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Introduction

• Earlier work: RG flow for multiscalar theories in 4D can be described 
by non-associative algebras [2303.13884 with Bo Sundborg] 
• Non-associative algebras long studied in mathematics [Markus 1960] 

[Krasnov 2023]

• Main result of present work on multiscalar theory
• For large N, leading order RG flows separate into 1d and 2d flows via a 

decomposition of the algebra into simple ideals
• The algebra lets us identify large N limits via scaling arguments
• Example model: multiscalar theory with SU(N)xO(M) symmetry
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Algebraic description at one-loop 

• Multiscalar theory with massless scalars and quartic interactions in 
4D

• One-loop beta function
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Algebraic description at one-loop 

• Beta function is quadratic in the couplings

• Gives rise to a product [Michel, Radicati 1971]
• Commutative
• Not generally associative
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Algebraic description at one-loop 

• Introduce a basis closed under RG flow
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Multiscalar model SU(N)xO(M)

• SU(N)xO(M) model

• Choose a basis

6



Multiscalar model SU(N)xO(M)

• Algebra (not large N)
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Rescaling the basis

• Rescale to take large N limit

• Demand finite elements for large N
• Constrains p(k) and a

8



Rescaling the basis

• Constraint: 0≤a≤2 
• Most general rescaling
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Rescaling the basis

• 3 large N (and M) limits

• Case a=2: multi-matrix limit

• Case 0<a<2: intermediate limit

• Case a=0: regular ’t Hooft limit
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Properties of the algebra

• Case a=2 
• Free parameter v=M/N2 appears
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Properties of the algebra

• Case 0<a<2 
• Free parameter v(a) from M=v(a)Na does not appear
• e1T not generated à 
• Limit và0 for a=2 gives this case
• Limit Mà∞ for a=0 gives this case
• Associative
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Properties of the algebra

• Case a=0 
• Free parameter M=constant appears
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Properties of the algebra

• Notation: 
• Subalgebras: closed subspace of the algebra à renormalizable 

subtheory
• Shows which couplings induce other couplings
• Ex: case a=2 has subalgbra {e1S,e2S}
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Properties of the algebra

• Ideals (I): subalgebra with the requirement that the product of any 
element of the algebra with an element of an ideal belongs to the 
ideal
• Ex: case a=2 has ideal {e2S}
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Properties of the algebra

• Quotient algbras of ideals (A/I)
• Ideal modded out
• RG equations for couplings in the quotient algebra form a closed dynamical 

system, independent of the couplings of the ideal
• Considering all the ideals/quotient algebras à natural order to solve RG 

equations
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Properties of the algebra

• Symmetry-respecting basis
• Another basis?

• Algebra can be decomposed into a direct sum of independent simple 
ideals, each with their own independent RG equations 
• Simple ideal: no non-trivial sub-ideals
• Given a positive definite bilinear form of the non-associative algebra
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Properties of the algebra

• Trace-form: symmetric bilinear form

• For our algebra 
• Positive definite à non-degenerate
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Properties of the algebra

• Non-degenerate trace-form à orthogonal complement of ideal is an ideal
• Orthogonal complement of I:

• For a positive definite bilinear trace-form à 
• Start with a simple ideal S:
• Repeat decomposition for
• Full decomposition into simple ideals 

• Isomorphism 
• Basis from decomposition à independent RG eqs for each simple ideal
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Decompositions at large N

• Special elements: idempotents & nilpotents
• Idempotent
• Nilpotent
• Peirce decomposition [Krasnov 2023] àdivide the flow into sectors
• Each 1d ideal is spanned by an idempotent or nilpotent
• Appear in the RG flow

• Idempotent: a coupling that reproduces itself when squared à RG 
flows in 1d linear subspaces of couplings
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Decompositions at large N

• Case a=2 (v=M/N2)

• 3 closed dynamical systems

• Case a=0 (M constant)

• 3 closed dynamical systems
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Decompositions at large N

• Case 0<a<2

• 4 closed dynamical systems
• 3 of them spanned by idempotents
• 1 spanned by a nilpotent St à
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RG flow

• Case a=2 (v=M/N2)
• Only trivial fixed point
• Study 2d simple ideal SOS: 3 idempotents
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RG flow

• (λ1T, λ2T)-space
• Idempotents all real for v≥1
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RG flow

• Case 0<a<2 (M=v(a)Na)
• Nilpotent ideal à vanishing beta function
• Solution with complex λ1T (tensor models [Benedetti,Gurau,Harribey,2019])
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RG flow

• Case a=0 (M constant)
• Only trivial fixed point
• Study 2d simple ideal SO2: 3 idempotents
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RG flow

• (λ1S, λ1T)-space
• Idempotents all real for M≤2 
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Conclusion

• Algebra can be decomposed into a set of simple ideals, each 
corresponding to a closed subset of couplings with decoupled RG 
flows
• Large N: 1d and 2d subspaces of couplings

• The adjoint multiscalar model with SU(N)xO(M) symmetry has 3 large 
N limits that are easily identified by the algebra

• Positive definite bilinear forms of commutative and non-associative 
algebras increase the power of algebraic methods
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Outlook

• Applying the algebra to other models
• Algebraic structure for 3-point couplings? 

• Higher loops and/or 1/N corrections at large N
• Does the separation of flows remain?
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Thank you!
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Decompositions at large N

• Case a=2 (v=M/N2)

• Case a=0 (M constant)
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