

QCD in the cores of neutron stars

University of Stavanger

Oleg Komoltsev N-PACT August 2023

• How Perturbative QCD Constrains the Equation of State at Neutron-Star Densities O.K., Aleksi Kurkela

PRL.128.20270

• Ab-initio QCD Calculations Impact the Inference of the Neutron-star-matter Equation of State

> Tyler Gorda, O.K., Aleksi Kurkela Astrophys.J. 950 (2023) 2, 107

• Bayesian uncertainty quantification of perturbative QCD input to the neutronstar equation of state

> T.G, O.K., A.K., Aleksas Mazeliauskas JHEP 06 (2023) 002

• Strongly interacting matter exhibits deconfined behavior in massive neutron stars

Eemeli Annala, T.G., Joonas Hirvonen, O.K., A.K. arXiv:2303.11356

University of Stavanger

Outer Crust (~0.5 km) Ions, Electrons

Inner Crust (~ 1 km, 0.5 n_s) Electrons, Neureons, Nucleii

Outer core (~ 9 km, 0.5-2 n_s) Neutron – Proton Fermi liquid

Inner core (~10 km, 4-8 n_s) Quark Matter ?

 $n_s = 0.16 \, fm^{-3}$

Outer Crust (~0.5 km) Ions, Electrons

Inner Crust (~ 1 km, 0.5 n_s) Electrons, Neureons, Nucleii

Outer core (~9 km, 0.5-2 n_s) Neutron – Proton Fermi liquid

Inner core (~ 10 km, 4-8 n_s) Quark Matter ?

Masses $\sim 1.4 - 2.0~M_{\odot}$ Radii $\sim 10~{
m km}$ T $\sim {
m KeV} \sim 10^7~{
m K}$

 $n_s = 0.16 fm^{-3}$

• Discovery of massive NSs

Antoniadis, Freire et.al. arXiv:1304.6875

• NS radius measurements

Riley, Watts et.al. arXiv:2105.06980

• Discovery of massive NSs

Antoniadis, Freire et.al. arXiv:1304.6875

• NS radius measurements

Riley, Watts et.al. arXiv:2105.06980

Properties of neutron stars reflect properties of dense matter

Competition between pressure and gravity

Tolman–Oppenheimer–Volkoff equation:

$$\frac{dp}{dr} = -\frac{Gm}{r^2} \varepsilon \left(1 + \frac{p}{\varepsilon}\right) \left(1 + \frac{4\pi r^3 \varepsilon}{m}\right) \left(1 - \frac{2Gm}{r}\right)^{-1}$$
$$\frac{dm}{dr} = 4\pi r^2 \varepsilon$$

Macroscopic properties determined by the EoS

 $\epsilon(P) \Leftrightarrow R(M)$

Elementary particle matter

LHC, RHIC, FAIR, NICA,...

LIGO+Virgo+Kagra, NICER, eXTP,...

Studies with pQCD see **softening** of EoS

Studies with pQCD see **softening** of EoS

Somasundaram, Tews, Margueron 2112.08157

• Why does QCD at 40n_s constrain the EoS at NS densities

How pQCD constrains the equation of state at neutron star densities

OK & Kurkela, PRL128 (2022) 20, 2111.05350

• How QCD affects EoS infrerence

Ab-initio QCD Calculations Impact the Inference of the Neutron-star-matter Equation of State

Tyler Gorda, O.K., Aleksi Kurkela, Astrophys.J. 950 (2023) 2, 107

Bayesian uncertainty quantification of perturbative QCD input to the neutron-star equation of state T.G, O.K., A.K., Aleksas Mazeliauskas, JHEP 06 (2023) 002

• Quark Matter cores

Strongly interacting matter exhibits deconfined behavior in massive neutron stars Eemeli Annala, T.G., Joonas Hirvonen, O.K., A.K., arXiv:2303.11356

- Stability •
- 6 Baryon density n [fm⁻³] N 0 0 4 5 0 $\partial^2_{\mu}\Omega(\mu) \le 0 \quad \Rightarrow \ \partial_{\mu}n(\mu) \ge 0$ pQCD CET $-c_s^2 = 1$ 0 1.0 1.5 2.0 2.5 Baryon chemical potential μ [GeV]

• Stability

 $\partial_{\mu}^{2}\Omega(\mu) \leq 0 \quad \Rightarrow \quad \partial_{\mu}n(\mu) \geq 0$

Causality

$$c_s^{-2} = \frac{\mu}{n} \frac{\partial n}{\partial \mu} \ge 1 \quad \Rightarrow \quad \partial_\mu n(\mu) \ge \frac{n}{\mu}$$

• Stability

 $\partial_{\mu}^{2}\Omega(\mu) \leq 0 \quad \Rightarrow \quad \partial_{\mu}n(\mu) \geq 0$

Causality

$$c_s^{-2} = \frac{\mu}{n} \frac{\partial n}{\partial \mu} \ge 1 \quad \Rightarrow \quad \partial_{\mu} n(\mu) \ge \frac{n}{\mu}$$

Consistency

```
\int_{\mu_{CET}}^{\mu_{QCD}} n(\mu) \, d\mu = p_{QCD} - p_{CET} = \Delta p
```


Constraints for fixed n on $\epsilon - p$ -plane

• Why does QCD at 40n_s constrain the EoS at NS densities

How pQCD constrains the equation of state at neutron star densities

OK & Kurkela, PRL128 (2022) 20, 2111.05350

• How QCD affects EoS infrerence

Ab-initio QCD Calculations Impact the Inference of the Neutron-star-matter Equation of State

Tyler Gorda, O.K., Aleksi Kurkela, Astrophys.J. 950 (2023) 2, 107

Bayesian uncertainty quantification of perturbative QCD input to the neutron-star equation of state T.G, O.K., A.K., Aleksas Mazeliauskas, JHEP 06 (2023) 002

• Quark Matter cores

Strongly interacting matter exhibits deconfined behavior in massive neutron stars Eemeli Annala, T.G., Joonas Hirvonen, O.K., A.K., arXiv:2303.11356

Gaussian-process based inference

Gaussian-process based inference

pQCD likelihood function

Inferred EoS:

QCD responsible for the softening

QCD pushes EoS towards conformality, softening at high densities

Renormalization scale dependence

Bayesian uncertainty quantification of perturbative QCD

Bayesian uncertainty quantification of perturbative QCD input to the neutron-star equation of state T.G, O.K., A.K., Aleksas Mazeliauskas, JHEP 06 (2023) 002

• Why does QCD at 40n_s constrain the EoS at NS densities

How pQCD constrains the equation of state at neutron star densities

OK & Kurkela, PRL128 (2022) 20, 2111.05350

• How QCD affects EoS infrerence

Ab-initio QCD Calculations Impact the Inference of the Neutron-star-matter Equation of State

Tyler Gorda, O.K., Aleksi Kurkela, Astrophys.J. 950 (2023) 2, 107

Bayesian uncertainty quantification of perturbative QCD input to the neutron-star equation of state T.G, O.K., A.K., Aleksas Mazeliauskas, JHEP 06 (2023) 002

• Quark Matter cores

Strongly interacting matter exhibits deconfined behavior in massive neutron stars Eemeli Annala, T.G., Joonas Hirvonen, O.K., A.K., arXiv:2303.11356

Studies with pQCD see **softening** of EoS

Properties of the EoS reflect the **phase structure** of the matter.

The cores of most massive NSs consistent with **deconfined**, **nearly conformal Quark Matter**.

Softening = Conformalization

Annala, Gorda, Kurkela, Nätttilä, Vuorinen Nature Physics 16 (2020) 9 Also: Fujimoto, Fukushima, McLerran, Praszalowicz 2207.06753, Kojo PRD 104, ...

Quark Matter in the cores of neutron stars

Quark Matter in the cores of neutron stars

Conclusion

QCD at high densities offers significant and nontrivial information about the EoS at NS densities

- We find that strongly interacting matter exhibits deconfined behavior in massive neutron stars
- We provide a Python script to impose pQCD constraints at any density github.com/OKomoltsev/QCD-likelihood-function
- pQCD predicts that (most) binary merger producs are BHs

Supplemental material Can the **softening** be observationally verified?

Different binary merger products:

Gravitational waves from binary NS mergers

Fujimoto, Fukushima, Hotokezaka, Kyutoku 2205.03882 (2022)

Comparison with recent work

Somasundaram, Tews, Margueron (2204.14038) perform conservative analysis with QCD input:

- Results broadly consistent with us
- No Bayesian treatment of inputs
- Apply QCD input at $n = n_{TOV}$ instead of $n = 10n_s$
- Constraints for most X only for small range at X = 1-1.3 not constraining
- These EOSs with X ≈ 1 need very specific behaviour beyond nTOV to reach pQCD

c.f. Fujimoto + 2205.03882 for signatures of such PTs

The impact of the QCD input on the EoS

The softening is a robust prediction

