I^{\prime}}\right|_{I^{\prime}=I+1 / 2} \approx-\int_{0}^{1} \mathrm{~d} \alpha \frac{\partial \log Z_{l}^{*}(\alpha)}{\partial \alpha}=\int_{0}^{1} \mathrm{~d} \alpha\left\langle S_{I+1}-S_{I}\right\rangle_{\alpha}
$$

Issue: huge free energy barrier \rightarrow bad signal to noise ratio

$\rightarrow Z_{l}^{*}(\alpha)$ imposes simultaneously BC_{A} and BC_{B} on plaquettes P_{1}, P_{2} if $\alpha \neq 0,1$.

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,

■ interpolate by deforming entangling surface.

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,

■ interpolate by deforming entangling surface.

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

■ Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,

■ interpolate by deforming entangling surface.

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
P_{1}, P_{2} simultaneously,

■ interpolate by deforming entangling surface.

N_{s}

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

■ Instead of "blending" from BC_{B} to BC_{A} for all plaquettes
 P_{1}, P_{2} simultaneously,

■ interpolate by deforming entangling surface.

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in $(2+1)$ dimensions

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (2+1) dimensions

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

■ Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,

- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
$\rightarrow \quad$ in $(2+1)$ dimensions

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

■ Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,

- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in $(2+1)$ dimensions

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

■ Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,

- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in $(2+1)$ dimensions

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

■ Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,

- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (2+1) dimensions

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

■ Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,

- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (2+1) dimensions

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation method

How can we avoid (huge) free energy barriers?

- Instead of "blending" from BC_{B} to BC_{A} for all plaquettes P_{1}, P_{2} simultaneously,
- interpolate by deforming entangling surface.
\rightarrow Examples for specific ordering:
\rightarrow in (3+1) dimensions

Entangling surface deformation method

Free-energy plateau

- Why does the free energy initially not change?

Entangling surface deformation method

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.

Entangling surface deformation method

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.

Entangling surface deformation method

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?

Entangling surface deformation method

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?

Entangling surface deformation method

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?

Entangling surface deformation method

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?

Entangling surface deformation method

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?

Entangling surface deformation method

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?

Entangling surface deformation method

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?

Entangling surface deformation method

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?
Only if either for x_{1} or x_{2} all adjacent spatial link have same BC.

$\rightarrow x$

$$
l=2
$$

Entangling surface deformation method

Free-energy plateau

- Why does the free energy initially not change?

Change of temp. BC over spatial link $\left(x_{1} \rightarrow x_{2}\right) \Leftrightarrow P_{1}, P_{2}$ swap their upper links.
\rightarrow Trivial if to-be-swapped links can be gauge transformed individually.
\rightarrow When is this possible?
Only if either for x_{1} or x_{2} all adjacent spatial link have same BC.

Entangling surface deformation method

Can we avoid free energy barriers completely?

- Yes \rightarrow use "tilted lattice"

Entangling surface deformation method

Can we avoid free energy barriers completely?

■ Yes \rightarrow use "tilted lattice"
\rightarrow example for $(2+1) d$ lattice:

$$
15\left[\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 10 & 1
\end{array}\right]
$$

Entangling surface deformation method

Can we avoid free energy barriers completely?

- Yes \rightarrow use "tilted lattice"
\rightarrow example for $(2+1) d$ lattice:

Entangling surface deformation method

Can we avoid free energy barriers completely?

- Yes \rightarrow use "tilted lattice"
\rightarrow example for $(2+1) d$ lattice:

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
\rightarrow example for $(2+1) d$ lattice:

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
\rightarrow example for $(2+1) d$ lattice:

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
\rightarrow example for $(2+1) d$ lattice:

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
\rightarrow example for $(2+1) d$ lattice:

Entangling surface deformation method

Can we avoid free energy barriers completely?

- Yes \rightarrow use "tilted lattice"
\rightarrow example for $(2+1) d$ lattice:

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
\rightarrow example for $(2+1) d$ lattice:

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
\rightarrow example for $(2+1) d$ lattice:

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=6, N_{s}=5\right)$.

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=6, N_{s}=5\right)$.

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=6, N_{s}=5\right)$.

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=6, N_{s}=5\right)$.

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=6, N_{s}=5\right)$.

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=6, N_{s}=5\right)$.

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=6, N_{s}=5\right)$.

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=6, N_{s}=5\right)$.

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=6, N_{s}=5\right)$.

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=6, N_{s}=5\right)$.

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=6, N_{s}=5\right)$.

Entangling surface deformation method

Can we avoid free energy barriers completely?

- Yes \rightarrow use "tilted lattice"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=6, N_{s}=5\right)$.

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=6, N_{s}=5\right)$.

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=6, N_{s}=5\right)$.

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=6, N_{s}=5\right)$.

Entangling surface deformation method

Can we avoid free energy barriers completely?
■ Yes \rightarrow use "tilted lattice"
$\rightarrow \mathrm{SU}(5)$ in $(3+1)$ dimensions $\left(V_{s}=N_{x} N_{s}^{2}\right.$ with $\left.N_{x}=6, N_{s}=5\right)$.

Entangling surface deformation method

Can we avoid free energy barriers completely?

- Yes \rightarrow use "tilted lattice"
$\rightarrow \mathrm{SU}(2)$ in $(3+1)$ dimensions:
comparison of boundary update methods: non-tilted lattice \longleftrightarrow tilted lattice

Results

Results in 4D [arXiv.2211.00425]

- Entanglement entropy change as function of entangling region width / for $\operatorname{SU}(3)$ on $N_{s}^{3} \times 2 \cdot N_{t}$ lattice with $N_{s}=N_{t}=16, \beta \in\{5.7,5.75,5.8,5.85\}$.

Results

Results in 4D [arXiv.2211.00425]

- Entanglement entropy change as function of entangling region width / for $\operatorname{SU}(3)$ on $N_{s}^{3} \times 2 \cdot N_{t}$ lattice with $N_{s}=N_{t}=16, \beta \in\{5.7,5.75,5.8,5.85\}$.
\rightarrow expected power law behavior $\sim I^{-3}$ (holography).
\rightarrow applies only deep in UV

Results

Results in 4D [arXiv.2211.00425]

- Entanglement entropy change as function of entangling region width / for $\operatorname{SU}(3)$ on $N_{s}^{3} \times 2 \cdot N_{t}$ lattice with $N_{s}=N_{t}=16, \beta \in\{5.7,5.75,5.8,5.85\}$.
\rightarrow expected power law behavior $\sim I^{-3}$ (holography).
\rightarrow applies only deep in UV
- Corresponding entropic C-function: $C(I) \propto I^{3} \partial_{I} S_{E E}(I)$.

Results

Results in 4D [arXiv.2211.00425]

- Entanglement entropy change as function of entangling region width / for $\operatorname{SU}(3)$ on $N_{s}^{3} \times 2 \cdot N_{t}$ lattice with $N_{s}=N_{t}=16, \beta \in\{5.7,5.75,5.8,5.85\}$.
\rightarrow expected power law behavior $\sim 1^{-3}$ (holography).
\rightarrow applies only deep in UV
- Corresponding entropic C-function: $C(I) \propto \beta^{3} \partial_{I} S_{E E}(I)$.

Results

Relation to thermal entropy [arXiv:2304.08949]

- Thermodynamic entropy on the lattice

Lattice free energy: $F_{L}\left(N_{t}, V, N\right)=-\log \left(Z\left(N_{t}, V, N\right)\right)=N_{t} F\left(T\left(N_{t}\right), V, N\right)$
(spatial lattice volume V, temporal lattice size N_{t}, some charge N)
\rightarrow Thermal entropy: $S_{\mathrm{th}}=N_{t}(U-F)=N_{t} U-F_{L}=\left.N_{t} \frac{\partial F_{L}}{\partial N_{t}}\right|_{V, N}-F_{L}$

Results

Relation to thermal entropy [arXiv:2304.08949]

■ Thermodynamic entropy on the lattice
Lattice free energy: $F_{L}\left(N_{t}, V, N\right)=-\log \left(Z\left(N_{t}, V, N\right)\right)=N_{t} F\left(T\left(N_{t}\right), V, N\right)$ (spatial lattice volume V, temporal lattice size N_{t}, some charge N)
\rightarrow Thermal entropy: $S_{\mathrm{th}}=N_{t}(U-F)=N_{t} U-F_{L}=\left.N_{t} \frac{\partial F_{L}}{\partial N_{t}}\right|_{V, N}-F_{L}$
■ Lattice entanglement entropy density at finite T, large ℓ :

$$
\left.\frac{1}{N_{s}^{(d-2)}} \frac{\partial S_{E E}\left(\ell^{\prime}, N_{t}, N_{s}\right)}{\partial \ell^{\prime}}\right|_{\ell^{\prime}=\ell+1 / 2} \approx f_{L}\left(2 N_{t}\right)-2 f_{L}\left(N_{t}\right)
$$

Results

Relation to thermal entropy [arXiv:2304.08949]

N_{s}

- Thermodynamic entropy on the lattice

Lattice free energy: $F_{L}\left(N_{t}, V, N\right)=-\log \left(Z\left(N_{t}, V, N\right)\right)=N_{t} F\left(T\left(N_{t}\right), V, N\right)$ (spatial lattice volume V, temporal lattice size N_{t}, some charge N)
\rightarrow Thermal entropy: $S_{\mathrm{th}}=N_{t}(U-F)=N_{t} U-F_{L}=\left.N_{t} \frac{\partial F_{L}}{\partial N_{t}}\right|_{V, N}-F_{L}$

- Lattice entanglement entropy density at finite T, large ℓ :

$$
\left.\frac{1}{N_{s}^{(d-2)}} \frac{\partial S_{E E}\left(\ell^{\prime}, N_{t}, N_{s}\right)}{\partial \ell^{\prime}}\right|_{\ell^{\prime}=\ell+1 / 2} \approx f_{L}\left(2 N_{t}\right)-2 f_{L}\left(N_{t}\right)
$$

recall underling approxmation:

$$
f_{L}\left(2 N_{t}\right)-\left.2 f_{L}\left(N_{t}\right) \approx \frac{\partial f_{L}\left(s N_{t}\right)}{\partial s}\right|_{s=1}-f_{L}\left(N_{t}\right)=N_{t} \frac{\partial f_{L}\left(N_{t}\right)}{\partial N_{t}}-f_{L}\left(N_{t}\right)
$$

Results

Relation to thermal entropy [arXiv:2304.08949]

N_{s}

- Thermodynamic entropy on the lattice

Lattice free energy: $F_{L}\left(N_{t}, V, N\right)=-\log \left(Z\left(N_{t}, V, N\right)\right)=N_{t} F\left(T\left(N_{t}\right), V, N\right)$ (spatial lattice volume V, temporal lattice size N_{t}, some charge N)
\rightarrow Thermal entropy: $S_{\mathrm{th}}=N_{t}(U-F)=N_{t} U-F_{L}=\left.N_{t} \frac{\partial F_{L}}{\partial N_{t}}\right|_{V, N}-F_{L}$
■ Lattice entanglement entropy density at finite T, large ℓ :

$$
\left.\frac{1}{N_{s}^{(d-2)}} \frac{\partial S_{E E}\left(\ell^{\prime}, N_{t}, N_{s}\right)}{\partial \ell^{\prime}}\right|_{\ell^{\prime}=\ell+1 / 2} \approx f_{L}\left(2 N_{t}\right)-2 f_{L}\left(N_{t}\right)
$$

recall underling approxmation:

$$
f_{L}\left(2 N_{t}\right)-\left.2 f_{L}\left(N_{t}\right) \approx \frac{\partial f_{L}\left(s N_{t}\right)}{\partial s}\right|_{s=1}-f_{L}\left(N_{t}\right)=N_{t} \frac{\partial f_{L}\left(N_{t}\right)}{\partial N_{t}}-f_{L}\left(N_{t}\right)
$$

$\left.\rightarrow \quad \frac{1}{N_{s}^{(d-2)}} \frac{\partial S_{E E}\left(\ell^{\prime}, N_{t}, N_{s}\right)}{\partial \ell^{\prime}}\right|_{\ell^{\prime}=\ell+1 / 2}=N_{t} \frac{\partial f_{L}\left(N_{t}\right)}{\partial N_{t}}-f_{L}\left(N_{t}\right)=s_{\mathrm{th}, A}$
thermal entropy density of region $A: s_{\mathrm{th}, A}$

Results

Relation to thermal entropy [arXiv:2304.08949]

N_{s}
■ Thermodynamic entropy on the lattice
Lattice free energy: $F_{L}\left(N_{t}, V, N\right)=-\log \left(Z\left(N_{t}, V, N\right)\right)=N_{t} F\left(T\left(N_{t}\right), V, N\right) \quad N_{t}$ (spatial lattice volume V, temporal lattice size N_{t}, some charge N)
\rightarrow Thermal entropy: $S_{\mathrm{th}}=N_{t}(U-F)=N_{t} U-F_{L}=\left.N_{t} \frac{\partial F_{L}}{\partial N_{t}}\right|_{V, N}-F_{L}$
■ Lattice entanglement entropy density at finite T, large ℓ :

$$
\left.\frac{1}{N_{s}^{(d-2)}} \frac{\partial S_{E E}\left(\ell^{\prime}, N_{t}, N_{s}\right)}{\partial \ell^{\prime}}\right|_{\ell^{\prime}=\ell+1 / 2} \approx f_{L}\left(2 N_{t}\right)-2 f_{L}\left(N_{t}\right)
$$

recall underling approxmation:

$$
f_{L}\left(2 N_{t}\right)-\left.2 f_{L}\left(N_{t}\right) \approx \frac{\partial f_{L}\left(s N_{t}\right)}{\partial s}\right|_{s=1}-f_{L}\left(N_{t}\right)=N_{t} \frac{\partial f_{L}\left(N_{t}\right)}{\partial N_{t}}-f_{L}\left(N_{t}\right)
$$

$$
\left.\rightarrow \quad \frac{1}{N_{s}^{(d-2)}} \frac{\partial S_{E E}\left(\ell^{\prime}, N_{t}, N_{s}\right)}{\partial \ell^{\prime}}\right|_{\ell^{\prime}=\ell+1 / 2}=N_{t} \frac{\partial f_{L}\left(N_{t}\right)}{\partial N_{t}}-f_{L}\left(N_{t}\right)=s_{\mathrm{th}, A}
$$

thermal entropy density of region $A: s_{\mathrm{th}, A}$
\rightarrow Replica trick can be used to determine thermal entropy
(without having to know F_{L} or other intergration constants)

Results

Relation to thermal entropy [arXiv:2304.08949]

- Test in $(2+1)$ dimensions at high temperature:
\rightarrow holography: $s_{\mathrm{th}, A} \propto T^{7 / 3}$ (Bekenstein-Hawking entropy) for $T / T_{c} \gg 1$
\rightarrow does $b=N_{s}^{(d-2)} \frac{\partial S_{E E}\left(\ell, N_{t}, N_{s}\right)}{\partial \ell}$ scale like $s_{\mathrm{th}, A}$?

Results

Relation to thermal entropy [arXiv:2304.08949]

- Test in $(2+1)$ dimensions at high temperature:
\rightarrow holography: $s_{\mathrm{th}, A} \propto T^{7 / 3}$ (Bekenstein-Hawking entropy) for $T / T_{c} \gg 1$
\rightarrow does $b=N_{s}^{(d-2)} \frac{\partial S_{E E}\left(\ell, N_{t}, N_{s}\right)}{\partial \ell}$ scale like $s_{\mathrm{th}, A}$?

Conclusions \& outlook

Conclusions

■ New method to determine entanglement measures (Rényi and entropies) in $\operatorname{SU}(N)$ lattice gauge theories.

- No more free energy barriers when using "tilted lattice".
\rightarrow significant error reduction possible.
■ Comparison with literature results promising.
- Replica trick can be used to compute thermal entropy.

Outlook

- Application to further cases:
- $\operatorname{SU}(N), N=2,3,4,5, \ldots, ?, d=3,4, T=0, T \neq 0$
- different entangling region shapes; alternative entropy measures?
- "metric reconstruction" (holography) for SU(2), SU(3)?
- improved simulation algorithm for "tilted lattice".

Thank you!

