Classifying large N limits of multiscalar theories by algebra

Nadia Flodgren, Stockholm University

32nd Nordic Network Meeting on "Strings, Fields and Branes"

December 4-6 2023, Stavanger, Norway

Based on recent work and 2303.13884 with Bo Sundborg

Introduction

- Earlier work: RG flow for multiscalar theories in 4D can be described by non-associative algebras [2303.13884 with Bo Sundborg]
- Non-associative algebras long studied in mathematics [Markus 1960] [Krasnov 2023]
- Main result of present work on multiscalar theory
 - For large N, leading order RG flows separate into 1d and 2d flows via a decomposition of the algebra into simple ideals
 - The algebra lets us identify large N limits via scaling arguments
 - Example model: multiscalar theory with SU(N)xO(M) symmetry

Algebraic description at one-loop

- Multiscalar theory with massless scalars and quartic interactions in 4D $\mathcal{L}_{\rm int} = -\frac{1}{4!} \lambda_{ABCD} \phi_A \phi_B \phi_C \phi_D$
- One-loop beta function

$$\frac{d}{dt}\lambda_{ABCD} = \mu \frac{d}{d\mu}\lambda_{ABCD} = \beta_{ABCD} = \frac{1}{(4\pi)^2}\Lambda_{ABCD}^2$$
$$\Lambda_{ABCD}^2 = \frac{1}{8}\sum_{\text{perms}}\lambda_{ABEF}\lambda_{EFCD}$$

Algebraic description at one-loop

• Beta function is quadratic in the couplings

$$\beta_{\lambda} = \frac{1}{(4\pi)^2} P_2(\lambda)$$

- Gives rise to a product [Michel, Radicati 1971]
 - Commutative
 - Not generally associative

$$\lambda \diamond \kappa \equiv \frac{1}{2} (P_2(\lambda + \kappa) - P_2(\lambda) - P_2(\kappa))$$
$$= \frac{(4\pi)^2}{2} (\beta_{\lambda + \kappa} - \beta_{\lambda} - \beta_{\kappa}),$$

Algebraic description at one-loop

- Introduce a basis closed under RG flow $\mid \lambda$

$$\lambda_{ABCD} = \lambda_k e_{ABCD}^k$$

$$\beta_{ABCD} = \beta_k e_{ABCD}^k \qquad \beta_k = \frac{1}{(4\pi)^2} \lambda_m \lambda_n C_k^{mn}$$

$$(e^m \diamond e^n)_{ABCD} \equiv \frac{1}{8} \sum_{\text{perms}} e^m_{ABEF} e^n_{EFCD} = C^{mn}_k e^k_{ABCD}$$

$$\begin{pmatrix} e^1 \diamond e^1 & \dots & e^1 \diamond e^K \\ \vdots & \ddots & \vdots \\ e^K \diamond e^1 & \dots & e^K \diamond e^K \end{pmatrix}$$

Multiscalar model SU(N)xO(M)

• SU(N)xO(M) model $A = \bar{a}\bar{A}$

 $\bar{A} = 1, \dots, N^2 - 1$ is the SU(N)-index $\bar{a} = 1, \dots, M$ is the scalar multiplet index $\Phi_{\bar{a}} = \phi_A T_{\bar{A}} = \phi_{\bar{a}\bar{A}} T_{\bar{A}}$

• Choose a basis e^k_{ABCD} $k = \{1s, 1t, 2s, 2t\}$

$$\frac{1}{4!}e^{1s}_{ABCD}\phi_A\phi_B\phi_C\phi_D = \frac{1}{2}\operatorname{Tr}\Phi_{\bar{a}}\Phi_{\bar{a}}\Phi_{\bar{b}}\Phi_{\bar{b}}$$
$$\frac{1}{4!}e^{1t}_{ABCD}\phi_A\phi_B\phi_C\phi_D = \frac{1}{4}\operatorname{Tr}\Phi_{\bar{a}}\Phi_{\bar{b}}\Phi_{\bar{a}}\Phi_{\bar{b}}$$
$$\frac{1}{4!}e^{2s}_{ABCD}\phi_A\phi_B\phi_C\phi_D = \frac{1}{2}\operatorname{Tr}\Phi_{\bar{a}}\Phi_{\bar{a}}\operatorname{Tr}\Phi_{\bar{b}}\Phi_{\bar{b}}$$
$$\frac{1}{4!}e^{2t}_{ABCD}\phi_A\phi_B\phi_C\phi_D = \operatorname{Tr}\Phi_{\bar{a}}\Phi_{\bar{b}}\operatorname{Tr}\Phi_{\bar{a}}\Phi_{\bar{b}}.$$

Multiscalar model SU(N)xO(M)

• Algebra (not large N)

$$\begin{pmatrix} e^{1s} \diamond e^{1s} \ e^{1s} \ e^{1s} \ e^{1s} \ e^{1t} \\ e^{1t} \diamond e^{1s} \ e^{1t} \diamond e^{1t} \end{pmatrix} = \begin{pmatrix} \frac{(M+3)}{2}e^{2s} + \frac{1}{2}e^{2t} + \frac{N(M+3)}{2}e^{1s} \ \frac{1}{2}e^{2s} + \frac{1}{2}e^{2t} + \frac{N}{2}e^{1s} + Ne^{1t} \\ \frac{1}{2}e^{2s} + \frac{1}{2}e^{2t} + \frac{N}{2}e^{1s} + Ne^{1t} & \frac{(M+2)}{8}e^{2t} + \frac{N}{2}e^{1s} \end{pmatrix}$$

$$\begin{pmatrix} e^{2s} \diamond e^{2s} \ e^{2s} \ e^{2s} \diamond e^{2t} \\ e^{2t} \diamond e^{2s} \ e^{2t} \diamond e^{2t} \end{pmatrix} = \begin{pmatrix} (M(N^2 - 1) + 8)e^{2s} & 2(M + N^2)e^{2s} + 6e^{2t} \\ 2(M + N^2)e^{2s} + 6e^{2t} & (2M + 2N^2 + 6)e^{2t} + 12e^{2s} \end{pmatrix}$$

$$\begin{pmatrix} e^{1s} \diamond e^{2s} & e^{1s} \diamond e^{2t} \\ e^{1t} \diamond e^{2s} & e^{1t} \diamond e^{2t} \end{pmatrix} = \begin{pmatrix} (M+1)Ne^{2s} + 6e^{1s} & 2(M+3)e^{1s} + 2Ne^{2s} + Ne^{2t} + 8e^{1t} \\ Ne^{2s} + 6e^{1t} & 2(M+1)e^{1t} + Ne^{2t} + 4e^{1s} \end{pmatrix}$$

Rescaling the basis

• Rescale to take large N limit $\lambda_k e^k = \Lambda_k E^k$

$$e^{k} = N^{n(k)} M^{m(k)} E^{k}$$
$$M = v(a) N^{a}$$
$$e^{k} = N^{n(k) + am(k)} v(a)^{m(k)} E^{k}$$

- Demand finite elements for large N
 - Constrains p(k) and a

$$p(k) = n(k) + am(k)$$

Rescaling the basis

- Constraint: 0≤a≤2
- Most general rescaling

$$\lambda_{1s} = \frac{\Lambda_{1s}}{MN} = \frac{\lambda_{1S}}{MN}$$
$$\lambda_{1t} = \frac{\Lambda_{1t}}{\sqrt{MN}} = \frac{\lambda_{1T}}{\sqrt{MN}}$$
$$\lambda_{2s} = \frac{\Lambda_{2s}}{MN^2} = \frac{\lambda_{2S}}{MN^2}$$
$$\lambda_{2t} = \frac{\Lambda_{2t}}{N^2} = \frac{\lambda_{2T}}{N^2}.$$

Rescaling the basis

- 3 large N (and M) limits
- Case a=2: multi-matrix limit
- Case 0<a<2: intermediate limit
- Case a=0: regular 't Hooft limit

- Case a=2
 - Free parameter v=M/N² appears

\$	e^{1S}	e^{1T}	e^{2S}	e^{2T}
e^{1S}	$\frac{1}{2}e^{1S} + \frac{1}{2}e^{2S}$	0	e^{2S}	$2ve^{1S} + 2e^{2S}$
e^{1T}	0	$\frac{1}{2}e^{1S} + \frac{1}{8}e^{2T}$	0	$2ve^{1T}$
e^{2S}	e^{2S}	0	e^{2S}	$(2+2v)e^{2S}$
e^{2T}	$2ve^{1S} + 2e^{2S}$	$2ve^{1T}$	$(2+2v)e^{2S}$	$12ve^{2S} + (2+2v)e^{2T}$

- Case 0<a<2
 - Free parameter v(a) from M=v(a)N^a does not appear
 - $\mathbf{e}^{\mbox{\tiny 1T}}$ not generated ${\pmb \rightarrow}\,\beta_{1T}=0$
 - Limit $v \rightarrow 0$ for a=2 gives this case
 - Limit $M \rightarrow \infty$ for a=0 gives this case
 - Associative

\$	e^{1S}	e^{1T}	e^{2S}	e^{2T}
e^{1S}	$\frac{1}{2}e^{1S} + \frac{1}{2}e^{2S}$	0	e^{2S}	$2e^{2S}$
e^{1T}	0	$\frac{1}{2}e^{1S} + \frac{1}{8}e^{2T}$	0	0
e^{2S}	e^{2S}	0	e^{2S}	$2e^{2S}$
e^{2T}	$2e^{2S}$	0	$2e^{2S}$	$2e^{2T}$

- Case a=0
 - Free parameter M=constant appears

\$	e^{1S}	e^{1T}	e^{2S}	e^{2T}
e^{1S}	$\begin{array}{c} (\frac{1}{2} + \frac{3}{2M})e^{1S} + \\ (\frac{1}{2} + \frac{3}{2M})e^{2S} + \frac{1}{2M^2}e^{2T} \end{array}$	$rac{1}{2\sqrt{M}}e^{1S}+rac{1}{M}e^{1T} +rac{1}{2\sqrt{M}}e^{2S}+rac{1}{2M^{3/2}}e^{2T}$	$(1+\frac{1}{M})e^{2S}$	$2e^{2S} + \frac{1}{M}e^{2T}$
e^{1T}	$\begin{vmatrix} \frac{1}{2\sqrt{M}}e^{1S} + \frac{1}{M}e^{1T} \\ + \frac{1}{2\sqrt{M}}e^{2S} + \frac{1}{2M^{3/2}}e^{2T} \end{vmatrix}$	$\frac{1}{2}e^{1S} + (\frac{1}{8} + \frac{1}{4M})e^{2T}$	$rac{1}{\sqrt{M}}e^{2S}$	$rac{1}{\sqrt{M}}e^{2T}$
e^{2S}	$(1+\frac{1}{M})e^{2S}$	$rac{1}{\sqrt{M}}e^{2S}$	e^{2S}	$2e^{2S}$
e^{2T}	$2e^{2S} + \frac{1}{M}e^{2T}$	$rac{1}{\sqrt{M}}e^{2T}$	$2e^{2S}$	$2e^{2T}$

- Notation: $A = \{e^{1S}, e^{1T}, e^{2S}, e^{2T}\}$
- Subalgebras: closed subspace of the algebra → renormalizable subtheory
 - Shows which couplings induce other couplings
 - Ex: case a=2 has subalgbra {e^{1S},e^{2S}}

\$	e^{1S}	e^{1T}	e^{2S}	e^{2T}
e^{1S}	$\tfrac{1}{2}e^{1S} + \tfrac{1}{2}e^{2S}$	0	e^{2S}	$2ve^{1S} + 2e^{2S}$
e^{1T}	0	$\frac{1}{2}e^{1S} + \frac{1}{8}e^{2T}$	0	$2ve^{1T}$
e^{2S}	e^{2S}	0	e^{2S}	$(2+2v)e^{2S}$
e^{2T}	$2ve^{1S} + 2e^{2S}$	$2ve^{1T}$	$(2+2v)e^{2S}$	$12ve^{2S} + (2+2v)e^{2T}$

- Ideals (I): subalgebra with the requirement that the product of any element of the algebra with an element of an ideal belongs to the ideal
 - Ex: case a=2 has ideal {e^{2S}}

\$	e^{1S}	e^{1T}	e^{2S}	e^{2T}
e^{1S}	$\frac{1}{2}e^{1S} + \frac{1}{2}e^{2S}$	0	e^{2S}	$2ve^{1S} + 2e^{2S}$
e^{1T}	0	$\tfrac{1}{2}e^{1S}\!+\!\tfrac{1}{8}e^{2T}$	0	$2ve^{1T}$
e^{2S}	e^{2S}	0	e^{2S}	$(2+2v)e^{2S}$
e^{2T}	$2ve^{1S} + 2e^{2S}$	$2ve^{1T}$	$(2+2v)e^{2S}$	$12ve^{2S} + (2+2v)e^{2T}$

- Quotient algbras of ideals (A/I)
 - Ideal modded out
 - RG equations for couplings in the quotient algebra form a closed dynamical system, independent of the couplings of the ideal
 - Considering all the ideals/quotient algebras → natural order to solve RG equations

- Symmetry-respecting basis
- Another basis?

	a=0	0 <a<2< th=""><th>a=2</th></a<2<>	a=2
Subalgebras	$ \begin{array}{l} \{e^{2S}\}, \{e^{2T}\}, \\ \{e^{2S}, e^{2T}\}, \\ \{e^{1S}, e^{2S}, e^{2T}\} \end{array} \\ \end{array} $	$ \begin{array}{l} \{e^{2S}\}, \{e^{2T}\}, \\ \{e^{1S}, e^{2S}\}, \\ \{e^{2S}, e^{2T}\}, \\ \{e^{1S}, e^{2S}, e^{2T}\} \end{array} $	$ \begin{array}{l} \{e^{2S}\}, \\ \{e^{1S}, e^{2S}\}, \\ \{e^{2S}, e^{2T}\}, \\ \{e^{1S}, e^{2S}, e^{2T}\} \end{array} $
Ideals	$\{e^{2S}\},\ \{e^{2S},e^{2T}\}$	$ \begin{array}{l} \{e^{2S}\}, \\ \{e^{1S}, e^{2S}\}, \\ \{e^{2S}, e^{2T}\}, \\ \{e^{1S}, e^{2S}, e^{2T}\} \end{array} $	$\{e^{2S}\},\ \{e^{1S},e^{2S}\}$
Quotient algebras	$A/\{e^{2S}\},\ A/\{e^{2S},e^{2T}\}$	$egin{array}{l} A/\{e^{2S}\},\ A/\{e^{1S},e^{2S}\},\ A/\{e^{2S},e^{2T}\},\ A/\{e^{1S},e^{2S},e^{2T}\},\ A/\{e^{1S},e^{2S},e^{2T}\} \end{array}$	$A/\{e^{2S}\},\ A/\{e^{1S},e^{2S}\}$

- Algebra can be decomposed into a direct sum of independent simple ideals, each with their own independent RG equations
 - Simple ideal: no non-trivial sub-ideals
 - Given a positive definite bilinear form of the non-associative algebra

• Trace-form: symmetric bilinear form (x, y)

$$(x \diamond y, z) = (x, y \diamond z)$$
 $x, y, z \in A$

- For our algebra
 - Positive definite \rightarrow non-degenerate

$$(u, v) = u_{ABCD}v_{ABCD} = (v, u)$$

- Non-degenerate trace-form \rightarrow orthogonal complement of ideal is an ideal
 - Orthogonal complement of I: $I_{\perp} = \{y | (x, y) = 0 \,\, orall \,\, x \in I\}$
- For a positive definite bilinear trace-form $\rightarrow A = I \oplus I_{\perp}$
 - Start with a simple ideal S: $A = S \oplus S_{\perp}$
 - Repeat decomposition for S_{\perp}
 - Full decomposition into simple ideals $A=S^1\oplus \cdots \oplus S^k$
- Isomorphism $I_\perp \simeq A/I$
- Basis from decomposition \rightarrow independent RG eqs for each simple ideal

- Special elements: idempotents & nilpotents
 - Idempotent $\mathbf{c}^2 \equiv \mathbf{c} \diamond \mathbf{c} = \mathbf{c}$
 - Nilpotent $\mathbf{n}^2 \equiv \mathbf{n} \diamond \mathbf{n} = 0$
 - Peirce decomposition [Krasnov 2023] \rightarrow divide the flow into sectors
 - Each 1d ideal is spanned by an idempotent or nilpotent
 - Appear in the RG flow
- Idempotent: a coupling that reproduces itself when squared → RG flows in 1d linear subspaces of couplings

• Case a=2 (v=M/N²)
$$A = S^{2S} \oplus (S^{2S}_{\perp} \cap I^S) \oplus S^{OS}_{1d}$$

• 3 closed dynamical systems

$$S^{OS} = I^S_{\perp}$$

• Case a=0 (M constant)
$$A = S^{2S} \oplus (S^{2S}_{\perp} \cap I^2) \oplus S^{O2}_{\perp}$$
 $S^{2S} = \{e^{2S}\}$

• 3 closed dynamical systems

$$\begin{split} I^2 &= \{e^{2S}, e^{2T}\}\\ S^{O2} &= I_\perp^2 \end{split}$$

 $I^S = \{e^{1S}, e^{2S}\}$

- Case 0<a<2 $A = S^t \oplus S^{2S} \oplus (S^{2S}_{\perp} \cap I^2) \oplus (S^{2S}_{\perp} \cap I^S)$
 - 4 closed dynamical systems
 - 3 of them spanned by idempotents
 - 1 spanned by a nilpotent S^t $ightarrow \beta_{1T} = 0$

$$\begin{split} I^{Ot} &= \{e^{1S}, e^{2S}, e^{2T}\}\\ S^t &= I^{Ot}_{\perp}\\ I^2 &= \{e^{2S}, e^{2T}\}\\ I^S &= \{e^{1S}, e^{2S}\}\\ S^{OS} &= I^S_{\perp}\\ S^{O2} &= I^2_{\perp}\\ S^{2S} &= \{e^{2S}\} \end{split}$$

- Case a=2 (v=M/N²)
 - Only trivial fixed point
 - Study 2d simple ideal S^{OS}: 3 idempotents

$$\begin{split} \beta_{1S} &= \frac{1}{32\pi^2} (\lambda_{1S}^2 + (1-v)\lambda_{1T}^2 + 8v\lambda_{1S}\lambda_{2T}) \\ \beta_{1T} &= \frac{1}{4\pi^2} v\lambda_{1T}\lambda_{2T} \\ \beta_{2S} &= \frac{1}{64\pi^2} (2\lambda_{1S}^2 + 8\lambda_{1S}(\lambda_{2S} + 2\lambda_{2T}) + 4\lambda_{2S}(\lambda_{2S} + 4\lambda_{2T}) + v(\lambda_{1T}^2 + 16\lambda_{2T}(\lambda_{2S} + 3\lambda_{2T}))) \\ \beta_{2T} &= \frac{1}{128\pi^2} (\lambda_{1T}^2 + 16(1+v)\lambda_{2T}^2). \end{split}$$

- ($\lambda_{1T}, \lambda_{2T}$)-space $S^{OS} \cong A/I^S$ $I^S = \{e^{1S}, e^{2S}\}$ $S^{OS} = I^S_{\perp}$
- Idempotents all real for v≥1

- Case 0<a<2 (M=v(a)N^a)
 - Nilpotent ideal \rightarrow vanishing beta function
 - Solution with complex λ_{1T} (tensor models [Benedetti,Gurau,Harribey,2019])

$$\begin{split} \beta_{1S} &= \frac{1}{32\pi^2} (\lambda_{1S}^2 + \lambda_{1T}^2) \\ \beta_{1T} &= 0 \\ \beta_{2S} &= \frac{1}{32\pi^2} (\lambda_{1S}^2 + 4\lambda_{1S}\lambda_{2S} + 2\lambda_{2S}^2 + 8(\lambda_{1S} + \lambda_{2S})\lambda_{2T}) \\ \beta_{2T} &= \frac{1}{128\pi^2} (\lambda_{1T}^2 + 16\lambda_{2T}^2). \end{split}$$

- Case a=0 (M constant)
 - Only trivial fixed point
 - Study 2d simple ideal S^{O2}: 3 idempotents

$$\begin{split} \beta_{1S} = & \frac{1}{32\pi^2 M} ((3+M)\lambda_{1S}^2 + 2\sqrt{M}\lambda_{1S}\lambda_{1T} + M\lambda_{1T}^2) \\ \beta_{1T} = & \frac{1}{8\pi^2 M}\lambda_{1S}\lambda_{1T} \\ \beta_{2S} = & \frac{1}{32\pi^2 M} ((3+M)\lambda_{1S}^2 + 2\sqrt{M}\lambda_{1S}\lambda_{1T} + 2\lambda_{2S}(2(1+M)\lambda_{1S} + 2\sqrt{M}\lambda_{1T} + M\lambda_{2S}) + 8M(\lambda_{1S} + \lambda_{2S})\lambda_{2T}) \\ \beta_{2T} = & \frac{1}{128\pi^2 M^2} (4\lambda_{1S}^2 + 8\sqrt{M}\lambda_{1S}\lambda_{1T} + M(2+M)\lambda_{1T}^2 + 16M\lambda_{2T}(\lambda_{1S} + \sqrt{M}\lambda_{1T} + M\lambda_{2T})). \end{split}$$

• (λ_{1S} , λ_{1T})-space $S^{O2} \cong A/I^2$

$$I^2 = \{e^{2S}, e^{2T}\} \qquad S^{O2} = I_{\perp}^2$$

• Idempotents all real for M≤2

Conclusion

- Algebra can be decomposed into a set of simple ideals, each corresponding to a closed subset of couplings with decoupled RG flows
 - Large N: 1d and 2d subspaces of couplings
- The adjoint multiscalar model with SU(N)xO(M) symmetry has 3 large N limits that are easily identified by the algebra
- Positive definite bilinear forms of commutative and non-associative algebras increase the power of algebraic methods

Outlook

- Applying the algebra to other models
 - Algebraic structure for 3-point couplings?
- Higher loops and/or 1/N corrections at large N
 - Does the separation of flows remain?

Thank you!

• Case a=2 (v=M/N²) $A = S^{2S} \oplus (S_{\perp}^{2S} \cap I^{S}) \oplus S^{OS}$ 1d 1d 2d $I^{S} =$ $S^{OS} \cong A/I^{S} = \frac{\diamond e^{1T} e^{2T}}{e^{2T} 2ve^{1T}}$ $e^{2T} 2ve^{1T} (2+2v)e^{2T}$

$$I^S = \{e^{1S}, e^{2S}\}$$
$$S^{OS} = I^S_{\perp}$$

$$S^{2S} = \{e^{2S}\}$$

• Case a=0 (M constant) $A = S^{2S} \oplus (S^{2S}_{\perp} \cap I^2) \oplus S^{O2}_{2d}$

$$\begin{split} I^2 &= \{e^{2S}, e^{2T}\}\\ S^{O2} &= I_\perp^2 \end{split}$$

$$S^{O2} \cong A/I^2 \qquad e^1$$

\$	e^{1S}	e^{1T}	
$_{2}1S$	$rac{M+3}{2M}e^{1S}$	$\frac{1}{2\sqrt{M}}e^{1S} + \frac{1}{M}e^{1T}$	
$_{2}1T$	$\frac{1}{2\sqrt{M}}e^{1S} + \frac{1}{M}e^{1T}$	$\frac{1}{2}e^{1S}$	