UNIVERSITY OF BERGEN

Constraining jet quenching models in heavy-ion collisions using Bayesian Inference

Alexandre Falcão*

Konrad Tywoniuk

* alexandre.falcao@uib.no

Aug. 8th, 2023 N-PACT Meeting 2023

Outline

Jet quenching in heavy-ion collisions

- Heavy-ion collisions and QGP
- Jets
- · Jet quenching in heavy-ion collisions

Theory of one parton going through the medium

- One parton through the medium
- A jet through the medium
- Factorization in jet quenching
- Modelling the energy loss in Bayesian inference

• Results

Pb ---- Pb

The highly Lorentz-contracted nuclei collide

rom MADAI collab

Hannah

7

Jets

Experiment CMS Experiment at LHC, CERN Jet 1 Run 133450 Event 16358963 Lumi section: 285 Sat Apr 17 2010, 12:25:05 CEST Jet 2 E_T(GeV) Jet 1 80 Jet 1 60 40 20 Jet 2 collimated spray jet of hadrons

Theory

Jet quenching in heavy-ion collisions

$$\begin{pmatrix} AA \\ collision \end{pmatrix} \neq A \times \begin{pmatrix} pp \\ collision \end{pmatrix}$$

- modification of the transverse energy balance
- modification of jet internal structure
- suppression of the jet yields

Jet quenching in heavy-ion collisions

Jet quenching in heavy-ion collisions

Coincidence measurements

photon-tagged jet events

Jet energy loss distribution

Jets in medium:

- Quark gluon plasma (QGP) is created in the heavy-ion collision
- Jet created by hard process within QGP probes the medium
- Medium properties can be retrieved by studying jet quenching

One parton through the medium

The energy loss distribution via medium induced gluon emissions of a hard parton can be computed from the theory side [Arleo 2002, Baier 2001]

In the one parton through the medium, it depends on:

- n number of radiated gluons
- ω_i energy of emitted gluon i

 $\frac{\mathrm{d}I}{\mathrm{d}\omega} \quad \begin{array}{l} \text{medium-induced} \\ \text{gluon spectrum} \end{array}$

Depends on:

- medium length: L
- transport coefficient: $\hat{q}(T) \sim T^3$
- parton color: C_R

One parton through the medium

The energy loss distribution via medium induced gluon emissions of a hard parton can be computed from the theory side [Arleo 2002, Baier 2001]

In the one parton through the medium, it depends on:

- n number of radiated gluons
- ω_i energy of emitted gluon i

 $\frac{\mathrm{d}I}{\mathrm{d}\omega} \quad \begin{array}{l} \mathbf{medium-induced} \\ \mathbf{gluon spectrum} \end{array}$

Depends on:

- medium length: L
- transport coefficient: $\hat{q}(T) \sim T^3$
- parton color: C_R

A jet through the medium

When a "vacuum" splitting happens:

• If splitting anlge is smaller than medium resolution angle

splitting is not resolved

(medium does not see the splitting)

$$D_{
m jet}(arepsilon) = D_q(arepsilon) \otimes D_{
m MR}$$

medium
response

splitting is resolved $D_{\text{iet}}(\varepsilon) = D_q(\varepsilon_q) \otimes D_q(\varepsilon_q) \otimes D_{\text{MR}}$

with $\varepsilon = \varepsilon_q + \varepsilon_g$

 $D(\varepsilon)$ is sensitive to the jet substructure (parton energy loss \neq jet energy loss)

N-PACT Meeting 2023

Jet energy loss universality and factorization

What to keep in $D(\varepsilon)$ to achieve universality?

• has been done [arXiv:1808.05310]:

 $D(\varepsilon|p_T, C_R, \hat{q}(T), L, R) = D(\varepsilon)$

• now we explore color dependence:

 $D_i(\varepsilon|p_T, \underline{C_R}, \hat{q}(T), L, R), \quad i = q, g$

quark- and gluon-jets ratio varies for different processes, and for different kinematical cuts

Jet energy loss universality and factorization

Alexandre Falcão

Bayesian inference

Bayesian inference

From the posterior distributions for the parameters, we can resconstruct the R_{AA} as well as predict other observables.

Modelling the jet energy loss

Results: the fit

Inclusive jets are fitted:

Results: the prediction

Alexandre Falcão

N-PACT Meeting 2023

Results: quark- Vs. gluon-jet energy loss

From the posterior distributions, we can access the distribution for the mean energy loss of the quark- and gluon-jets:

Summary and next steps

- From the theory, we expect that quark- and gluon-jets lose energy differently in the medium;
- Our goal is then to show if the factorization holds for different observables, with only the information about the jet-initiating parton, in a data driven way;
- For this, we rely on Bayesian analysis;
- We concluded that by only considering inclusive jet data, we can successfully describe the data;
- The factorization pictures holds when used to predict photon-tagged jet spectra;
- Furthermore, the model is able to distinguish between the energy loss of quark- and gluon-jets in the expected way.

Summary and next steps

- From the theory, we expect that quark- and gluon-jets lose energy differently in the medium;
- Our goal is then to show if the factorization holds for different observables, with only the information about the jet-initiating parton, in a data driven way;
- For this, we rely on Bayesian analysis;
- We concluded that by only considering inclusive jet data, we can successfully describe the data;
- The factorization pictures holds when used to predict photon-tagged jet spectra;
- Furthermore, the model is able to distinguish between the energy loss of quark- and gluon-jets in the expected way.

Next steps:

- Add different measurements to better learn and validate the model;
- Test the model generalization by using the extracted energy loss distributions to predict other kind of jet observables;
- Incorporate information about the jet substructure.