Topological Defects and Symmetry

Nordic Network Meeting on Branes, Fields, and Strings
University of Stavanger - December 5, 2023
Michele Del Zotto

UPPSALA UNIVERSITET

SGGGS

Based on joint projects with

- Christian Copetti, Kantaro Ohmori, Yifan Wang
- Kantaro Ohmori
- Robert Moscrop and Shani Nadir Meynet
- Vladimir Bashmakov, Azeem Hasan, and Justin Kaidi
- Matteo Dell'Acqua, Shani Nadir Meynet, and Elias Riedel Gårding

๑ை annonse co

- GCS24: workshop and school on symmetry categories (June 2024)
-KITP Program on Symmetries (in spring 2025 - deadline now: 15/12/2023)

scgcs.berkeley.edu

for details and links!

Executive Summary

Symmetries are a topological subsector of the spectrum of operators of a given QFT.

Today I will explain some features and some first applications of symmetries that arise from this perspective.

Generalized Symmetries: Lightning Review

Well-known fact: quantum fields can have extended operators.

Generalized Symmetries: Lightning Review

Well-known fact: quantum fields can have extended operators

Generalized global \equiv symmetries

Framework to express corresponding conserved quantum numbers

Kapustin, Thorngren 2013

Gaiotto, Kapustin, Seiberg, Willet 2014
Gaiotto, Kapustin, Seiberg, Komargodski 2015

Generalized Symmetries: Lightning Review

Well-known fact: quantum fields can have extended operators

Generalized symmetries

 global \equiv
$=$ Framework to express corresponding conserved quantum numbers

Ordinary symmetries of $D+1$ dimensional QFT:

Generalized Symmetries: Lightning Review

Well-known fact: quantum fields can have extended operators

Generalized global symmetries

Ordinary symmetries of $\mathrm{D}+1$ dimensional QFT:

$$
\left\langle\mathscr{U}_{g}\left(\mathbb{S}^{D}\right) \mathcal{O}(p) \cdots\right\rangle
$$

Generalized Symmetries: Lightning Review

Well-known fact: quantum fields can have extended operators

> Generalized symmetries global \equiv

Ordinary symmetries of $\mathrm{D}+1$ dimensional QFT:

$$
\left\langle U_{g}\left(\mathbb{S}^{D}\right) \mathscr{O}(p) \cdots\right\rangle
$$

Generalized Symmetries: Lightning Review

Well-known fact: quantum fields can have extended operators

Generalized symmetries

 global $\equiv$$\equiv$ Framework to express corresponding conserved quantum numbers

Ordinary symmetries of $\mathrm{D}+1$ dimensional QFT:

$$
\left\langle U_{g}\left(\mathbb{S}^{D}\right) \mathcal{O}(p) \cdots\right\rangle
$$

Generalized Symmetries: Lightning Review

Well-known fact: quantum fields can have extended operators

Generalized symmetries

 global $\equiv$$\equiv$ Framework to express corresponding conserved quantum numbers

Ordinary symmetries of $D+1$ dimensional QFT:

$$
\left.\left\langle U_{g} \mathbb{S}^{D}\right) \mathscr{O}(p) \cdots\right\rangle=\left\langle R_{g} \mathcal{O}(p) \cdots\right\rangle
$$

$$
R_{g} \mathcal{O}(p)
$$

Generalized Symmetries: Lightning Review

Well-known fact: quantum fields can have extended operators

Generalized global \equiv symmetries
$\equiv \quad$ Framework to express corresponding conserved quantum numbers

Generalized symmetries of $\mathrm{D}+1$ dimensional QFT:

Generalized Symmetries: Lightning Review

Well-known fact: quantum fields can have extended operators

Generalized global symmetries

\equiv

Framework to express corresponding conserved quantum numbers

Generalized symmetries of $\mathrm{D}+1$ dimensional QFT:

$$
\left\langle U_{g}\left(\mathbb{S}^{D-k}\right) \mathcal{O}\left(\Sigma^{k}\right) \cdots\right\rangle
$$

Generalized Symmetries: Lightning Review

Well-known fact: quantum fields can have extended operators

Generalized global symmetries

 \equivFramework to express corresponding conserved quantum numbers

$$
\left\langle U_{g}\left(\mathbb{S}^{D-k}\right) \mathcal{O}\left(\Sigma^{k}\right) \cdots\right\rangle
$$

Generalized Symmetries: Lightning Review

Well-known fact: quantum fields can have extended operators

Generalized global \equiv symmetries
$\equiv \quad$ Framework to express corresponding conserved quantum numbers

Generalized symmetries of $\mathrm{D}+1$ dimensional QFT:

$$
\left\langle\mathscr{U}_{g}\left(\mathbb{S}^{D-k}\right) \mathcal{O}\left(\Sigma^{k}\right) \cdots\right\rangle=\left\langle R_{g} \mathcal{O}\left(\Sigma^{k}\right) \quad \cdots\right\rangle
$$

Example: Maxwell theory

Electric and magnetic 1-form symmetries

$$
\begin{array}{ll}
\mathscr{U}_{\theta}^{(e)}\left(\mathbb{S}^{2}\right)=e^{i \theta \int_{\mathbb{S}^{2}} * J_{e}^{(2)}} & \mathscr{U}_{\theta}^{(m)}\left(\mathbb{S}^{2}\right)=e^{i \theta \int_{\mathbb{S}^{2}} * J_{m}^{(2)}} \\
J_{e}^{(2)}=\frac{f}{e^{2}} & J_{m}^{(2)}=* \frac{f}{2 \pi} \\
\widehat{O}_{q_{e}}\left(\Sigma^{1}\right)=e^{i q_{e} \int_{\Sigma^{1}} a^{(1)}} & \mathcal{O}_{q_{m}}\left(\Sigma^{1}\right)=e^{i q_{m} \int_{\Sigma^{1}} a_{D}^{(1)}}
\end{array}
$$

Wilson lines
\dagger Hooft lines

$$
\mathscr{U}_{\theta}^{(\cdot)}\left(\mathbb{S}^{2}\right) \mathcal{O}_{q_{0}}\left(\Sigma^{1}\right)=e^{i \theta q_{0}} \mathcal{O}_{q_{0}}\left(\Sigma^{1}\right) \quad \bullet=e, m
$$

Generalized Symmetries: Lightning Review

Well-known fact: quantum fields can have extended operators

Generalized global symmetries

 \equivFramework to express corresponding conserved quantum numbers

Generalized Symmetries: Lightning Review

Well-known fact: quantum fields can have extended operators

Generalized global symmetries

Kapustin, Thorngren 2013
Gaiotto, Kapustin, Seiberg, Willet 2014
Gaiotto, Kapustin, Seiberg, Komargodski 2015

More charges

Kapustin, Thorngren 2013
Barkeshli, Bonderson, Cheng, Wang 2014

Generalized Symmetries: Lightning Review

Well-known fact: quantum fields can have extended operators

Generalized global symmetries

\equiv Framework to express corresponding conserved quantum numbers

Generalized symmetries of $\mathrm{D}+1$ dimensional QFT:
Kapustin, Thorngren 2013
Gaiotto, Kapustin, Seiberg, Willet 2014
Gaiotto, Kapustin, Seiberg, Komargodski 2015

More charges

Kapustin, Thorngren 2013
Barkeshli, Bonderson, Cheng, Wang 2014

Generalized Symmetries: Lightning Review

Generalized global symmetries

Generalized Symmetries: Lightning Review

Generalized Symmetries: Lightning Review

- Ward identities

Generalized global symmetries
"Topological" subsector of the spectrum of operators of a QFT

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules

Generalized Symmetries: Lightning Review

Generalized
global
symmetries
:---:
subsector of the
spectrum of
operators of a
QFT

- Ward identities
- Selection Rules

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules
- Anomalies

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking
... but also other features!

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking
... but also other features!
- Fusion product

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking
... but also other features!
- Fusion product

$$
D_{1} \otimes D_{2}
$$

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking
... but also other features!
- Fusion product

$$
D_{1} \otimes D_{2}=D_{3}
$$

Group Multiplication

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking
... but also other features!
-Fusion product

$$
D_{1} \otimes D_{2}=D_{3} \oplus D_{4} \cdots \oplus D_{k}
$$

Group Multiplication \rightarrow Fusion Product

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking
... but also other features!
-Fusion product

$$
D_{1} \otimes D_{2}=D_{3} \oplus D_{4} \cdots \oplus D_{k}
$$

Group Multiplication \rightarrow Fusion Product

Locality principle

So far we have not made a distinction among defects and operators (spacetime is Euclidean), but for RQFT there is:

- Operators : inserted along space

$$
D_{1} \otimes D_{2}=D_{3} \oplus D_{4} \cdots \oplus D_{k}
$$

Group Multiplication \rightarrow Fusion Product

Locality principle

So far we have not made a distinction among defects and operators (spacetime is Euclidean), but for RQFT there is:

- Operators : inserted along space
- Defects : inserted along time

$$
D_{1} \otimes D_{2}=D_{3} \oplus D_{4} \cdots \oplus D_{k}
$$

Group Multiplication \rightarrow Fusion Product

Locality principle

So far we have not made a distinction among defects and operators (spacetime is Euclidean), but for RQFT there is:

- Operators : inserted along space
- Defects : inserted along time As defects: twisted Hilbert spaces

$$
D_{1} \otimes D_{2}=D_{3} \oplus D_{4} \cdots \oplus D_{k}
$$

Group Multiplication \rightarrow Fusion Produc \dagger

Locality principle

So far we have not made a distinction among defects and operators (spacetime is Euclidean), but for RQFT there is:

- Operators : inserted along space
- Defects : inserted along time As defects: twisted Hilbert spaces

$$
D_{1} \otimes D_{2}=D_{3} \oplus D_{4} \cdots \oplus D_{k}
$$

twisted

Group Multiplication \rightarrow Fusion Product

Locality principle

So far we have not made a distinction among defects and operators (spacetime is Euclidean), but for RQFT there is:

- Operators : inserted along space
- Defects : inserted along time As defects: twisted Hilbert spaces
\Rightarrow can only take direct sums

$$
D_{1} \otimes D_{2}=D_{3} \oplus D_{4} \cdots \oplus D_{k}
$$

twisted

Group Multiplication \rightarrow Fusion Produc \dagger

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking
... but also other features!
-Fusion product

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking
... but also other features!
- Fusion product
- Higher structure

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking
... but also other features!
- Fusion product
- Higher structure

Extended defects can form junctions

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking
... but also other features!
- Fusion product
- Higher structure

Extended defects can form junctions

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking
... but also other features!
- Fusion product
- Higher structure

Extended defects can form junctions

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking
... but also other features!
- Fusion product
- Higher structure

Extended defects can form junctions

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking
... but also other features!
- Fusion product
- Higher structure

Extended defects can form junctions

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking
... but also other features!
- Fusion product
- Higher structure

Extended defects can form junctions
e.g. higher group

Example: 2-group symmetry

Cordóva, Dumitrescu,
Intriligator 16; Benini,
Cordóva, Hsin 18; Bhardwaj, Shafer-Nameki 23; Bullimore, Barscht, Grigoletto 23

Example: 2-group symmetry

$\mathbb{G}^{(0)}$ 0-form symmetry
A(1) 1-form symmetry

Defect of higher
codimension e.g. higher group

$$
\begin{aligned}
& \mathscr{U}_{a}^{(1)} \\
& a \in \mathbb{A}
\end{aligned}
$$

$$
\begin{aligned}
& \mathscr{U}_{g}^{(0)} \\
& g \in \mathbb{G}
\end{aligned}
$$

Cordóva, Dumitrescu,
Intriligator 16; Benini,
Cordóva, Hsin 18; Bhardwaj, Shafer-Nameki 23; Bullimore, Barscht, Grigoletto 23

Example: 2-group symmetry

$\mathbb{G}^{(0)} 0$-form symmetry
A(1) 1-form symmetry

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
$A^{(1)}$ 1-form symmetry

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
A(1) 1-form symmetry

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
A(1) 1-form symmetry

Intriligator 16; Benini,
Cordóva, Hsin 18; Bhardwaj, Shafer-Nameki 23; Bullimore, Barscht, Grigoletto 23

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
A(1) 1-form symmetry

Cordóva, Dumitrescu,
Intriligator 16; Benini,
Cordóva, Hsin 18; Bhardwaj, Shafer-Nameki 23; Bullimore, Barscht, Grigoletto 23

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
A(1) 1-form symmetry

Cordóva, Dumitrescu,
Intriligator 16; Benini,
Cordóva, Hsin 18; Bhardwaj, Shafer-Nameki 23; Bullimore, Barscht, Grigoletto 23

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
A(1) 1-form symmetry

Cordóva, Dumitrescu,
Intriligator 16; Benini,
Cordóva, Hsin 18; Bhardwaj, Shafer-Nameki 23; Bullimore, Barscht, Grigoletto 23

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
A(1) 1-form symmetry

Defect of higher codimension e.g. higher group

Cordóva, Dumitrescu,
Intriligator 16; Benini,
Cordóva, Hsin 18; Bhardwaj, Shafer-Nameki 23; Bullimore, Barscht, Grigoletto 23

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
A(1) 1-form symmetry

$\beta^{(2)}$
e.g. higher group

Cordóva, Dumitrescu,
Intriligator 16; Benini,
Cordóva, Hsin 18; Bhardwaj, Shafer-Nameki 23; Bullimore, Barscht, Grigoletto 23

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
$A^{(1)}$ 1-form symmetry $\beta^{(2)} \in H_{\rho}^{3}\left(\mathbb{G}^{(0)}, \mathbb{A}^{(1)}\right)$

Cordóva, Dumitrescu,
Intriligator 16; Benini,
Cordóva, Hsin 18; Bhardwaj, Shafer-Nameki 23; Bullimore, Barscht, Grigoletto 23

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
A $^{(1)}$ 1-form symmetry $\beta^{(2)} \in H_{\rho}^{3}\left(\mathbb{G}^{(0)}, \mathbb{A}^{(1)}\right)$

e.g. higher group

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
A $^{(1)}$ 1-form symmetry $\quad \beta^{(2)} \in H_{\rho}^{3}\left(\mathbb{G}^{(0)}, \mathbb{A}^{(1)}\right)$
How to compute it in practice?

Useful: all these data match across dualites

Del Zotto, Ohmori 20
Lee, Ohmori, Tachikawa 21

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
A $^{(1)}$ 1-form symmetry $\quad \beta^{(2)} \in H_{\rho}^{3}\left(\mathbb{G}^{(0)}, \mathbb{A}^{(1)}\right)$
How to compute it in practice?

Useful: all these data match across dualites

Del Zotto, Ohmori 20
Lee, Ohmori, Tachikawa 21

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
A $^{(1)}$ 1-form symmetry $\quad \beta^{(2)} \in H_{\rho}^{3}\left(\mathbb{G}^{(0)}, \mathbb{A}^{(1)}\right)$
How to compute it in practice?

Useful: all these data match across dualites

Del Zotto, Ohmori 20
Lee, Ohmori, Tachikawa 21

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
$\mathbb{A}^{(1)} \quad 1$-form symmetry $\quad \beta^{(2)} \in H_{\rho}^{3}\left(\mathbb{G}^{(0)}, \mathbb{A}^{(1)}\right)$

Useful: all these data match across dualites

Del Zotto, Ohmori 20
Lee, Ohmori, Tachikawa 21

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
$\mathbb{A}^{(1)}$ 1-form symmetry $\quad \beta^{(2)} \in H_{\rho}^{3}\left(\mathbb{G}^{(0)}, \mathbb{A}^{(1)}\right)$

Useful: all these data match across dualites

Del Zotto, Ohmori 20
Lee, Ohmori, Tachikawa 21

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
A $^{(1)}$ 1-form symmetry $\quad \beta^{(2)} \in H_{\rho}^{3}\left(\mathbb{G}^{(0)}, \mathbb{A}^{(1)}\right)$
How to compute it in practice?

Useful: all these data match across dualites

Del Zotto, Ohmori 20
Lee, Ohmori, Tachikawa 21

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
A $^{(1)}$ 1-form symmetry $\quad \beta^{(2)} \in H_{\rho}^{3}\left(\mathbb{G}^{(0)}, \mathbb{A}^{(1)}\right)$
How to compute it in practice?

Useful: all these data match across dualites

Del Zotto, Ohmori 20
Lee, Ohmori, Tachikawa 21

Example: 2-group symmetry

$\mathbb{G}^{(0)} \quad 0$-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
$\mathbb{A}^{(1)}$ 1-form symmetry $\quad \beta^{(2)} \in H_{\rho}^{3}\left(\mathbb{G}^{(0)}, \mathbb{A}^{(1)}\right)$
How to compute it in practice?

Useful: all these data match across dualites

Del Zotto, Ohmori 20
Lee, Ohmori, Tachikawa 21
$A^{(1)}=$ charges of non-endable lines

Example: 2-group symmetry

$\mathbb{G}^{(0)}$
O-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
$A{ }^{(1)} \quad 1$-form symmetry $\quad \beta^{(2)} \in H_{\rho}^{3}\left(\mathbb{G}^{(0)}, \mathbb{A}^{(1)}\right)$
How to compute it in practice?

Useful: all these data match across dualites

Del Zotto, Ohmori 20
Lee, Ohmori, Tachikawa 21

Consider screening only with operators in definite representations of $\mathbb{G}^{(0)}$

Example: 2-group symmetry

$\mathbb{G}^{(0)}$
0-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
$A{ }^{(1)} \quad 1$-form symmetry $\quad \beta^{(2)} \in H_{\rho}^{3}\left(\mathbb{G}^{(0)}, \mathbb{A}^{(1)}\right)$
How to compute it in practice?

Useful: all these data match across dualites

Del Zotto, Ohmori 20
Lee, Ohmori, Tachikawa 21

Consider screening only with operators
in definite representations of $\mathbb{G}^{(0)}: \Gamma^{(1)}$
e.g. higher group

Example: 2-group symmetry

$G^{(0)}$
0 -form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
$\mathbb{A}^{(1)} 1$-form symmetry $\quad \beta^{(2)} \in H_{\rho}^{3}\left(\mathbb{G}^{(0)}, \mathbb{A}^{(1)}\right)$
How to compute it in practice?

$$
1 \rightarrow \mathbb{A}^{(1)} \rightarrow \Gamma^{(1)} \rightarrow C \rightarrow 1
$$

Useful: all these data match across dualites

Del Zotto, Ohmori 20
Lee, Ohmori, Tachikawa 21

Consider screening only with operators
in definite representations of $\mathbb{G}^{(0)}: \Gamma^{(1)}$
e.g. higher group

Example: 2-group symmetry

mismatch given by
projective reps of $\mathbb{G}^{(0)}$
$\mathbb{G}^{(0)}$
0 -form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$
$A(1) \quad 1$-form symmetry $\quad \beta^{(2)} \in H_{\rho}^{3}\left(\mathbb{G}^{(0)}, \mathbb{A}^{(1)}\right)$
How to compute it in practice?

$$
1 \rightarrow \mathbb{A}^{(1)} \rightarrow \Gamma^{(1)} \rightarrow \mathrm{C} \rightarrow 1
$$

Useful: all these data match across dualites

Del Zotto, Ohmori 20
Lee, Ohmori, Tachikawa 21

Consider screening only with operators
in definite representations of $\mathbb{G}^{(0)}: \Gamma^{(1)}$
e.g. higher group

Example: 2-group symmetry

mismatch given by
projective reps of $\mathbb{G}^{(0)}$
$\mathbb{G}^{(0)}$
A(1)
0-form symmetry $\quad \rho \in \operatorname{Aut}\left(\mathbb{A}^{(1)}\right)$

How to compute it in practice?

$$
1 \rightarrow \mathbb{A}^{(1)} \rightarrow \Gamma^{(1)} \rightarrow \mathrm{C} \rightarrow 1
$$

Useful: all these data match across dualites

Del Zotto, Ohmori 20
Lee, Ohmori, Tachikawa 21

Consider screening only with operators
in definite representations of $\mathbb{G}^{(0)}: \Gamma(1)$
e.g. higher group

Generalized Symmetries: Lightning Review

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking
... but also other features!

- Fusion product
 - Higher structure

Extended defects can form junctions
e.g. higher group

Symmetry Groups \rightarrow Symmetry Categories

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking

$$
\begin{array}{|l|}
\text { - Fusion product } \\
\text { • Higher structure }
\end{array}
$$

Symmetry Groups \rightarrow Symmetry Categories

The structure of symmetries is better characterized exploiting higher categories than groups

Well-known in the TQFT community
Finds applications in cond-mat (topological order), eg. Johnson-Freyd, Gaiotto 17,19; Johnson-Freyd 20; Gaiotto, Kulp 20; Kong, Lan, Wen, Zhang, Zheng 20; now apply to QFT

- Ward identities
- Selection Rules
- Anomalies
- Spontaneous breaking

- Fusion product
 - Higher structure

Defect of higher
codimension

Symmetry Groups \rightarrow Symmetry Categories

The structure of symmetries is better characterized exploiting higher categories than groups wellknown in the Tart community

Finds applications in cond-mat (topological order), eg. Johnson-Freyd, Gaiotto 17,19; Johnson-Freyd 20; Gaiotto, Kulp 20; Kong, Lan, Wen, Zhang, Zheng 20; now apply to QFT

- Varáicienimities
- Selection Rules
- Anomalies
- Spontaneous breaking

- Fusion product
 - Higher structure

See also: Córdova, Ohmori 21; Choi, (Córdova), Lam, (Hsin), Shao 21,22; Roumpedakis, Seifnashri, Shao 22; Kaidi, Ohmori, Zheng 21,22; Kaidi, Nardoni, Zafrir, Zheng 23; Oxford group (Apruzzi, Bhardwaj, Bonetti, Bottini, Schäfer-Nameki); Durham group (Bartsch, Bullimore,... + García Etxebarria, Hosseini),.

Symmetry Categories oversimplified

Symmetry category graded by charged operator dimensions:

$$
\mathscr{C}=\left(\mathscr{C}^{(0)}, \mathscr{C}^{(1)}, \cdots, \mathscr{C}^{(D-1)}\right) \quad \mathscr{C}^{(k)}=\text { codim } \boldsymbol{k}+\boldsymbol{1} \text { top-ops }
$$

slogan: everything is a morphism and every morphism is an interface

Symmetry Categories oversimplified

Symmetry category graded by charged operator dimensions:

$$
\mathscr{C}=\left(\mathscr{C}^{(0)}, \mathscr{C}^{(1)}, \cdots, \mathscr{C}^{(D-1)}\right) \quad \mathscr{C}^{(k)}=\text { codim } \boldsymbol{k}+\boldsymbol{1} \text { top-ops }
$$

slogan: everything is a morphism and every morphism is an interface
Usual "k-form" symmetry generators $\in \mathscr{C}^{(k)}\left(\mathbf{i d}_{k-1}, \mathbf{i d}_{k-1}\right)$

Symmetry Categories oversimplified

Symmetry category graded by charged operator dimensions:

$$
\mathscr{C}=\left(\mathscr{C}^{(0)}, \mathscr{C}^{(1)}, \cdots, \mathscr{C}^{(D-1)}\right)
$$

$$
\mathscr{C}^{(k)}=\text { codim } \mathbf{k + 1} \text { top-ops }
$$

slogan: everything is a morphism and every morphism is an interface
Usual "k-form" symmetry generators $\in \mathscr{C}^{(k)}\left(\mathbf{i d}_{k-1}, \mathbf{i d}_{k-1}\right)$
e.g

$$
D \in \mathscr{C}^{(0)}=\mathscr{C}^{(0)}\left(\mathbf{i d}_{-1}, \mathbf{i d}_{-1}\right)
$$

Symmetry Categories oversimplified

Symmetry category graded by charged operator dimensions:

$$
\mathscr{C}=\left(\mathscr{C}^{(0)}, \mathscr{C}^{(1)}, \cdots, \mathscr{C}^{(D-1)}\right)
$$

$$
\mathscr{C}^{(k)}=\text { codim } \mathbf{k + 1} \text { top-ops }
$$

slogan: everything is a morphism and every morphism is an interface
Usual "k-form" symmetry generators $\in \mathscr{C}^{(k)}\left(\mathbf{i d}_{k-1}, \mathbf{i d}_{k-1}\right)$
e.g

$$
D \in \mathscr{C}^{(0)}=\mathscr{C}^{(0)}\left(\mathbf{i d}_{-1}, \mathbf{i d}_{-1}\right)
$$

Remark: From this perspective it makes sense to consider a category of ($\mathrm{D}+1$)-dimensional QFTs with morphisms topological interfaces

Symmetry Categories oversimplified

Symmetry category graded by charged operator dimensions:

$$
\mathscr{C}=\left(\mathscr{C}^{(0)}, \mathscr{C}^{(1)}, \cdots, \mathscr{C}^{(D-1)}\right)
$$

$$
\mathscr{C}^{(k)}=\text { codim } \mathbf{k + 1} \text { top-ops }
$$

slogan: everything is a morphism and every morphism is an interface
Usual "k-form" symmetry generators $\in \mathscr{C}^{(k)}\left(\mathbf{i d}_{k-1}, \mathbf{i d}_{k-1}\right)$
e. 9

$$
\begin{aligned}
D & \in \mathscr{C}^{(0)}=\mathscr{C}^{(0)}\left(\mathbf{i d}_{-1}, \mathbf{i d}_{-1}\right) \\
J_{a b} & \in \mathscr{C}^{(1)}\left(D_{a}, D_{b}\right)
\end{aligned}
$$

Symmetry Categories oversimplified

Symmetry category graded by charged operator dimensions:

$$
\mathscr{C}=\left(\mathscr{C}^{(0)}, \mathscr{C}^{(1)}, \cdots, \mathscr{C}^{(D-1)}\right)
$$

$$
\mathscr{C}^{(k)}=\text { codim } \mathbf{k + 1} \text { top-ops }
$$

slogan: everything is a morphism and every morphism is an interface
Usual "k-form" symmetry generators $\in \mathscr{C}^{(k)}\left(\mathbf{i d}_{k-1}, \mathbf{i d}_{k-1}\right)$
e.g

$$
\begin{aligned}
D & \in \mathscr{C}^{(0)}=\mathscr{C}^{(0)}\left(\mathbf{i d}_{-1}, \mathbf{i d}_{-1}\right) \\
J_{a b} & \in \mathscr{C}^{(1)}\left(D_{a}, D_{b}\right) \\
\eta & \in \mathscr{C}^{(2)}\left(D_{a}, D_{b}\right)
\end{aligned}
$$

Useful: instead of drawing, chase arrow diagrams

Symmetry Categories oversimplified

Symmetry category graded by charged operator dimensions:

$$
\mathscr{C}=\left(\mathscr{C}^{(0)}, \mathscr{C}^{(1)}, \cdots, \mathscr{C}^{(D-1)}\right)
$$

$$
\mathscr{C}^{(k)}=\text { codim } \mathbf{k + 1} \text { top-ops }
$$

slogan: everything is a morphism and every morphism is an interface
Usual "k-form" symmetry generators $\in \mathscr{C}^{(k)}\left(\mathbf{i d}_{k-1}, \mathbf{i d}_{k-1}\right)$
e. 9

$$
\begin{aligned}
D & \in \mathscr{C}^{(0)}=\mathscr{C}^{(0)}\left(\mathbf{i d}_{-1}, \mathbf{i d}_{-1}\right) \\
J_{a b} & \in \mathscr{C}^{(1)}\left(D_{a}, D_{b}\right) \\
\eta & \in \mathscr{C}^{(2)}\left(D_{a}, D_{b}\right)
\end{aligned}
$$

Useful: instead of drawing, chase arrow diagrams

Symmetry Categories oversimplified

Symmetry category graded by charged operator dimensions:

$$
\mathscr{C}=\left(\mathscr{C}^{(0)}, \mathscr{C}^{(1)}, \cdots, \mathscr{C}^{(D-1)}\right)
$$

$$
\mathscr{C}^{(k)}=\text { codim } \boldsymbol{k + 1} \text { top-ops }
$$

slogan: everything is a morphism and every morphism is an interface
Usual "k-form" symmetry generators $\in \mathscr{C}^{(k)}\left(\mathbf{i d}_{k-1}, \mathbf{i d}_{k-1}\right)$
e.g

$$
\begin{aligned}
D & \in \mathscr{C}^{(0)}=\mathscr{C}^{(0)}\left(\mathbf{i d}_{-1}, \mathbf{i d}_{-1}\right) \\
J_{a b} & \in \mathscr{C}^{(1)}\left(D_{a}, D_{b}\right) \\
\eta & \in \mathscr{C}^{(2)}\left(D_{a}, D_{b}\right)
\end{aligned}
$$

Useful: instead of drawing, chase arrow diagrams

Example

Useful: instead of drawing, chase arrow diagrams

Higher associators

The associativity for $(p+1)$-objects gives a p-morphism.

Higher associators

The associativity for $(\mathrm{p}+1)$-objects gives a p-morphism.

Higher associativity
\Rightarrow higher codimension

Gauging and Condensates

Feature of N -fusion categories for $\mathrm{N}>1$: can form condensates
i.e. one can build lower codimension defects from higher condimension ones via the higher gauging procedure
For each p-gaugeable $\mathbb{A} \subseteq \mathscr{C}^{(k)}$ consistent higher structure requires

$$
C_{\mathbb{A}}\left(\Sigma^{D+1-p}\right) \in \mathscr{C}^{(p)}
$$

$$
\Sigma^{D+1-p}
$$

Gauging and Condensates

Feature of N -fusion categories for $\mathrm{N}>1$: can form condensates
i.e. one can build lower codimension defects from higher condimension ones via the higher gauging procedure
For each p-gaugeable $\mathbb{A} \subseteq \mathscr{C}^{(k)}$ consistent higher structure requires

Obtained by inserting a mesh of \mathbb{A} on a triangulation of Σ^{D-p}

Gauging and Condensates

Feature of N -fusion categories for $\mathrm{N}>1$: can form condensates
i.e. one can build lower codimension defects from higher condimension ones via the higher gauging procedure
For each p-gaugeable $\mathbb{A} \subseteq \mathscr{C}^{(k)}$ consistent higher structure requires

Obtained by inserting a mesh of \mathbb{A} on a triangulation of Σ^{D-p}

Remark: condensates are porous

Gauging and Condensates

Feature of N -fusion categories for $\mathrm{N}>1$: can form condensates
i.e. one can build lower codimension defects from higher condimension ones via the higher gauging procedure
For each p-gaugeable $\mathbb{A} \subseteq \mathscr{C}^{(k)}$ consistent higher structure requires

$$
p \leq k
$$

Obtained by inserting a mesh of \mathbb{A} on a triangulation of Σ^{D-p}

Remark: condensates are porous

- 0

Gauging and Condensates

This gives useful way of building topological interfaces

Gauging and Condensates

This gives useful way of building topological interfaces

When the theory \mathscr{T} is such that it has an equivalence $\sigma: \mathscr{T} \cong \mathscr{T} / \mathbb{A}$
One obtains a duality defect from composition

Gauging and Condensates

This gives useful way of building topological interfaces

When the theory \mathscr{T} is such that it has an equivalence $\sigma: \mathscr{T} \cong \mathscr{T} / \mathbb{A}$
One obtains a duality defect from composition

Gauging and Condensates

This gives useful way of building topological interfaces

When the theory \mathscr{T} is such that it has an equivalence $\sigma: \mathscr{T} \cong \mathscr{T} / \mathbb{A}$ Iterating one obtains fusion rule

Gauging and Condensates

This gives useful way of building topological interfaces

When the theory \mathscr{T} is such that it has an equivalence $\sigma: \mathscr{T} \cong \mathscr{T} / \mathbb{A}$ Iterating one obtains fusion rule

Gauging and Condensates

This gives useful way of building topological interfaces

When the theory \mathscr{T} is such that it has an equivalence $\sigma: \mathscr{T} \cong \mathscr{T} / \mathbb{A}$ Iterating one obtains fusion rule

Gauging and Condensates

This gives useful way of building topological interfaces

When the theory \mathscr{T} is such that it has an equivalence $\sigma: \mathscr{T} \cong \mathscr{T} / \mathbb{A}$ Iterating one obtains fusion rule

$$
\mathbf{D} \otimes \overline{\mathbf{D}}=C_{\mathrm{A}}
$$

Example: Maxwell Theory

Consider gauging a $\mathbb{Z}_{N}^{(1)}$ subgroup of $U(1)_{e}^{(1)}$
This has the same effect as shifting the gauge potentials

$$
a \rightarrow \frac{1}{N} a \quad a_{D} \rightarrow N a_{D} \quad e \rightarrow N e
$$

$$
\mathscr{T}(e)
$$

Example: Maxwell Theory

Consider gauging a $\mathbb{Z}_{N}^{(1)}$ subgroup of $U(1)_{e}^{(1)}$
This has the same effect as shifting the gauge potentials

$$
a \rightarrow \frac{1}{N} a \quad a_{D} \rightarrow N a_{D} \quad e \rightarrow N e
$$

EM duality

$$
\begin{aligned}
\mathscr{T}(N e) & \cong \mathscr{T}(2 \pi / N e) \\
\Rightarrow e_{*} & =\sqrt{2 \pi / N} \quad \mathscr{T}(e)
\end{aligned}
$$

Gives an

equivalence

$\Rightarrow \mathscr{T}\left(e_{*}\right)$ has duality defects

Many more examples can be realized

- Using SYM at the self dual coupling $\tau=i$ one has the equivalence

$$
S U(N) \cong P S U(N)=S U(N) / \mathbb{Z}_{N}
$$

- Many more examples can be constructed exploiting class S theories at special points of their moduli spaces

$$
\mathscr{X}_{(2,0)}^{6 D} / \Sigma_{g, p}
$$

In particular one finds examples of n-ality defects, and generalized duality defects labeled by non-abelian finite groups in this way

Symmetry theory

Idea: topological operators are encoded in a D+2 dimensional TFT
Kapustin Seiberg 14

$\mathcal{B} |$| | \mathcal{Z} | $\hat{\mathcal{T}}$ |
| :--- | :--- | :--- |

- Separates the topological symmetry data from the theory
- Allows to import techniques from TFT (cobordism hypothesis)
- Gives generalization of ' \dagger Hooft anomaly matching
-Streamlines construction of duality defects:

Symmetry theory

Idea: topological operators are encoded in a D+2 dimensional TFT
Kapustin Seiberg 14

$\mathcal{B} |$| \mathcal{Z} | $\widehat{\mathcal{T}} \cong$ | $\cong \mathcal{T}$ |
| :--- | :--- | :--- |

- Separates the topological symmetry data from the theory
- Allows to import techniques from TFT (cobordism hypothesis)
- Gives generalization of ' \dagger Hooft anomaly matching
-Streamlines construction of duality defects:

$$
\mathcal{B}\left|\begin{array}{cc}
\mathcal{E}^{\mathrm{op}}{ }_{\mathcal{D}} \quad \mathcal{Z}
\end{array}\right| \widehat{\mathcal{T}}\left(\tau_{*}\right) \quad \cong \begin{aligned}
& \mathcal{T}\left(\tau_{*}\right) \\
& \mathcal{G} \\
& \mathcal{G}^{\mathrm{op}} \\
& \mathcal{T}\left(\tau_{*}\right)
\end{aligned}
$$

Higher associators - continued

The associativity for $(p+1)$-objects gives a p-morphism.
Higher associativity
\Rightarrow higher codimension

't Hooft anomaly

Associativity condition with codimension higher than the defect worldvolume itself \rightarrow If non trivializable becomes obstruction to gauging

Higher associators - continued

The associativity for $(p+1)$-objects gives a p-morphism.
Higher associativity
\Rightarrow higher codimension

't Hooft anomaly

Associativity condition with codimension higher than the defect worldvolume itself \rightarrow If non trivializable becomes obstruction to gauging

Examples:

1.Quantum mechanics: by Wigner \mathscr{H} can be in a projective representation: symmetry operators are inserted at points and associativity itself measures the anomaly
2. QFT in 1+1: symmetries are lines, associativity is encoded by F-symbol, consistency of F -symbol is encoded by pentagonator. When symmetry is a group, pentagonators are parametrized by class in $H^{3}(\mathbb{G}, U(1))$ which is the standard anomaly

Higher associators - continued

The associativity for $(p+1)$-objects gives a p-morphism.
Higher associativity
\Rightarrow higher codimension

't Hooft anomaly

Associativity condition with codimension higher than the defect worldvolume itself \rightarrow If non trivializable becomes obstruction to gauging

Other notion: theory cannot have trivial gapped symmetric phase.
For non-invertible symmetries the two notions don't coincide and the second is more restrictive

Chiral Symmetry

Consider 3+1 dimensional QFT with $U(1)^{(1)}$ symmetry and a 1 -form that satisfies an anomalous conservation equation of the ABJ type

$$
d \star j_{\chi}^{(1)}=\star j^{(2)} \wedge \star j^{(2)}
$$

Then there is a symmetry for wannabe $U(1)_{\chi}^{(0)}$ quantum numbers Generators:

$$
D_{p / N}^{(0)}\left(\Sigma^{3}\right)=\mathscr{U}_{p / N}^{\chi} \otimes \mathscr{A}^{N, p}[b] \quad b=\frac{2 \pi}{N} \star j^{(2)}
$$

chiral rotation generator

Hsin-Lan-Seiberg minimal $3 \mathrm{~d} \mathbb{Z}_{N}$ TFT

Chiral Symmetry

Consider 3+1 dimensional QFT with $U(1)^{(1)}$ symmetry and a 1 -form that satisfies an anomalous conservation equation of the ABJ type

$$
d \star j_{\chi}^{(1)}=\star j^{(2)} \wedge \star j^{(2)}
$$

Then there is a symmetry for wannabe $U(1)_{\chi}^{(0)}$ quantum numbers
Generators (light notation)

$$
D_{p / N}^{(0)}\left(\Sigma^{3}\right)=[p, N]
$$

Chiral Symmetry

Consider 3+1 dimensional QFT with $U(1)^{(1)}$ symmetry and a 1 -form that satisfies an anomalous conservation equation of the ABJ type

$$
d \star j_{\chi}^{(1)}=\star j^{(2)} \wedge \star j^{(2)}
$$

Then there is a symmetry for wannabe $U(1)_{\chi}^{(0)}$ quantum numbers
Generators (light notation)

$$
\begin{array}{lll}
D_{p / N}^{(0)}\left(\Sigma^{3}\right)=[\mathrm{p}, \mathrm{~N}] \\
U_{\alpha}^{(1)}\left(\Sigma^{2}\right) \quad \text { 1-form symmetry } & C_{L}^{(1)}\left(\Sigma^{2}\right) & \begin{array}{l}
\mathbb{Z}_{L}^{(1)} \text { subgroup } \\
\text { condensates }
\end{array} \\
& C_{L, \alpha}^{(0)}\left(\Sigma^{3}\right) & \begin{array}{c}
\text { Disoretet orsison } \\
\alpha \in H^{3}\left(B \mathbb{Z}_{L}, U(1)\right)
\end{array}
\end{array}
$$

Chiral Symmetry Associator

Generators (light notation)

$$
\begin{array}{ll}
D_{p / N}^{(0)}\left(\Sigma^{3}\right)=[\mathrm{p}, \mathrm{~N}] & \frac{p}{N} \\
U_{\alpha}^{(1)}\left(\Sigma^{2}\right) \quad \text { 1-form symmetry } & C_{L}^{(1)}\left(\Sigma^{2}\right) \\
& C_{L, \alpha}^{(0)}\left(\Sigma^{3}\right)
\end{array}
$$

$$
\begin{aligned}
& \mathbb{Z}_{L}^{(1)} \text { subgroup } \\
& \text { condensates }
\end{aligned}
$$

Discrete torsion

$$
\alpha \in H^{3}\left(B \mathbb{Z}_{L}, U(1)\right)
$$

Chiral Symmetry Associator

To detect the associator: we throw it against a ' \dagger Hooft line, which gets dressed by Wilson lines because of the Witten effect

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.

- Solid black we draw \mathbb{R}^{3}
- Blue we draw past
- Red we draw future

These are two planes intersecting transversally at a point in \mathbb{R}^{4}

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.

- Solid black we draw $\mathbb{S}^{1} \times \mathbb{S}^{2}$
\mathbb{S}^{1} as an interval with endpoints
identified

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.

- Solid black we draw $\mathbb{S}^{1} \times \mathbb{S}^{2}$
\mathbb{S}^{1} as an interval with endpoints identified
 inner \mathbb{S}^{2} and outer \mathbb{S}^{2} are identified

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.

- Solid black we draw $\mathbb{S}^{1} \times \mathbb{S}^{2}$
- Blue we draw past \mathbb{S}^{1} shrinks
- Red we draw future \mathbb{S}^{1} shrinks with endpoints identified
 inner \mathbb{S}^{2} and outer \mathbb{S}^{2} are identified

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.

- Solid black we draw $\mathbb{S}^{1} \times \mathbb{S}^{2}$
- Blue we draw past \mathbb{S}^{1} shrinks
- Red we draw future \mathbb{S}^{1} shrinks with endpoints identified

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time. - Solid black we draw $\mathbb{S}^{1} \times \mathbb{S}^{2}$

- Blue we draw past \mathbb{S}^{1} shrinks
- Red we draw future \mathbb{S}^{1} shrinks Simplify the drawing

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.

- Solid black we draw $\mathbb{S}^{1} \times \mathbb{S}^{2}$
- Blue we draw past \mathbb{S}^{1} shrinks
- Red we draw future \mathbb{S}^{1} shrinks

Simplify the drawing
Nucleate a bubble of chiral symmetry: \mathbb{S}^{3} obtained by \mathbb{S}^{2} that shrinks
 in time.

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.

- Solid black we draw $\mathbb{S}^{1} \times \mathbb{S}^{2}$
- Blue we draw past \mathbb{S}^{1} shrinks
- Red we draw future \mathbb{S}^{1} shrinks

Simplify the drawing
Nucleate a bubble of chiral symmetry: \mathbb{S}^{3} obtained by \mathbb{S}^{2} that shrinks
 in time.

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.

- Solid black we draw $\mathbb{S}^{1} \times \mathbb{S}^{2}$
- Blue we draw past \mathbb{S}^{1} shrinks
- Red we draw future \mathbb{S}^{1} shrinks

Simplify the drawing
Nucleate a bubble of chiral symmetry: \mathbb{S}^{3} obtained by \mathbb{S}^{2} that shrinks
 in time.

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.

- Solid black we draw $\mathbb{S}^{1} \times \mathbb{S}^{2}$
- Blue we draw past \mathbb{S}^{1} shrinks
- Red we draw future \mathbb{S}^{1} shrinks

Simplify the drawing
Nucleate a bubble of chiral symmetry: \mathbb{S}^{3} obtained by \mathbb{S}^{2} that shrinks
 in time.

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.

- Solid black we draw $\mathbb{S}^{1} \times \mathbb{S}^{2}$
- Blue we draw past \mathbb{S}^{1} shrinks
- Red we draw future \mathbb{S}^{1} shrinks

Simplify the drawing
Nucleate a bubble of chiral symmetry: \mathbb{S}^{3} obtained by \mathbb{S}^{2} that shrinks
 in time.

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.

- Solid black we draw $\mathbb{S}^{1} \times \mathbb{S}^{2}$
- Blue we draw past \mathbb{S}^{1} shrinks
- Red we draw future \mathbb{S}^{1} shrinks

Simplify the drawing
Nucleate a bubble of chiral symmetry: \mathbb{S}^{3} obtained by \mathbb{S}^{2} that shrinks
 in time.

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.

- Solid black we draw $\mathbb{S}^{1} \times \mathbb{S}^{2}$
- Blue we draw past \mathbb{S}^{1} shrinks
- Red we draw future \mathbb{S}^{1} shrinks

Simplify the drawing
Nucleate a bubble of chiral symmetry: \mathbb{S}^{3} obtained by \mathbb{S}^{2} that shrinks
 in time.

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.

- Solid black we draw $\mathbb{S}^{1} \times \mathbb{S}^{2}$
- Blue we draw past \mathbb{S}^{1} shrinks
- Red we draw future \mathbb{S}^{1} shrinks

Simplify the drawing
Nucleate a bubble of chiral symmetry: \mathbb{S}^{3} obtained by \mathbb{S}^{2} that shrinks
 in time.

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.

- Solid black we draw $\mathbb{S}^{1} \times \mathbb{S}^{2}$
- Blue we draw past \mathbb{S}^{1} shrinks
- Red we draw future \mathbb{S}^{1} shrinks

Simplify the drawing
Nucleate a bubble of chiral symmetry: \mathbb{S}^{3} obtained by \mathbb{S}^{2} that shrinks
 in time.

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.

- Solid black we draw $\mathbb{S}^{1} \times \mathbb{S}^{2}$
- Blue we draw past \mathbb{S}^{1} shrinks
- Red we draw future \mathbb{S}^{1} shrinks

Simplify the drawing
Nucleate a bubble of chiral symmetry: \mathbb{S}^{3} obtained by \mathbb{S}^{2} that shrinks
 in time.

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time. - Solid black we draw $\mathbb{S}^{1} \times \mathbb{S}^{2}$

- Blue we draw past \mathbb{S}^{1} shrinks
- Red we draw future \mathbb{S}^{1} shrinks Hopf link correlator of lines in $\mathscr{A}^{N, p}$

$$
\mathcal{Z}_{S^{2} \times S^{2}}=\frac{1}{N} \sum_{b, c \in \mathbb{Z}_{N}} \frac{\left\langle L^{b} \bigcirc L^{c}\right\rangle_{\mathcal{A}^{N, p}} \mathcal{Z}[b, c]_{S^{2} \times S^{2}}}{\langle\cdot\rangle_{\mathcal{A}^{N, p}}}
$$

Chiral Symmetry Ward Identity

Consider correlators on $\mathbb{S}^{2} \times \mathbb{S}^{2}$

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.

- Solid black we draw $\mathbb{S}^{1} \times \mathbb{S}^{2}$
- Blue we draw past \mathbb{S}^{1} shrinks
- Red we draw future \mathbb{S}^{1} shrinks Hopf link correlator of lines in $\mathscr{A}^{N, p}$

$$
\mathcal{Z}_{S^{2} \times S^{2}}=\frac{1}{N} \sum_{b, c \in \mathbb{Z}_{N}} \frac{\left\langle L^{b} \bigcirc L^{c}\right\rangle_{\mathcal{A}^{N, p}} \mathcal{Z}[b, c]_{S^{2} \times S^{2}}}{\langle\cdot\rangle_{\mathcal{A}^{N, p}}}
$$

Easy to generalize thanks to Kirby description of 4-manifolds!

Ward Identities and bordisms

Idea is very simple: two ways to look at a compact 4-manifold:

- Null bordism
- Handle decompostion

$$
\varnothing \rightarrow \mathbb{S}^{3} \xrightarrow{H_{1}} \cdots \xrightarrow{H_{n}} \varnothing
$$

surgery diagram
$\mathbb{S}^{2} \times \mathbb{S}^{2}$ example:

$$
\varnothing \rightarrow \mathbb{S}^{3} \xrightarrow{H_{1}} \mathbb{S}^{1} \times \mathbb{S}^{2} \xrightarrow{H_{2}} \mathbb{S}^{3} \rightarrow \varnothing
$$

Where we are only gluing 2 -handles.
For all 4-manifolds with a handle decomposition with 2-handles only the surgery diagram we obtain is a link in \mathbb{S}^{3} : the Ward identity we obtain is the expectation value of such a link, decorated with lines, in the $\mathscr{A}^{N, p} 3 d$ TFT.

Executive Summary

Symmetries are a topological sector of the spectrum of operators
The latter is organized by a higher category
We have seen some applications of these ideas
This is just the beginning of a long story

Executive Summary

Symmetries are a topological sector of the spectrum of operators
The latter is organized by a higher category
We have seen some applications of these ideas
This is just the beginning of a long story
Hey, but what about branes and strings?

Executive Summary

Symmetries are a topological sector of the spectrum of operators
The latter is organized by a higher category
We have seen some applications of these ideas
This is just the beginning of a long story
Hey, but what about branes and strings?
Maybe I can say something on the blackboard, but for sure I am already out of time...

Thank you for your attention!

Thank you for your attention!

But before I go let me mention:

Inauguration of the Centre for Geometry and Physics with lecture by honorary doctorate Nikita Nekrasov

Add to your calendar

- Date: 24 January, 13:00-15:00
- Location: Ångströmlaboratoriet, Lägerhyddsvägen 1 , lecture hall Eva von Bahr
- Lecturer: Nikita Nekrasov
- Organiser: Department of Mathematics and Department of Physics and Astronomy
- Contact person: Tobias Ekholm
- Föreläsning

Welcome to the inauguration of the Centre for Geometry and Physics. The centre starts 2024 based on grants from the Swedish Research Council's excellence initiative for projects with great potential for innovative research.

