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Overview

MACHINE LEARNING ASSISTED REAL-TIME COMPLEX LANGEVIN g

®| Reinforcement learning

®| Real-time simulations & Complex Langevin

®| Inherently stable CL dynamics with implicit solvers

®| Learning optimal kernels for correct convergence of CL

| Summary
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Reinforcement learning — a ML success

m| Agent with a set of predefined actions
[ e.g. move left, jump ] in an environment

®| Policy/Cost function that defines success
[ e.g. score on computer screen |

m| Need to encode choice of actions and
evaluate gradients to minimize cost

Need to handle failure state
[e.g. falling into pits ]

Improving the score: allow for
more actions [ e.g. move right ]

E ﬁr’m m‘#r‘m pm El'JrFJEI pm ﬁrtrt
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Executive summary — ML strategy LS of Stavanger
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Environment: space of distributions explored by a stochastic process

Agent: controller of the non-neutral modification represented by the
kernel K. Limited actions — keep the kernel field & 1, independent

Cost function: deviation of late 1, stationary distribution from
prior knowledge (symmetries, known cumulants, etc.)

Use auto differentiation or shadowing analysis to compute robust
gradients of the inherently chaotic dynamics.

We achieve convergence to correct stationary distribution for model
systems in parameter regimes previously inaccessible.
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Real-time quantum dynamics

®| The path integral at finite temperature on the Schwinger-Keldysh contour

tl= to o* t=t Goal: evaluation of real-time observables
-——t —
v <O(tp)O(ty)> = Tr[ p O(ty)O(t4) ]
0]
t=-i/T

1

(O(¢)) = 1 do1 | do, p(¢1,¢2) D¢* Do~ O(¢p) & SI#+1-iS[9-]
£ @2

——— —————————————

sampling over statistically quantum “sum over paths”
distributed initial conditions

¢ (0)

(O(¢)) = %/D¢EG_SE[¢E]/¢ " Dot Do~ O(p) &'S1#+1-1S1#-]

Pure phase Feynman weight implies
MC sign problem. One strategy:

i see C. Berger et.al.
Complex Langevm Phys.Rept. 892 (2021)

Real-valued Feynman weight:
Monte-Carlo methods applicable

®| Sign problem is NP-hard: no generic solution strategy is likely to exist
Troyer, Wiese PRL 94 170201 (2004)
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Stochastic Quantization

Langevin evolution in fictitious additional time to reproduce quantum fluctuations

[
for an in-depth review: M. Namiki et.al. Stochastic Quantization (Springer) 1992

d¢ _ 6SE [¢] n r](x, TL) with  (1(x, 7)) =0, (n(x,7)n(x’, TD) =285(x—x")é6(t. - TD

dt, — &¢(x)
Stochastic partial differential equation (SDE) with Gaussian noise

= Associated Fokker-Planck equation for P[¢]

2 p) =V [(Sel¢] + V) P($)]

OTL
" Proof of convergence: T}igloop[Qb,TL] = 3_SE[¢]
complexification: _%([j)] o) 00T = dr(x ) +igr(x )
dpr .6S[¢] dér _ .6S[¢]
Pz TP b=pr+idr AT e T Bt ¢=¢R+i¢I]

] T .
(O[¢]) < lim ?/o d1 O[pr(x, 1) +idpr(x,7)]

T —o0
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Two challenges for Complex Langevin

-]
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= Im Iéqb(x)

+n(x, 1),

P=¢r+i¢r ¢:¢R+’.¢I}

Divergent solutions (runaways)

-20 20

0
Re¢|

In practice often adaptive step size

to try keeping solution finite
see e.g.: G. Aarts et.al. PLB 687(2-3), 154-159 (2010)
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Solvers for Complex Langevin

B Numerical solution of stochastic dynamics in the literature: explicit forward Euler

d ¢ 5S [ ¢] 3«\\\\2 K7 /" \\:\Q\\\\
dr. - Spin TR 2 ) A N
L 1,\\, ST T — Implicit \\ \ ,
A yeey — Exact ** ‘v ‘v
A+1 _ ¢A . oS A € Langevin 0 ¥
o' =t +ie—— + Ven’ :
. time ste
J J 3¢, J P
" Appearance of runaways indicates stiff problem:

from PDEs we know implicit methods can help

as/l+1 as/\ Pre
M =t +ie |6 +(1-0)—— | ++en? general Euler-Maruyama scheme
J J a¢j a¢J J Kloeden, P.E., Platen, E.: Numerical Solution of

Stochastic Differential Equations, 1-50 (1992)

H| Implicit methods are unconditionally stable: example free theory with S = ¢t M ¢

e(1-6
(g1 = [LLEC O g
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Regulariztion via implicit solvers
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®| Implicit solvers offer inherent regularization, independent from contour tilt

s, Re ¢ = +ie |6 aj;j +(1 - 9)% + Ven;

S
SE| no tilt: Im[a]=0 Free theory example showcases the underlying mechanism
~if oM = (I —ieoM) " {(I +ie(1 - 8)M)p" + Ven'}
¥ = {(1+7eM - e?0M?)¢ + Ven*| + 0(e¥%)

1 _ i€
Sp = §qs(/vl ; /69M2)¢ = Sexplicit + 392 s’
J
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Numerical results at short real

parameters: m=1 A=24 m=m/T=1

times | LS

®| Direct simulations on the canonical SK contour in thermal equilibrium possible
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What happens at later real-time? {1 orstavanger
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®| Convergence to incorrect solution without apparent pathologies
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Convergence in CL

im / dbrddrO($r + idr)Pa[br, b1, 1] / dpO(¢) &S

T — 00

see e.g.: G. Aarts et.al.

Necessary, while not sufficient criterion for correct convergence: s e oty 1756
absence of boundary terms

Strategies to minimize boundary: pull complexified d.o.f. back to a real manifold

"/ Gauge cooling: exploit freedom to bring SL(2,C) links as close as possible to SU(N)
Seiler, Sexty, Stamatescu, PLB 04 62 (2013)

" Dynamical stabilization: modified drift term pulls towards the origin (non-holomorphic)
Aarts, Attanasio, Jaeger, Sexty Acta Phys. Polon. Supp. 9, 621 (2016)

Our idea for NP-hard sign problem: incorporate system specific prior information
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Kernelled complex Langevin

MACHINE LEARNING ASSISTED REAL-TIME COMPLEX LANGEVIN g

H| Simultaneous modification of drift and noise allows to alter FP spectrum

d¢ oS oK[4]
ar = iK [<l>] 9% Klgln

H| Observation in simple models: kernel that renders drift real restores convergence

Okamoto, Okano, Schiilke, Tanaka, PLB 324 684 (1989)
Free theory in real-time
1.0
d¢

L =

dS 0.0
IK— = —¢
d‘T[_ 0 5 1'(2 15 20

®| Allows us to extend correct convergence to any real-time extent in free theory
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Utility of the free theory kernel (1) of Stavanger

®| Naive attempt to use free kernel in interacting theory partially successful
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®| Achieve correct convergence up to 2x time extent previously reported in literature

M| So far trial and error, instead need systematic construction of kernels

d
®| Solution in clear violation of prior knowledge: E<X> # 0  (x(1)x(0))cL # (x(7)x(0))mc
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Learning optimal kernels
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H| Optimality via prior information: Symmetries, Euclidean correlator, Boundary

[ = Z{qst + (g0 -¢7)) ]

0.2

Lbre =ZZ{ L[#]0%) y)2 N
] k

[ eucl — Z { (<¢0¢,-> — D,E ) 2} M (HOPO)RT — vt
] : . . .

(P0)p())Eucl.

aLtot
H| Autodifferentiation techniques to compute

(derivative of stochastic process)
[ note: deterministic dynamics chaotic ] 0 ]

®| |n principle possible in practice slow: cheaper optimization functional instead
N

1 65 minimizes drift away from the origin
[ lowcost _ ( ¢t) — |¢t| (similar to dynamic stabilization
Nt a¢ + 6¢ " but remains holomorphic)
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Performance in practice (1) of Stavanger

®| Using a constant kernel K = eXp[A -+ iB] with A,B real matrices

H| Optimize via low cost functional and check success via symmetries & Euclidean

X' =1.0 Learned kerel

®| Achieve correct convergence up to 3x time extent previously reported in literature
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Limits to our current strategy 1) of Stavanger

H| Constant kernel works in theories with single critical point at the origin

naive CL learned kernelled CL

simple 1
Gaussian S = 5 ix?
model

Lefschetz d¢ ds
thimbles dT d¢

-20 -10 0 10 20 -3 -2 -1 0 1 2 3

=/ Multiple critical points may require a field dependent kernel: S = 2ix* + (1/2)x*

field dependent kernel

naive CL - learned const. kernelled CL from Okamoto et.al. 1989

still incorrect
convergence

correct
convergence

-3 -2 1 0 1 2 3

Ltot=0.888 Ltt=0.486 Ltt=0.023
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Conclusion & Outlook LS of Stavanger

Overcoming NP-hard sign problem central to progress in theoretical physics

Complex Langevin one possible path forward, but hampered by
two major challenges: instabilities and convergence to incorrect solutions

Implicit solvers render the runaway problem moot:
stable simulations on the canonical Schwinger-Keldysh contour are possible.

ML strategy: systematically incorporate system specific prior information
(symmetries, Euclidean correlators, etc.) in simulation via kernel modification

Optimized constant kernels: 3x extended range of validity of real-time CL

Next step: cost effective optimization strategies for field dependent kernels
(adjoint sensitivity analysis, shadowing method (NILSS), etc.)
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BaCkup S|ideS LI of Stavanger
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