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Executive Summary

Symmetries are a topological subsector of the spectrum of operators 
of a given QFT.  

Today I will explain some features and some first applications of 
symmetries that arise from this perspective.
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Example: Maxwell theory
Electric and magnetic 1-form symmetries

J(2)
e =

f
e2

𝒰(e)
θ (𝕊2) = eiθ ∫𝕊2 *J(2)

e 𝒰(m)
θ (𝕊2) = eiθ ∫𝕊2 *J(2)

m

J(2)
m = *

f
2π

𝒪qe
(Σ1) = eiqe ∫Σ1 a(1) 𝒪qm

(Σ1) = eiqm ∫Σ1 a(1)
D

𝒰(∙)
θ (𝕊2) 𝒪q∙

(Σ1) = eiθq∙ 𝒪q∙
(Σ1) ∙ = e, m

Wilson lines ’t Hooft lines
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in definite representations of :𝔾(0) Γ(1)

Γ(1)𝔸(1) C1 1

mismatch given by 
projective reps of  𝔾(0)

w ∈ H2(𝔾(0), C)
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Generalized Symmetries: Lightning Review

≡

“Topological” 
subsector of the 

spectrum of 
operators of a 

QFT

•Ward identities
•Selection Rules
•Anomalies
•Spontaneous breaking

… but also other features!

•Fusion product
•Higher structure

D1

D2

D1 ⊗ D2

Extended defects 
can form junctions

D3

D1 ⊗ D2 ⊗ D3

Defect of 
higher 

codimension e.g. higher group
Cordóva, Dumitrescu, 
Intriligator 16; Benini, 
Cordóva, Hsin 18; Bhardwaj, 
Shafer-Nameki 23; Bullimore, 
Barscht, Grigoletto 23

D2 ⊗ D3

Generalized 
global 

symmetries



Symmetry Groups  Symmetry Categories→
•Ward identities
•Selection Rules
•Anomalies
•Spontaneous breaking

•Fusion product
•Higher structure

D1

D2

D1 ⊗ D2

D3

D1 ⊗ D2 ⊗ D3

Defect of 
higher 

codimension

D2 ⊗ D3
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D1
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D1 ⊗ D2

D3 D2 ⊗ D3

D1 ⊗ D2 ⊗ D3

Defect of 
higher 

codimension

The structure of symmetries is better 
characterized exploiting higher 
categories than groups Well-known in the TQFT community


Finds applications in cond-mat 
(topological order), eg. Johnson-Freyd, 
Gaiotto 17,19; Johnson-Freyd 20; 
Gaiotto, Kulp 20; Kong, Lan, Wen, 
Zhang, Zheng 20; now apply to QFT



Symmetry Groups  Symmetry Categories→
•Ward identities
•Selection Rules
•Anomalies
•Spontaneous breaking

•Fusion product
•Higher structure

D1

D2

D1 ⊗ D2

D3 D2 ⊗ D3

D1 ⊗ D2 ⊗ D3

Defect of 
higher 

codimension

The structure of symmetries is better 
characterized exploiting higher 
categories than groups Well-known in the TQFT community


Finds applications in cond-mat 
(topological order), eg. Johnson-Freyd, 
Gaiotto 17,19; Johnson-Freyd 20; 
Gaiotto, Kulp 20; Kong, Lan, Wen, 
Zhang, Zheng 20; now apply to QFT

See also: Córdova, Ohmori 21; Choi, (Córdova), Lam, 
(Hsin), Shao 21,22; Roumpedakis, Seifnashri, Shao 22; 
Kaidi, Ohmori, Zheng 21,22; Kaidi, Nardoni, Zafrir, Zheng 
23; Oxford group (Apruzzi, Bhardwaj, Bonetti, Bottini, …, 
Schäfer-Nameki); Durham group (Bartsch, Bullimore,… + 
García Etxebarria, Hosseini),… 

TODAY



Symmetry Categories oversimplified

slogan: everything is a morphism and every morphism is an interface

𝒞(k)

Symmetry category graded by charged operator dimensions:

= codim k+1 top-ops𝒞 = (𝒞(0), 𝒞(1), ⋯, 𝒞(D−1))
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Symmetry Categories oversimplified

slogan: everything is a morphism and every morphism is an interface

𝒞(k)

Symmetry category graded by charged operator dimensions:

= codim k+1 top-ops

Usual “k-form” symmetry generators  ∈ 𝒞(k)(idk−1, idk−1)
e.g

D

D ∈ 𝒞(0) = 𝒞(0)(id−1, id−1)

𝒞 = (𝒞(0), 𝒞(1), ⋯, 𝒞(D−1))

From this perspective it makes 
sense to consider a category of 
(D+1)-dimensional QFTs with 
morphisms topological interfaces

Remark:
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Symmetry Categories oversimplified

slogan: everything is a morphism and every morphism is an interface

𝒞(k)

Symmetry category graded by charged operator dimensions:

= codim k+1 top-ops

Usual “k-form” symmetry generators  ∈ 𝒞(k)(idk−1, idk−1)
e.g

Jab Jab ∈ 𝒞(1)(Da, Db)J̃ab

η

η ∈ 𝒞(2)(Da, Db)

D ∈ 𝒞(0) = 𝒞(0)(id−1, id−1)

Da

Useful: instead of drawing, chase arrow diagrams

Db

𝒞 = (𝒞(0), 𝒞(1), ⋯, 𝒞(D−1))



Example

Jab

η ∈ 𝒞(2)(Dab ⊗ Dc, Da ⊗ Dbc)

Da ⊗ Db ⊗ Dc

Useful: instead of drawing, chase arrow diagrams

(Da ⊗ Db) ⊗ Dc

Jbc

Da ⊗ (Db ⊗ Dc)

(Da ⊗ Db ⊗ Dc)

J(ab)c
Ja(bc)

η



Higher associators

Da ⊗ Db ⊗ Dc ⊗ Dd

Dab ⊗ Dc ⊗ Dd Da ⊗ Dbc ⊗ Dd

Dabcd

Da ⊗ Db ⊗ Dcd

Dabc ⊗ Dd

Dab ⊗ Dcd
Da ⊗ Dbcd

The associativity for (p + 1)-objects gives a p-morphism. 



Higher associators

Da ⊗ Db ⊗ Dc ⊗ Dd

Dab ⊗ Dc ⊗ Dd Da ⊗ Dbc ⊗ Dd

Dabcd

Da ⊗ Db ⊗ Dcd

Dabc ⊗ Dd

Dab ⊗ Dcd
Da ⊗ Dbcd

The associativity for (p + 1)-objects gives a p-morphism. 
Higher associativity

higher codimension⇒

For instance this diagram 
gives a 3-morphism (the 
pentagonator).



Gauging and Condensates
Feature of N-fusion categories for N>1: can form condensates

Gaiotto, Johnson-Freyd 19

Roumpedakis, Seifnashri, Shao 22

i.e. one can build lower codimension defects from higher condimension 
ones via the higher gauging procedure
For each p-gaugeable  𝔸 ⊆ 𝒞(k) consistent higher structure requires

C𝔸(ΣD+1−p) ∈ 𝒞(p)

ΣD+1−p
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For each p-gaugeable  𝔸 ⊆ 𝒞(k) consistent higher structure requires

C𝔸(ΣD−p) ∈ 𝒞(p)

ΣD−p

Obtained by inserting a mesh of  on a 
triangulation of 

𝔸
ΣD−p

𝔸
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i.e. one can build lower codimension defects from higher condimension 
ones via the higher gauging procedure
For each p-gaugeable  𝔸 ⊆ 𝒞(k) consistent higher structure requires

C𝔸(ΣD−p) ∈ 𝒞(p) p ≤ k

ΣD−p

Obtained by inserting a mesh of  on a 
triangulation of 

𝔸
ΣD−p

𝔸

Remark: condensates are porous 
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I

Gauging and Condensates
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Gauging and Condensates
This gives useful way of building topological interfaces

𝒯

When the theory  is such that it has an equivalence  

Iterating one obtains fusion rule  

𝒯 σ : 𝒯 ≅ 𝒯/𝔸

𝒯
C𝔸

D ⊗ D = C𝔸



Example: Maxwell Theory
Consider gauging a  subgroup of ℤ(1)

N U(1)(1)
e

This has the same effect as 
shifting the gauge potentials a →

1
N

a aD → NaD e → Ne

I
ℤ(1)

N

𝒯(e)/ = 𝒯(Ne)ℤ(1)
N𝒯(e)



Example: Maxwell Theory
Consider gauging a  subgroup of ℤ(1)

N U(1)(1)
e

This has the same effect as 
shifting the gauge potentials a →

1
N

a aD → NaD e → Ne

I

e* = 2π/N

ℤ(1)
N

𝒯(e)/ = 𝒯(Ne)ℤ(1)
N

EM duality

𝒯(Ne) ≅ 𝒯(2π/Ne)

⇒
Gives an 
equivalence

𝒯(e)

⇒  has duality defects𝒯(e*)



Many more examples can be realized

• Using SYM at the self dual coupling  one has the equivalenceτ = i

SU(N) ≅ PSU(N) = SU(N)/ℤN

• Many more examples can be constructed exploiting class S 
theories at special points of their moduli spaces

𝒳6D
(2,0)/Σg,p Bashmakov, Del Zotto, Hasan 22

Cordova, Choi, Shao 21

Kaidi, Ohmori, Zheng 21

In particular one finds examples of n-ality defects, and 
generalized duality defects labeled by non-abelian finite 
groups in this way Bashmakov, Del Zotto, Hasan, Kaidi 22

Antinucci, Copetti, Galati, Rizi 22



Symmetry theory
Idea: topological operators are encoded in a D+2 dimensional TFT

•Separates the topological symmetry data from the theory 

•Allows to import techniques from TFT (cobordism hypothesis) 

•Gives generalization of ’t Hooft anomaly matching  

•Streamlines construction of duality defects:

Kapustin Seiberg 14

Gaiotto, Kulp 20

Apruzzi, Bonetti, Garcia-Etxebarria, 

Schafer-Nameki, Hosseini 21

Freed, Moore, Teleman 22

Bhardwaj, Shafer-Nameki 23 (many)
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Higher associators - continued
The associativity for (p + 1)-objects gives a p-morphism. 

Higher associativity
higher codimension⇒

Associativity condition with codimension higher than the defect 
worldvolume itself 

’t Hooft anomaly

If non trivializable becomes obstruction to gauging
Examples:

1.Quantum mechanics: by Wigner  can be in a projective representation: 
symmetry operators are inserted at points and associativity itself measures 
the anomaly 

2. QFT in 1+1: symmetries are lines, associativity is encoded by F-symbol, 
consistency of F-symbol is encoded by pentagonator. When symmetry is a 
group, pentagonators are parametrized by class in  which is 
the standard anomaly

ℋ

H3(𝔾, U(1))



Higher associators - continued
The associativity for (p + 1)-objects gives a p-morphism. 

Higher associativity
higher codimension⇒

Associativity condition with codimension higher than the defect 
worldvolume itself 

’t Hooft anomaly

If non trivializable becomes obstruction to gauging

Other notion: theory cannot have trivial gapped symmetric phase.

For non-invertible symmetries the two notions don’t coincide and the 
second is more restrictive

Choi, Rayhuan, Sanghavi, Shao 23

Cordova, Hsin, Zheng 23

Antinucci, Benini, Copetti, Rizi 23



Chiral Symmetry Choi, Lam, Shao 22

Córdova, Ohmori 22

Consider 3+1 dimensional QFT with  symmetry and a 1-form that 
satisfies an anomalous conservation equation of the ABJ type

U(1)(1)

d ⋆ j(1)
χ = ⋆ j(2) ∧ ⋆j(2)

Then there is a symmetry for wannabe  quantum numbers  U(1)(0)
χ

Generators:

D(0)
p/N(Σ3) = 𝒰χ

p/N ⊗ 𝒜N,p[b] b =
2π
N

⋆ j(2)

chiral rotation 
generator

Hsin-Lan-Seiberg 
minimal 3d  TFTℤN
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Consider 3+1 dimensional QFT with  symmetry and a 1-form that 
satisfies an anomalous conservation equation of the ABJ type

U(1)(1)

d ⋆ j(1)
χ = ⋆ j(2) ∧ ⋆j(2)

Then there is a symmetry for wannabe  quantum numbers  U(1)(0)
χ

Generators (light notation)

D(0)
p/N(Σ3) = [p,N]

U(1)
α (Σ2) 1-form symmetry

C(1)
L (Σ2)

C(0)
L,α(Σ3)

 subgroup 
condensates
ℤ(1)

L

α ∈ H3(BℤL, U(1))
Discrete torsion



Chiral Symmetry Associator

Generators (light notation)

D(0)
p/N(Σ3) = [p,N]

U(1)
α (Σ2) 1-form symmetry

C(1)
L (Σ2)

C(0)
L,α(Σ3)

 subgroup 
condensates
ℤ(1)

L

α ∈ H3(BℤL, U(1))
Discrete torsion

2d case: Bhardwaj, Tachikawa 17



Chiral Symmetry Associator

To detect the associator: 
we throw it against a ’t 
Hooft line, which gets 
dressed by Wilson lines 
because of the Witten 
effect

2d case: Bhardwaj, Tachikawa 17
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• Solid black we draw   

• Blue we draw past 

• Red we draw future

ℝ3

These are two 
planes intersecting 
transversally at a 
point in  ℝ4
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Chiral Symmetry Ward Identity
Consider correlators on 𝕊2 × 𝕊2

A bit hard to visualize 4-manifolds. IDEA: draw fourth direction as time.
• Solid black we draw   

• Blue we draw past  shrinks 

• Red we draw future  shrinks

𝕊1 × 𝕊2

𝕊1

𝕊1

Hopf link correlator of lines in 𝒜N,p

Easy to generalize thanks to Kirby description of 4-manifolds!



Ward Identities and bordisms

Where we are only gluing 2-handles. 

For all 4-manifolds with a handle decomposition with 2-handles only the surgery 
diagram we obtain is a link in  : the Ward identity we obtain is the expectation 
value of such a link, decorated with lines, in the  3d TFT.

𝕊3

𝒜N,p

Idea is very simple: two ways to look at a compact 4-manifold:

• Null bordism
• Handle decompostion

∅ → 𝕊3 H1 ⋯ Hn ∅
surgery diagram 

 example:𝕊2 × 𝕊2

∅ → 𝕊3 H1 𝕊1 × 𝕊2 H2 𝕊3 → ∅
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Executive Summary

Symmetries are a topological sector of the spectrum of operators 

The latter is organized by a higher category 

We have seen some applications of these ideas 

This is just the beginning of a long story

Hey, but what about branes and strings?

Maybe I can say something on the blackboard, but 
for sure I am already out of time…



Thank you for your attention!



Thank you for your attention!
But before I go let me mention:


