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Executive Summary

Symmetries are a fopological subsector of the spectrum of operators
of a given QFT.

Today | will explain some features and some first applications of
symmetries that arise from this perspective.
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Example: Maxwell theory

Electric and magnetic 1-form symmetries

UG(S?) = = e UTN(S?) = e'¥ls o’
o=l jo =%l

) e- 2r

o, () = it 0, (E) = eitnlah

Wilson lines 't Hooft lines

U(SY) O,(E") = ¢ 0,(E)  +=e,m
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Locality principle

So far we have not made a distinction among defects and
operators (spacetime is Euclidean), but for RQFT there is:

 Operators : inserted along space

* Defects : Inserted along fime

As defects: twisted Hilbert spaces g b0x +27) = d(x) e
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$ y ...................... 81 H”berf Space
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Group Multiplication —  Fusion Product
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Generalized Symmetries: Lightning Review

e Ward identities
Generalized Topological Selection Rules

global
symmetries

subsector of the

e Anomalies
spectrum of |
operators of a * Spontaneous breaking

QFT ... but also other features!

e Fusion product
* Higher structure
D ® D, ® D; Fxtended defects
can form junctions
Defec‘l‘ Of Cordova, Dumitrescu,

higher Intriligator 16; Benini,

. . : Cordova, Hsin 18; Bhardwaj,
\ Dl ® D2 COdImenSIOH eg hlgher grOUp Shafer-Nameki 23; Bullimore,

Barscht, Grigoletto 23

S




Symmetry Groups — Symmetry Categories

e Ward identities
eSelection Rules

e Anomalies

e Spontfaneous breaking

e Fusion product
* Higher structure

S

D ® D, ® Dy

\ Defect of

higher
™~ D1 R D2 codimension




Symmetry Groups — Symmetry Categories

The structure of symmetries Is better
characterized exploiting higher
categories than groups  wei-wown in the TaFT community

Finds applications in cond-mat

(topological order), eg. Johnson-Freyd,

Gaiotto 17,19; Johnson-Freyd 20;
Gaiotto, Kulp 20; Kong, Lan, Wen,

D2 ® D 3 Zhang, Zheng 20; now apply to QFT

2D ®D,® D;

\ Defect of
D, |

higher
~ D1 X D2 codimension

e Ward identities
eSelection Rules

e Anomalies

e Spontfaneous breaking

e Fusion product
* Higher structure



Symmetry Groups

The structure of symmetries Is better
characterized exploiting higher
quegories ThOn QrOUpS Well-known in the TQFT community

Finds applications in cond-mat

(topological order), eg. Johnson-Freyd,

Gaiotto 17,19; Johnson-Freyd 20;
Gaiotto, Kulp 20; Kong, Lan, Wen,

D2 ® D 3 Zhang, Zheng 20; now apply to QFT

2D ®D,® D;

\ Defect of
D, |

higher
~ D1 X D2 codimension

Symmetry Categories

TODAY

e WAOTra TaeTiiTieS
eSelection Rules

e Anomalies

e Spontfaneous breaking

e Fusion product

* Higher structure

See also: Cordova, Ohmori 21; Choi, (Cordova), Lam,
(Hsin), Shao 21,22; Roumpedakis, Seifnashri, Shao 22;
Kaidi, Ohmori, Zheng 21,22; Kaidi, Nardoni, Zafrir, Zheng
23; Oxford group (Apruzzi, Bhardwaj, Bonetti, Bottini, ...,
Schéafer-Nameki); Durham group (Bartsch, Bullimore,... +
Garcia Etxebarria, Hosseini),...
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| (D+1)-dimensional QFTs with

morphisms topological interfaces
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Symmetry Categories oversimplified

Symmetry category graded by charged operator dimensions:

6 =6V, 6V, ... P &%) = codim k+1 top-ops

slogan:|everything is a morphism and every morphism is an interface

Usual “k-form” symmetry generators € €¢“(id,_,.id,_;)

D
e.9 , b D e =Yid_,,id_))
> jab Jab = %(1)(Da9 Db)
D, ) € 62D, D,

Useful: instead of drawing, chase arrow diagrams



Example

(D, ® D,) ® D, J D,® (D, ® D,)
\ /’
J(ab)c a(bc)

(Da®Db®Dc) }/] = Cg(z)(Dab@Dc’Dd@Dbc)

Useful: instfead of drawing, chase arrow diagrams



Higher associators

The associativity for (p + 1)-objects gives a p-morphism.
Da X Db X Dc X Dd

~ .




Higher associators

The associativity for (p + 1)-objects gives a p-morphism.

D ®®D,QD.QD, Higher associativity
/ l \ = higher codimension
DD, QD._,
Da ® Dbcd

For instance this diagram
gives a 3-morphism (the
pentagonator).




Gauging and Condensates

Feature of N-fusion categories for N>1: can form condensates

Gaiotto, Johnson-Freyd 19
Roumpedakis, Seifnashri, Shao 22

l.e. one can build lower codimension defects from higher condimension
ones via the higher gauging procedure

For each p-gaugeable A C &%) consistent higher structure requires

Cy(ZPHr)y e &P
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Gauging and Condensates

Feature of N-fusion categories for N>1: can form condensates

Gaiotto, Johnson-Freyd 19
Roumpedakis, Seifnashri, Shao 22

l.e. one can build lower codimension defects from higher condimension
ones via the higher gauging procedure

For each p-gaugeable A C &%) consistent higher structure requires
C,EZPPye®?P p<k

Obtained by inserting a mesh of A on ©
triangulation of P77

>D-p Remark: condensates are porous
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Gauging and Condensates

This gives useful way of building topological interfaces

J ‘ J

Ca

When the theory & is such that it has an equivalence o : I =~ I /A

terating one obtains fusionrule | ) & D= CA
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Example: Maxwell Theory

Consider gauging @ Z](\}) subgroup of U(l)gl)

This has the same effect as S LA s Ne
shifting the gauge potentials N Y v
EM duality

J (Ne) = I (2r/Ne)

$ €x — \/27Z'/N 97(6) @ 5’(35)3!@%@

'= T (Ne)
Gives an I
eqguivalence 7 (1)
N

— T (e:) has duality defects



Many more examples can be realized

e Using SYM at the self dual coupling 7 = 1 one has the equivalence

SU(N) = PSU(N) = SUN)/Z,

Cordova, Choi, Shao 21
Kaidi, Ohmori, Zheng 21

e Many more examples can be constructed exploiting class S
theories at special points of their moduli spaces

LI,

IN particular one finds examples of n-ality defects, and
generalized duality defects labeled by non-abelian finite
grOUpS |n ThlS WCIy Bashmakov, Del Zotto, Hasan, Kaidi 22

Antinucci, Copetti, Galati, Rizi 22

Bashmakov, Del Zotto, Hasan 22



Symmetry theory

ldea: fopological operators are encoded in a D+2 dimensional TFT

Kapustin Seiberg 14

Gaiotto, Kulp 20

Apruzzi, Bonetti, Garcia-Etxebarria,
—~ AU Schafer-Nameki, Hosseini 21
T — T Freed, Moore, Teleman 22

B 7

Bhardwaj, Shafer-Nameki 23 (many)

eSeparates the topological symmetry data from the theory
e Allows to import fechniques from TFT (cobordism hypothesis)
e Glves generalization of 't Hooft anomaly matching

e Streamlines consfruction of duality defects:

12

BI

#



Symmetry theory

ldea: fopological operators are encoded in a D+2 dimensional TFT

~

B z T = |T

Kapustin Seiberg 14
Gaiotto, Kulp 20
Apruzzi, Bonetti, Garcia-Etxebarria,
Schafer-Nameki, Hosseini 21
Freed, Moore, Teleman 22

eSeparates the topological symmetry data from the theory

e Allows to import fechniques from TFT (cobordism hypothesis)

e Glves generalization of 't Hooft anomaly matching

e Streamlines construction of duality defects:

T (1)
E z G
B £op I b '7-(7' x) = GoP
T(7+)



Higher associators - continued

The associativity for (p + 1)-objects gives a p-morphism.

Higher associativity

= higher codimension
't Hooft anomaly

Associativity condition with codimension higher than the defect
worldvolume itselt —» |f non trivializable becomes obstruction to gauging



Higher associators - continued

The associativity for (p + 1)-objects gives a p-morphism.

Higher associafivity

= higher codimension
't Hooft anomaly

Associativity condition with codimension higher than the defect
worldvolume itselt —» |f non trivializable becomes obstruction to gauging

Examples:

1.Quantum mechanics: by Wigner Z can be in a projective representation:
symmetry operators are inserted at points and associativity itselt measures
the anomaly

2. QFT in 1+1: symmetries are lines, associativity is encoded by F-symibal,
consistency of F-symbol is encoded by pentagonator. When symmetry is o

group, pentagonators are parametrized by class in H>(G, U(1)) which is
the standard anomaly



Higher associators - continued

The associativity for (p + 1)-objects gives a p-morphism.

Higher associativity

= higher codimension
't Hooft anomaly

Associativity condition with codimension higher than the defect
worldvolume itselt —» |f non trivializable becomes obstruction to gauging

Other notion: theory cannot have trivial gapped symmetric phase.

For non-invertible symmetries the two notfions don't coincide and the
second Is more restrictive

Choi, Rayhuan, Sanghavi, Shao 23
Cordova, Hsin, Zheng 23
Antinucci, Benini, Copetti, Rizi 23



Choi, Lam, Shao 22

C h i ral Sym m etry Cérdova, Ohmori 22

Consider 3+1 dimensional QFT with U(1)!) symmetry and a 1-form that
satisfies an anomalous conservation equation of the ABJ type

dx D = % jO A xj®

Then there is a symmetry for wannabe U(l))((O) quantum numbers

Generators:

2
N, _ *(2)
p/N QR AV Pb] b—N*]

DO (23) _

p/N

Hsin-Lan-Selberg

chiral rotation minimal 349 ZN TET
generator



Choi, Lam, Shao 22

C h i ral Sym m etry Cérdova, Ohmori 22

Consider 3+1 dimensional QFT with U(1)!) symmetry and a 1-form that
satisfies an anomalous conservation equation of the ABJ type

dx D = % jO A xj®

Then there is a symmetry for wannabe U(l))((O) quantum numbers

Generators (light notation)

0 3
DIE/KI(Z ) = [p,N]



Choi, Lam, Shao 22

C h i ral Sym m etry Cérdova, Ohmori 22

Consider 3+1 dimensional QFT with U(1)!) symmetry and a 1-form that
satisfies an anomalous conservation equation of the ABJ type

d % 0 = % jO A %@

Then there is a symmetry for wannabe U(l))((O) quantum numbers

Generators (light notation)

(0) /v3
c Dz 7'V subgroup

(1) (2 _ L L
U,’(27) 1-form symmetry condensates

(0) (33
CL,a(Z )

Discrete torsion

a € H}(BZ,,U(1))



2d case: Bhardwaj, Tachikawa 17

Chiral Symmetry Associator

2
2]

AIZ
nom no_ . F A Ags
: 2 ’ _Azg A1(23)- p1/N1,p2/Na,p3/N3
" Asy
. . P23
Generators (light notation) WG
(0) (33 N N

c D) 7'V subgroup
U(gl)(Zz) -form symmetry L cc%ndenso’res

(0) (33
CL,a(Z )

Discrete torsion

a € H}(BZ,,U(1))



Chiral Symmetry Associator

T

To detect the associator:

we throw it against a 't
Hooft line, which gets
dressed by Wilson lines
because of the Witten
effect

=

Aj(23)

2l

2d case: Bhardwaj, Tachikawa 17
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A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.

e Solid black we draw R’

These are two
* Blue we draw past planes intersecting

fransversally at a
point in | 4

e Red we draw future
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A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.
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» Blue we draw past S shrinks

« Red we draw future S! shrinks
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with endpoints /
Identifled

/

- aNd outer
S? are identified
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Nucleate a bubble of
chiral symmetry: §°

obtained by S* that shrinks
N fime.
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Chiral Symmetry Ward Identity

Consider correlators on S* X S?

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.
e Solid black we draw S! x §2

» Blue we draw past S shrinks

« Red we draw future S! shrinks
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Chiral Symmetry Ward Identity

Consider correlators on S* X S?

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.
e Solid black we draw S! x §2

» Blue we draw past S shrinks

« Red we draw future S! shrinks

_ AN, P
Zszxsz == — Z[b,CJSzxsz

Hopf link correlator of lines in /™7
N

(<}

Easy to generdhze thanks to Kirby description of 4-manitolds!



Ward Identities and bordisms

ldea Is very simple: two ways to look at a compact 4-manifold:
H, H

n

e Null bordism
>SS — .

e Handle decompostion
surgery diagram

S? x S% example:
3 H 1 1 3
D—>S — S XS —— S > @
Where we are only gluing 2-handles.

For all 4-manifolds with a handle decomposition with 2-handles only the surgery
diagram we obtain is a link in S° : the Ward identity we obtain is the expectation

value of such a link, decorated with lines, In the oANP 3d TFT.
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Executive Summary

Symmetries are a topological sector of the spectrum of operators
The latter is organized by a higher category

We have seen some applications of these ideas

This is just the beginning of a long story

Hey, but what about branes and sirings®e

Maybe | can say something on the blackboard, but
for sure | am already out of time...
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Thank you for your attention!

But before | go let me mention:

Inauguration of the Centre for Geometry and Physics with
lecture by honorary doctorate Nikita Nekrasov

Add to your calendar

= Date: 24 January, 13:00-15:00

= | ocation: Angstrédmlaboratoriet, Lagerhyddsvagen 1 , lecture hall Eva von Bahr

= |_ecturer: Nikita Nekrasov

= Organiser: Department of Mathematics and Department of Physics and
Astronomy

= Contact person: Tobias Ekholm

= Forelasning

Welcome to the inauguration of the Centre for Geometry and Physics. The centre
starts 2024 based on grants from the Swedish Research Council's excellence
initiative for projects with great potential for innovative research.

Please register to help us estimate how many people will be attending.




